
Futex based locks for C11’s generic atomics
(extended abstract)

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

ABSTRACT
We present a new algorithm and implementation of a lock
primitive that is based on Linux’ native lock interface, the
futex system call. It allows us to assemble compiler support
for atomic data structures that can not be handled through
specific hardware instructions. Such a tool is needed for
C11’s atomics interface because here an Atomic qualifica-
tion can be attached to almost any data type. Our lock
data structure for that purpose meets very specific criteria
concerning its field of operation and its performance. By
that we are able to outperform gcc’s libatomic library by
around 60%.

CCS Concepts
•Software and its engineering → Runtime environ-
ments; Concurrent programming structures;

Keywords
lock primitives, atomics, C11, futex, Linux

1. INTRODUCTION
Only very recently (with C11, see JTC1/SC22/WG14) the C
language has integrated threads and atomic operations into
the core of the language. Support for these features is still
partial: where the main open source compilers gcc and Clang
now offer atomics, most Linux platforms still use glibc as
their C library which does not implement C11 threads. Only
platforms that are based on MUSL as C library, e.g Alpine,
are feature complete.

The implementation of the C11 atomic interface typically
sits in the middle between the implementation of the core
language and the C library. It needs compiler support for
the individual atomic operations and a generic atomic lock

Publication rights licensed to ACM. ACM acknowledges that this con-
tribution was authored or co-authored by an employee, contractor or
affiliate of a national g overnment. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or
to allow others to do so, for Government purposes only.
SAC 2016,April 04 - 08, 2016, Pisa, Italy
Copyright is held by the owner/author(s). Publication rights licensed
to ACM.
ACM 978-1-4503-3739-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2851613.2851956

interface in the C library when no low-level atomic instruc-
tion is available.

Since Linux’ open source C libraries do not implement the
generic interface, the compilers currently provide a library
stub that implements the necessary lock by means of a com-
bination of atomics and POSIX pthread_mutex_t.

From a point of view of the C language the natural inter-
face for that would be C11 threads, but since these are still
missing in glibc, they fall back to POSIX threads, instead
of mapping to platform specific properties and drawing the
best performance from a given platform. In this work we
present a specific algorithm for the generic lock that relies
on a specific Linux utility, the futex system call.

A futex combines one atomic integer and OS scheduling.
In our approach, we use one unsigned to implement the lock
and a waiter count at the same time. The resulting data
type of minimal size (32 bit on all architectures) and the
algorithm can take advantage by minimizing the number of
CPU to memory transfers. In most cases one such transfer
is sufficient, where other algorithms have to update a lock
and a waiter counter separately.

To our knowledge pursuing this approach to a complete so-
lution is new. Previously urban myth had it that such ap-
proaches would risk deadlocks if confronted to heavy load,
because repeated failures of calls to futex wait could lead
to unbounded loops. We are able to prove that such un-
bounded loops will not happen for our algorithm. Also, our
measurements have shown that such an approach can be
very effective: failed system calls to futex wait are much less
costly than commonly thought.

Our algorithm and its implementation is part of a larger
open source project to provide the necessary interfaces (header
files) and library support for C11’s <stdatomic.h>. It is avail-
able at http://stdatomic.gforge.inria.fr/. The code is func-
tional to be used with gcc and clang, even for older ver-
sion without full support for atomic operations. In a later
stage, we intent to integrate the whole project into the musl

C library. A full version of this paper, Gustedt (2015), is
available online as https://hal.inria.fr/hal-01236734.

2. TOOLS FOR DATA CONSISTENCY AND
RACES

Data races are the most difficult challenge for parallel pro-

2004

http://dx.doi.org/10.1145/2851613.2851956
http://stdatomic.gforge.inria.fr/
https://hal.inria.fr/hal-01236734

gramming. They often lead to hard to trace erratic errors
and these had become apparent almost since the beginning
of modern computing. An early overview of the problem
had been given by see e.g. Netzer and Miller (1992). Mod-
ern hardware deals with races by providing so-called atomic
instructions. C, as of version C11, abstracts and encapsu-
lates these instructions in atomic types (Atomic keyword)
and operations.

