
HAL Id: hal-01305183
https://inria.hal.science/hal-01305183

Submitted on 20 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Work-in-Progress and Demo Proceedings - 2016 IEEE
Real-Time and Embedded Technology and Applications

Symposium (RTAS)
Vincent Nélis, Sophie Quinton

To cite this version:
Vincent Nélis, Sophie Quinton. Work-in-Progress and Demo Proceedings - 2016 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), Apr 2016, Vienna, Austria. , 2016. �hal-01305183�

https://inria.hal.science/hal-01305183
https://hal.archives-ouvertes.fr

2016 IEEE Real-Time and
Embedded Technology and

Applications Symposium (RTAS)

Work-in-Progress and Demo Proceedings

Vienna, Austria

April 11-14, 2016

http://2016.rtas.org/work-in-progress/
http://2016.rtas.org/demos/

Edited by Vincent Nélis and Sophie Quinton

© Copyright 2016 held by the authors

Message from the Work-in-Progress and Demo chairs

Dear colleagues,

Welcome to Vienna, and to the Work-in-Progress (WiP) and Demo Session of the 22nd
IEEE Real-Time Embedded Technology and Applications Symposium (RTAS’16). This
session is dedicated to new and on-going research as well as to work with concrete systems,
tools and prototypes in the field of real-time and embedded systems. We are happy to
present 12 WiP papers and 8 demos that cover innovative research and experiments from
a wide range of topics, including real-time scheduling, cache contention, real-time issues
related to COTS multicore platforms, and runtime monitoring.

The main goal of the WiP session is to provide researchers with an opportunity to discuss
evolving and early-stage ideas, and solicit feedback from the real-time systems community
at large. Similarly, the demo session offers a forum such that researchers can give a demon-
stration of and get feedback about their work with concrete systems, tools and prototypes
in all areas of real-time embedded technology and applications. The presentations can
only give a brief overview of the research approaches chosen and of the work achieved by
the speakers introducing the selected contributions. We hope that these presentations will
encourage you to ask questions, share your ideas, and provide valuable feedback to the
authors during the poster and demo sessions that will follow. We would like to emphasize
that stimulating discussions are the most important feature of the WiP and demo session.

We would like to thank the members of the WiP and demo session technical program
committees for their help in publicizing the session and reviewing the papers. We would
also like to thank the authors for their interesting contributions and their choice of RTAS
as a means to share and improve their research. Last but not least, our special gratitude
goes to the RTAS’16 program chair, Rob Davis, for his help and support.

We hope that you will enjoy the Work-in-Progress and Demos of RTAS 2016!

Vincent Nélis, CISTER/INESC TEC and ISEP, Portugal, Work-in-Progress chair

Sophie Quinton, Inria Grenoble Rhône-Alpes, France, Demo chair

RTAS 2016

Program Committees

Work-in-Progress

Chaired by Vincent Nélis, CISTER/INESC TEC and ISEP, Portugal.

Borislav Nikolic CISTER/INESC TEC and ISEP, Portugal

Björn Brandenburg Max Planck Institute for Software Systems, Germany

David Bol Microelectronics laboratory – ICTEAM institute,
Université Catholique de Louvain, Belgium

Benny Åkesson CISTER/INESC TEC and ISEP, Portugal

Leandro Indrusiak University of York, U.K.

Andrea Marongiu Integrated Systems Laboratory, ETH, Swiss

Paolo Burgio University of Modena, Italy

Dakshina Dasari Research and Technology Centre at Robert Bosch, India

Gurulingesh Raravi Distributed and Mobile Computing group,
in Xerox Research Center India

Mircea Negrean IAV GmbH, Germany

Demos

Chaired by Sophie Quinton, Inria Grenoble Rhône-Alpes, France.

