Towards Efficient Location and Placement of Dynamic Replicas for Geo-Distributed Data Stores

Abstract : Large-scale scientific experiments increasingly rely on geo-distributed clouds to serve relevant data to scientists worldwide with minimal latency. State-of-the-art caching systems often require the client to access the data through a caching proxy, or to contact a metadata server to locate the closest available copy of the desired data. Also, such caching systems are inconsistent with the design of distributed hash-table databases such as Dynamo, which focus on allowing clients to locate data independently. We argue there is a gap between existing state-of-the-art solutions and the needs of geographically distributed applications, which require fast access to popular objects while not degrading access latency for the rest of the data. In this paper, we introduce a probabilistic algorithm allowing the user to locate the closest copy of the data efficiently and independently with minimal overhead , allowing low-latency access to non-cached data. Also, we propose a network-efficient technique to identify the most popular data objects in the cluster and trigger their replication close to the clients. Experiments with a real-world data set show that these principles allow clients to locate the closest available copy of data with small memory footprint and low error-rate, thus improving read-latency for non-cached data and allowing hot data to be read locally.
Type de document :
Communication dans un congrès
ScienceCloud'16 - 7th Workshop on Scientific Cloud Computing (in conjunction with ACM HPDC 2016), Jun 2016, Kyoto, Japan. 2016, 〈10.1145/2913712.2913715〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01304328
Contributeur : Pierre Matri <>
Soumis le : mardi 3 mai 2016 - 11:42:55
Dernière modification le : mercredi 11 avril 2018 - 01:51:20
Document(s) archivé(s) le : mardi 15 novembre 2016 - 19:06:11

Fichier

ScienceCloud2016Final.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

Citation

Pierre Matri, Alexandru Costan, Gabriel Antoniu, Jesús Montes, María S. Pérez. Towards Efficient Location and Placement of Dynamic Replicas for Geo-Distributed Data Stores. ScienceCloud'16 - 7th Workshop on Scientific Cloud Computing (in conjunction with ACM HPDC 2016), Jun 2016, Kyoto, Japan. 2016, 〈10.1145/2913712.2913715〉. 〈hal-01304328v2〉

Partager

Métriques

Consultations de la notice

682

Téléchargements de fichiers

294