Dealing with races efficiently also requires support from the
execution platform, namely the OS. In a singular toolbox
called Fast User space muTEXes, futex for short, the Linux
kernel combines two levels of operations (atomics and a sys-
tem call) for the implementation of lock primitives, see Hut-
ton et al. (2002); Hart (2009). With these interfaces a simple
but inefficient lock structure smpl could look as follows:

typedef Atomic(int) smpl;
void smpl lock(smpl* lck) {
for (;;) {
int prev = atomic exchange(lck , 1);
i f (!prev) break;
futex wait(lck , prev);

}
}
void smpl unlock(smpl* lck) {
atomic store(lck , 0);
futex wake(lck , 1);

}

Both functions are simplistic and not very efficient. The
first, smpl lock, is inefficient because each failed attempt to
acquire the lock will result in a call into the OS kernel, even
if the lock would be available almost instantly. The sec-
ond, smpl unlock, tries to wake up another thread without
knowing if any thread is waiting.

3. A NEW GENERIC LOCK ALGORITHM
USING FUTEX SYSTEM CALLS

For our strategy we use a single unsigned value that at the
same time holds the lock bit (HO bit) and a 31 bit counter.

typedef Atomic(unsigned) ftx;
#define ftx set (VAL) (0 x80000000u | (VAL))
#define ftx lkd(VAL) (0 x80000000u & (VAL))

void ftx lock(ftx* lck) {
unsigned cur = 0;
i f (!ftx cmpxch(lck , &cur , ftx set (1))) {
cur = ftx fetch add(lck , 1) + 1;
for (;;) {
while (! ftx lkd(cur)) {
i f (ftx cmpxch(lck , &cur , ftx set (cur))) return;
for (unsigned i = 0; i < E && ftx lkd(cur); i++)
cur = ftx load(lck);

}
while (ftx lkd(cur)) {
futex wait(lck , cur);
cur = ftx load(lck);

}
}

}
}

That counter counts the number of threads inside the critical
section. An update of the counter part is done once when a
thread enters the CS.

1. A thread is on the fast path for the lock when the
overall value is 0. The lock can be acquired with one

atomic operation which sets the counter and the lock
bit simultaneously.

2. Otherwise, we increment the lock value atomically and
enter an acquisition loop.
(a) First, we spin E times to acquire the lock.

(b) If that fails, we go into a futex wait.

Unlocking is a very simple operation. The locker has con-
tributed ftx set(1u) to the value, and just has to decrement
the value atomically by that amount. The return value of
the operation reveals if other threads still are in the CS, and
a futex wake call can be placed accordingly.

It is relatively easy to see that this new strategy provides a
functional lock primitive using just a 32 bit data structure
and one atomic operation for fast ftx lock and ftx unlock. It
remains to show that it cannot deadlock.

tfail is the maximum of two system specific times: the time
a thread T1 may either spend in a failed attempt to
futex wait or that the system needs to put T1 to sleep
and start another thread T2.

P is the number of processor cores, which is viewed to be
equal to the maximum number of threads that are
scheduled simultaneously.

tpara is the time that P threads need for a spinning phase
that they perform in parallel.

Lemma 3.1. Provided that no other threads are unsched-
uled, after at most tpara + (P − 1) · tfail seconds a first thread
successfully calls futex wait.

Proof. For the first term, observe that after tpara time,
at least one thread has finished the spinning phase, and at-
tempts futex wait.

While no thread is unscheduled at most P scheduled threads
can enter the CS. There are at most P−1 atomic increments
that change the futex value. Thus the first thread that enters
the CS will need at most tpara time for spinning and then
futex wait may fail at most P − 1 times in a row.

With this lemma, in the full version of this paper, Gustedt
(2015), we are able to prove the following theorem:

Theorem 3.2. Let be T0 a thread out of N � P that is
unscheduled when holding the lock. Provided that none of the
threads is unscheduled by other means and that tpara ≤ tfail,
after a time of N · tfail the application makes progress.

4. BENCHMARKS
Our benchmark comes with the reference implementation
of Modular C, see http://cmod.gforge.inria.fr/. It is a list-
based stack implementation that uses an atomic pair of two
values for the head to avoid the ABA problem, IBM (1983);
Michael (2004). The size of the atomic data structure has
been chosen to force the use of the lock-based generic atomic
functions.

Fig. 1(a) shows the results on a 4 core arm7 platform. We
see that all lock implementations allow for an acceleration
of the application when a small number of threads is used.
But what is also clear that the ”native” lock performs worst
for the case that is the most interesting: the range where

2005

http://cmod.gforge.inria.fr/

(a) lock throughput (b) relative performance compared to mutex

Figure 1: benchmarks on arm

each thread has its own CPU core at its disposal. Even the
”mutex” lock performs better.