Lúıs Almeida University of Porto, Portugal

Löıc Fejoz RealTime-at-Work, France

Daniel Lohmann Friedrich-Alexander-Universitt Erlangen-Nrnberg, Germany

Martina Maggio Lund University, Sweden

Gabriel Parmer George Washington University, USA

Insik Shin KAIST, Korea

Marcus Völp University of Luxemburg, Luxemburg

Dirk Ziegenbein Bosch GmbH, Germany

Table of Contents

Work-in-Progress

Towards Parallelizing Legacy Embedded Control Software Using the LET
Programming Paradigm
Julien Hennig, Hermann von Hasseln, Hassan Mohammad, Stefan Resmerita, Stefan
Lukesch and Andreas Naderlinger . 9

Towards Correct Transformation: From High-Level Models to
Time-Triggered Implementations
Hela Guesmi, Belgacem Ben Hedi, Simon Bliudze, Mathieu Jan and Saddek Bensalem 13

Slot-Level Time-Triggered Scheduling on COTS Multicore Platform with
Resource Contentions
Ankit Agrawal, Gerhard Fohler, Jan Nowotsch, Sascha Uhrig and Michael Paulitsch . 17

Scheduling of Multi-Threaded Tasks to Reduce Intra-Task Cache Contention
Corey Tessler and Nathan Fisher . 21

I/O Contention Aware Mapping of Multi-Criticalities Real-Time Applications
over Many-Core Architectures
Laure Abdallah, Mathieu Jan, Jérôme Ermont and Christian Fraboul 25

Memory-aware Response Time Analysis for P-FRP Tasks
Xingliang Zou and Albert M. K. Cheng . 29

Cache Persistence Aware Response Time Analysis for Fixed Priority
Preemptive Systems
Syed Aftab Rashid, Geoffrey Nelissen and Eduardo Tovar . 33

An Optimizing Framework for Real-time Scheduling
Sakthivel Manikandan Sundharam, Sebastian Altmeyer and Nicolas Navet 37

Preliminary Performance Evaluation of HEF Scheduling Algorithm
Carlos A. Rincon and Albert M. K. Cheng . 41

Using Linked List in Exact Schedulability Tests for Fixed Priority Scheduling
Jiaming Lv, Yu Jiang, Xingliang Zou and Albert M. K. Cheng . 45

Online Semi-Partitioned Multiprocessor Scheduling of Soft Real-Time
Periodic Tasks for QoS Optimization
Behnaz Sanati and Albert M. K. Cheng . 47

Towards Worst-Case Bounds Analysis of the IEEE 802.15.4e
Harrison Kurunathan, Ricardo Severino, Anis Koubaa and Eduardo Tovar 51

6

Demos

TEMPO: Integrating Scheduling Analysis in the Industrial Design Practices
Rafik Henia, Laurent Rioux, Nicolas Sordon . 57

Applications of the CPAL Language to Model, Simulate and Program
Cyber-Physical Systems
Löıc Fejoz, Nicolas Navet, Sakthivel Manikandan Sundharam and Sebastian Altmeyer 59

Demonstration of the FMTV 2016 Timing Verification Challenge
Arne Hamann, Dirk Ziegenbein, Simon Kramer and Martin Lukasiewycz 61

Response-Time Analysis for Task Chains in Communicating Threads with
pyCPA
Johannes Schlatow, Jonas Peeck and Rolf Ernst . 63

Run-Time Monitoring Environments for Real-Time and Safety Critical
Systems
Geoffrey Nelissen, Humberto Carvalho, David Pereira and Eduardo Tovar 65

Timing Aware Hardware Virtualization on the L4Re Microkernel Systems
Adam Lackorzynski and Alexander Warg . 67

Predictable SoC Architecture Based on COTS Multi-Core
Nitin Shivaraman, Sriram Vasudevan and Arvind Easwaran . 69

A Real-Time Low Datarate Protocol for Cooperative Mobile Robot Teams
Gaetano Patti, Giovanni Muscato, Nunzio Abbate and Lucia Lo Bello 71

Work-in-Progress Papers

Towards Parallelizing Legacy Embedded Control
Software Using the LET Programming Paradigm

Julien Hennig, Hermann v. Hasseln, Hassan Mohammad
Daimler AG

Email: {julien.hennig, hermann.v.hasseln, hassan.mohammad}
@daimler.com

Stefan Resmerita, Stefan Lukesch, Andreas Naderlinger
Department of Computer Sciences, University of Salzburg

Email: {stefan.resmerita, stefan.lukesch, andreas.naderlinger}
@cs.uni-salzburg.at

Abstract—The growing demand for computing power in auto-
motive applications can only be satisfied by embedded multi-core
processors. Significant parts of such applications include OEM-
owned legacy software, which has been developed for single-
core platforms. While the OEM is faced with the issues of
parallelizing the software and specifying the requirements to
the ECU supplier, the latter has to deal with implementing the
required parallelization within the integrated system. The Logical
Execution Time (LET) paradigm addresses these concerns in a
clear conceptual framework. We present here initial steps for
applying the LET model in this respect: (1) Parallelization of
legacy embedded control software, by exploiting existing inherent
parallelism. The application software remains unchanged, as
adaptations are only made to the middleware. (2) Using the LET
programming model to ensure that the parallelized software has a
correct functional and temporal behavior. The Timing Definition
Language (TDL) and associated tools are employed to specify
LET-based requirements, and to generate system components
that ensure LET behavior. The work describes two conceptual
ways for integrating TDL components in AUTOSAR.

I. INTRODUCTION

By now the multi-core revolution has hit embedded comput-
ing full force. Most embedded microcontroller manufacturers
offer multi-core based architectures as part of their mid and
high-end lineups. As was the case for mainstream computing,
porting, transforming and rewriting substantial legacy software
to make effective use of the new processors’ parallelism
is trailing the advent of the new architectures. Parallelizing
proven-in-use time-critical embedded control software is pos-
ing significant challenges that call for rigorous software design
patterns and programming models. For a number of years, we
participated in industrial development projects implementing
real-time control applications for first-of-their-kind multi-core-
based electronic control units (ECUs) in the chassis, driver-
assistance and powertrain domains. We saw two distinct activ-
ities involved in such implementation efforts. The first activity
is to expose parallelism in the legacy single-core application
software by transforming the code to eliminate dependencies
between individual functions. A functional redesign and par-
allelization of compute intensive parts is ideally avoided and
only attempted when resource constraints demand even more
parallelism. The second activity is to implement the exposed
parallelism using specific implementation patterns that guar-
antee time- and value-deterministic parallel execution on the
targeted multi-core processor. We observed that most of these

patterns had coordination regimes in common where state vari-
ables are updated and buffered at controlled instances in time,
typically at the beginning or at the end of periodic tasks. These
patterns were typically deeply project and supplier-specific and
often lacked formal foundations. An automotive OEM has to
consider that significant amounts of OEM-owned application
software is integrated as part of a supplier-owned execution
platform. It is mandatory for the OEM that changing a supplier
does not result in having to redesign the application software
due to supplier-specific implementation patterns. Therefore,
when we found that many implementation patterns shared key
concepts of the LET programming model [1] we set out to
evaluate seriously whether (1) LET could be an efficient and
effective basis for implementing parallel execution of periodic
control functions and (2) whether such an implementation
could be integrated with the runtime facilities of an important
automotive software standard AUTOSAR [2]. If successful,
the LET paradigm would also offer the added advantage to
extend naturally to the coordination of time triggered event
chains which are distributed across multiple interconnected
ECUs. Predictable behavior of such distributed event chains
is becoming more and more important with the growing
sophistication of vehicle control functions.

The main contribution of this paper thus consists in de-
scribing first significant steps towards LET implementations
for multi-core architectures using facilities of the automotive
industry standard AUTOSAR. After describing a legacy pow-
ertrain control application, we sketch our approach to expose
its parallelism. Then we outline the steps taken to implement
the exposed parallelism using the Timing Definition Language
(TDL) as an implementation of the LET programming model.
We conclude with some preliminary results and a summary of
next steps.