We also see that musl’s internal lock structure shows a dras-
tic performance loss when it comes to congestion. This is
due to a switch of the spinning strategy: as soon as conges-
tion is detected, spinning is abandoned and threads directly
attempt futex wait. This is meant to ensure fairness of lock
acquisition, but as we can see for our use case it has a dra-
matic impact on the application throughput.

Fig. 1(b) shows the relative performance of the same ex-
periments, where the ”mutex” implementation is taken as
base for comparison. We see that our new implementation
is about 60% better than the ”native” version, or 40% than
a direct implementation with mutex. It combines the good
performance of a spinlock for the less congested range with
a good policy for strong congestion.

Other test have been run on a x86_64 platform with 2x2
hyperthreaded cores. Although it has more compute power
than the other, the atomics of the hardware are much less
performing. This is due to the fact that here an atomic in-
struction usually enforces a complete synchronization at a
cost of about 50 CPU cycles. Basically, the CPU is blocked
for this number of cycles. Compared to that, in a moni-
tor based approach as on the arm architecture part of these
cycles can be used for other computations. So on the x86_64
platform any atomic operation incurs a strong latency penalty.
Thereby, our application is not even able to accelerate for
2, 3 or 4 threads as it was the case on arm. In the contrary
it even decelerates. Nevertheless the relative performance
difference between the different lock implementations look
very similar. For figures and more information we refer to
the full version of this paper, Gustedt (2015).

5. CONCLUSION
We have presented a new locking algorithm that combines
consequent use of C11 atomics with Linux’ futex system
calls. We have proven that it is deadlock free, and that it
shows better performance than other lock implementations.

By pursuing this research we learned to mistrust some of
the urban legends that turn around atomics, futexes and

lock structures in general. At least when we stick to the
basics (futex wait and futex wake) and if we have a decent
interface for atomics, programming them is not as difficult
as the legends suggest. Also using a system call is not so
much worse that spinning around an atomic access. The
performance factor between the two is only about 10, and
so spinlocks in the order of 10 should be sufficient in many
cases.

This support library is now available as open source at http:
//stdatomic.gforge.inria.fr. We hope to integrate it into the
C library that we used for most of our experiments, musl.

References
Alpine Linux. http://alpinelinux.org/

Clang. http://clang.llvm.org/

gcc. GNU Compiler Collection. https://gcc.gnu.org/

glibc. GNU C library. https://www.gnu.org/software/libc/

Jens Gustedt. 2015. Futex based locks for C11’s
generic atomics. INRIA RR-8818 https://hal.inria.fr/
hal-01236734

Darren Hart. 2009. A futex overview and update. LWN.net
(2009). https://lwn.net/Articles/360699/

Andrew J. Hutton et al. 2002. Fuss, Futexes and Furwocks:
Fast Userlevel Locking in Linux. In Proceedings of the Ot-
tawa Linux Symposium. 479–495.

IBM 1983. IBM System/370 Extended Architecture, Princi-
ples of Operation. IBM. SA22-7085.

JTC1/SC22/WG14 (Ed.). 2011. Programming languages —
C (cor. 1:2012 ed.). Number ISO/IEC 9899. ISO.

Maged M. Michael. 2004. ABA Prevention Using Single-
Word Instructions. Tech. Rep. RC23089. IBM Research.

MUSL libc. http://musl-libc.org

Robert H. B. Netzer and Barton P. Miller. 1992. What Are
Race Conditions? Some Issues and Formalizations. ACM
Lett. Program. Lang. Syst. 1, 1 (March 1992), 74–88.

POSIX. 2009. ISO/IEC/IEEE Information technology –
Portable Operating Systems Interface (POSIX R©) Base
Specifications. Issue 7. ISO, Geneva, Switzerland.

2006

http://stdatomic.gforge.inria.fr
http://stdatomic.gforge.inria.fr
http://alpinelinux.org/
http://clang.llvm.org/
https://gcc.gnu.org/
https://www.gnu.org/software/libc/
https://hal.inria.fr/hal-01236734
https://hal.inria.fr/hal-01236734
https://lwn.net/Articles/360699/
http://musl-libc.org

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160203085439
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 0
 1

 1

 HistoryList_V1
 qi2base