II. RELATED WORK

The quest for achieving predictable behavior in embedded
systems is not new [3]. Embedded multi-core processors
aggravate this problem to the point where rigorous restrictions
at all levels of system design are required in order to have any
hope for success [4]. The LET paradigm has been designed
from the beginning to be a programming model that provides
a basis for predictable behavior both at the design and at the
implementation level [5]. The LET paradigm was and typically

9

still is met with healthy skepticism by the real-time and
embedded community because of its underlying restrictions
concerning general expressiveness and WCET estimate re-
quirements and the hard to afford computational costs regard-
ing buffer space and execution time in particular. But a recent
application of the LET programming model to an industrial
engine control software for a single-core execution platform
has shown that these overhead costs can be controlled [6]. [6]
also illustrates that a process for applying the LET paradigm
exists by which legacy software can be transformed iteratively.
At the same time, LET gains popularity again as a design
principle to analyze and engineer real-time control systems
[7]. Existing AUTOSAR timing services are still insufficient
to support the LET model. Elements of LET were behind an
early AUTOSAR concept proposal "Support for Predictable
Software Execution" [8] but this concept eventually didn’t
receive enough support to be pursued further. If the experiment
we describe in this paper is successful, we hope to revive this
AUTOSAR community effort.

III. POWERTRAIN CONTROL CASE STUDY

The subject of our LET based parallelization effort is the
central coordinator of an electric powertrain. Its core responsi-
bility is command and control of a predictive operating strat-
egy for the components of an electric powertrain: inverter, bat-
tery, auxiliaries, vehicle interface. A supplier is responsible for
the ECU hardware and the AUTOSAR basic software (BSW)
as well as for functions that directly interface with the ECU
hardware. The supplier also provides an AUTOSAR compliant
execution environment for integrating the application software
(ASW). The ASW itself is developed by Mercedes-Benz and
consists mainly of torque coordination, energy management,
thermal management, auxiliary management, prediction and
monitoring. The C functions that implement these features
are called from a single fixed-period OS task. A reduced call
rate is hard-coded in the OS task for each function whose
period is a multiple of the base period. At the beginning
of the task, task-external input from sensors and from the
attached networks is processed, then the application functions
are executed in a predefined static order, and finally output
signals are processed and propagated either to their respective
actuators or to the network. I/O itself is carefully coordinated
either synchronously (polling) or asynchronously (interrupt
based). This is a proven and pervasive software execution
pattern for single-core embedded control units from which
we would not want to deviate were it not for the fact that
in the not too distant future single-core performance will
no longer suffice for implementing advanced and innovative
powertrain control features. We are thus faced with the typical
exercise of parallelizing legacy software: partition the main
task into independent subtasks which can be executed in
parallel without affecting the overall functional correctness
that is partly incorporated in the static execution order and
the explicit or implicit dependencies between the individual
functions.

IV. TOWARDS PARALLELIZATION

To achieve the most possible parallelization in our legcy
software, we present a method which is mainly an application
of [9]. Neither the functional architecture nor the software
architecture of the legacy code was designed to support a
distribution on cores of a multi-core processor. Nevertheless,
since the code consists of a large number of ’elementary’ soft-
ware modules, or runnables, the dataflow architecture should
be rich enough in structure to identify sufficient parallelism
among the runnables to foster a possible distribution on
cores. The dataflow architecture is represented as a graph,
consisting of nodes identified as the runnables, and directed
edges identified as global variables for data exchange among
runnables. Assuming that runnables are mapped onto periodic
tasks for implementation, forward dependencies represent data
exchanges updated in the same cycle of the task, whereas
backward dependencies represent variables updated during the
next cycle of the task. The goal is to maximize inherent paral-
lelism by identifying subsets (’clusters’) of totally independent
runnables. Manipulation of the graph are made possible, by
allowing backward dependencies to be changed to forward
dependencies while maintaining all forward dependencies.
Concretely, the method consists of the following three steps
(cf. Fig. 1):

1.) For the set of runnables mapped onto a periodic task,
the corresponding dataflow graph with forward and backward
dependencies has to be identified.

2.) In application of the procedure given in [9], with
the additional requirement that there are no forward and no
backward dependencies among runnables of a cluster, we start
with the identification of ’starting nodes’ of the data flow
graph. A starting node is a node with no dependent predecessor
nodes. After this first step, all edges from the runnables in
this cluster are removed such that a set of new starting nodes
emerge. This is continued until all nodes have been visited.
From inspection of the first part of Fig. 1 we see that runnables
R1, R2 and R7 satisfy our conditions and define therefore
our first cluster. In the next step we remove all edges from
runnables R1, R2 and R7, and find the next subset of starting
nodes. These are runnables R3 and R9. Going to all nodes we
eventually arrive at a clustering shown in the second part of
Fig. 1. This procedure can of course be done manually as well
as automatically.

3.) Since the runnables in each cluster are totally indepen-
dent, the chronological sequence in which they are executed
is arbitrary, and in particular they can be executed in parallel.
These sets are then subject to distribution on cores of a multi-
core processor, as shown in the third part of Fig. 1, where
a distribution on two cores is shown. This distribution of the
independent runnables should in further steps be subject to
more considerations, e.g., measured executions times of the
runnables on a certain processor, number of dependencies
among different cluster and thus generated cross-core over-
head, functional and non-functional requirements, and further
system-level considerations.

10

R1

R2

R3

R4

R5

R6

R7

R8

R9

R7

R5

R2

R3

R4

R6
R8

R1

R9

R7

R5

R2
R3

R4

R6

R8

R1

R9

1: Original Data flow graph 2: Re-ordered Data flow

3: Mapping onto 2 cores

Figure 1. Parallelization with Data Flow Graph

V. TDL FOR AUTOSAR PARALLEL LEGACY SOFTWARE

TDL allows specification and implementation of timing
properties of real-time applications according to the Logical
Execution Time (LET) paradigm. In the LET programming
model, a fixed logical duration is associated to each execution
of a computational unit, or task [1]. The inputs of the task’s
execution are those available at the LET start and the outputs
of the task’s execution are made available at the LET end.
Thus, the LET model achieves a pre-specified, platform-
independent observable temporal behavior of a set of software
functions, leading to both time and value determinism [5].

The top-level unit in TDL is called a module, which contains
declarations of sensors, actuators, tasks, and modes. Sensors
and actuators model data sources and sinks, respectively;
they are employed to communicate with the environment. A
task declaration specifies an application function as well as
corresponding input and output ports. A mode is a periodic
sequence of activities: task LET instances, actuator updates,
and mode switches. Mode activities are carried out by a
runtime system (virtual machine) called E-machine. More
details about TDL can be found in [10].

A. TDL Modeling of Legacy Systems

TDL is accompanied by a commercial tool suite that can be
integrated in top-down, model-based development processes,
as well as in bottom-up, legacy-based development. The tool
suite supports four development stages, which are described
for the legacy case below.

1) Programming: The TDL program can be automatically
generated from legacy information about the application func-
tions associated with TDL tasks such as: connectivity, exe-
cution sequencing, periodicity, execution time (WCRT), and
distribution on cores in a multi-core system, or on nodes in a
distributed system. The resulting TDL program satisfies the
legacy constraints (e.g., execution sequencing is preserved)
and may include default LETs generated according to a
user-specified policy (e.g., LET=WCRT). The user may then

manually adjust LET values, e.g., by increasing some LETs
in order to increase robustness against future additions of new
functionality.

2) Distribution and scheduling: Mapping of TDL modules
to computational nodes and cores is performed. Network
communication schedules can also be generated in this step.

3) Code generation: The following runtime components are
generated.

- The timing code, also called E-code, is compiled from the
TDL program. The E-code is interpreted by the E-machine
at runtime, triggering executions of LET start and LET end
operations.

- Functions for implementing LET start and LET end
operations for each TDL task, also called LET drivers. In
order to achieve the LET data transfer semantics, certain
legacy variables may need to be buffered. Input variables are
buffered at the LET start of a task, while output variables are
buffered throughout the execution and updated at the LET end.
Optimization algorithms are put in place for minimizing the
buffering.

- Setter/getter functions for the legacy variables that are
subject to buffering requirements.

4) Integration: The integration of TDL components affects
all levels of the legacy system.

- The E-machine employs some timing measurement ca-
pability of the hardware - a programmable timer, typically.
The E-machine is executed within an interrupt service routine
triggered by the timer.

- LET drivers are included in dedicated high-priority OS
tasks, synchronized with the E-machine. Each LET driver task
is also synchronized with OS tasks containing TDL-modeled
legacy functions.

- The generated setter/getter functions are integrated at the
application level.

B. TDL Modeling of Parallelized Powertrain Control Software

Consider a legacy application with a parallelization structure
as described in section IV. Assume that a cluster contains
runnables with the same execution period (otherwise split the
clusters accordingly). We propose the following TDL-based
procedure for deploying the application on a platform with n
cores. First, assign to each cluster a number of n TDL tasks
(one per core) with the same LET, then group the runnables
of the cluster into n sequences and associate each sequence
to a TDL task. If execution time information is available per
runnable, then this grouping can be done such that the resultant
LET value is minimized, which means core load is balanced
within the LET and data propagation delay is minimized. In
general, other (non-TDL) criteria may be considered in the
assignment of runnables to cores - for example, one may wish
to reduce inter-core communication by allocating runnables
from different clusters with intensive data transfer to the same
core.

The TDL program is generated such that the task’s LETs are
sequenced according to data dependencies between clusters.
A TDL module contains then all the TDL tasks allocated

11

Figure 2. Visualization of a TDL program example

Microcontroller

Microcontroller Abstraction Layer

ECU Abstraction Layer

 Services Layer

Runtime Environment

Complex Device
Drivers

OSLETDRVTask

O
S

Sc
he

du
le

Ta
bl

e

 OS HW Counter Driver

Application Software
Components

OSAppTask

E-Machine

E-code

HW Timer

(A)

(B)

Figure 3. Integration of TDL in AUTOSAR with the two alternatives for the
E-machine

to the same core. In the second stage, the module-to-core
mapping is done by specifying the actual cores. In the third
stage, a buffer analysis step determines a minimal number of
legacy variables that must be buffered. In general, this is the
case for communication variables between concurrent TDL
tasks with overlapping LETs. Fig. 2 shows an extract from
a TDL program, consisting of TDL tasks with periods 10ms
and 20ms. The full program has 31 TDL tasks mapped to two
cores, with LET = 3 ·WCET , plus rounding for alignment.
The number of variables for inter-task communication exceeds
1500, of which only 7 need to be buffered.

In the fourth stage, integration of setter/getter functions
is easily done by re-defining the implementations of ports
and connections between AUTOSAR software components.
LET drivers and E-code are included in the RTE. AUTOSAR
OS events are employed for synchronization between the E-
machine, the LET driver OS tasks, and the legacy OS tasks.

We are currently investigating two ways of integrating the
E-machine into an AUTOSAR environment: (A) as a complex
device driver (CDD) and (B) via OS schedule tables - see
Fig. 3. The E-machine as CDD represents an additional basic
software component that is able to deal with TDL programs of
arbitrary complexity (in terms of modal structure and number
of TDL tasks). The E-machine as OS schedule tables requires
no additional AUTOSAR service or interface, but scalability
is a concern that needs to be further investigated.

VI. CONCLUSION AND FUTURE WORK

This paper describes an approach for distributing single-core
legacy software on a multi-core platform, where the applica-

tion source code is kept unchanged by using runnables as the
granularity for distribution. In order to ensure functional cor-
rectness, dataflow constraints across parallel execution threads
are guaranteed by employing a multi-core implementation of
the LET programming model. This is provided by the Timing
Definition Language (TDL) and its tool suite. First analysis
results indicate that the TDL overhead can be controlled to
acceptable levels. Furthermore, we describe primary concepts
for integrating the LET paradigm within AUTOSAR.

In the next steps, we will evaluate TDL runtime overhead
and resource usage on a prototype system. We will investigate
policies for choosing LET values, and for dealing with LET
exceptions (violations of LET specifications). Further research
will extend the approach to distributed functions, with compo-
nents running on different nodes of a network (e.g., FlexRay
or Ethernet).

Special attention will be dedicated to paving the way for
LET standardization as part of AUTOSAR. We consider that
there is enough room for different LET implementation tech-
niques, in keeping with the AUTOSAR motto ”cooperate on
standards, compete on implementation”. The main challenge is
to gather convincing evidence that LET addresses a variety of
use cases, involving different HW configurations (single- and
multi-core, networked ECUs), software development processes
(model-based design, including legacy software, simulation
and testing, debugging), and industry players (OEMs, system
suppliers, HW vendors).

REFERENCES

[1] T. Henzinger, B. Horowitz, and C. Kirsch, “Giotto: A time-triggered
language for embedded programming,” Proceedings of the IEEE, vol. 91,
pp. 84–99, January 2003.

[2] AUTOSAR, “AUTomotive Open System ARchitecture,” http://www.
autosar.org/, accessed: 2016-01-11.

[3] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jon-
sson, P. Marwedel, J. Reineke, C. Rochange et al., “Building timing
predictable embedded systems,” ACM Transactions on Embedded Com-
puting Systems (TECS), vol. 13, no. 4, p. 82, 2014.

[4] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. Maiza, J. Reineke,
B. Triquet, and R. Wilhelm, “Predictability considerations in the design
of multi-core embedded systems,” Proceedings of Embedded Real Time
Software and Systems, pp. 36–42, 2010.

[5] T. A. Henzinger, “Two challenges in embedded systems design: pre-
dictability and robustness,” Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol. 366,
no. 1881, pp. 3727–3736, 2008.

[6] S. Resmerita, A. Naderlinger, M. Huber, K. Butts, and W. Pree,
“Applying real-time programming to legacy embedded control software,”
in Real-Time Distributed Computing (ISORC), 2015 IEEE 18th Interna-
tional Symposium on. IEEE, 2015, pp. 1–8.

[7] D. Ziegenbein and A. Hamann, “Timing-aware control software design
for automotive systems,” in Proceedings of the 52nd Annual Design
Automation Conference. ACM, 2015, p. 56.

[8] C. Aussaguès, “Deterministic and dependable (also known as predictable
and robust) embedded real-time systems. with the OASIS and
PharOS technology,” 2012, invited Talk at the 17th IEEE International
Conference on Engineering of Complex Computer Systems.

[9] T. C. Hu, “Parallel sequencing and assembly line problems,” Operations
research, vol. 9, no. 6, pp. 841–848, 1961.

[10] J. Templ, “Timing Definition Language (TDL) 1.5 specification,”
University of Salzburg, Tech. Rep. T024, July 2009, http://www.
softwareresearch.net.

12

Towards Correct Transformation: From High-Level
Models to Time-Triggered Implementations
Hela Guesmi∗, Belgacem Ben Hedia∗, Simon Bliudze†, Mathieu Jan∗ and Saddek Bensalem‡

∗CEA, LIST, PC 172, 91191 Gif-sur-Yvette, France. Email: firstname.lastname@cea.fr
†EPFL IC IIF RiSD, Station 14, CH-1015 Lausanne, Switzerland. Email: simon.bliudze@epfl.ch

‡Verimag, 38610 Gieres, France. Email: Saddek.Bensalem@imag.fr

Abstract—In embedded systems, high-level component-based
design approaches have been proposed in order to allow specifi-
cation and design of complex real-time systems. However, their
final implementations mostly rely on the generation of code for
generic execution platforms. On the other hand, a variety of Real-
Time Operating System (RTOS), in particular when based on
the Time-Triggered (TT) paradigm, guarantee the temporal and
behavioural determinism of the executed software. However, these
TT-based RTOS do not provide high-level design frameworks
enabling the scalable design of complex safety-critical real-
time systems. The goal of our work is to couple a high-level
component-based design approach based on the RT-BIP (Real-
Time Behaviour-Interaction-Priority) framework with a safety-
oriented real-time execution platform, implementing the TT
approach. Thus, we combine their complementary advantages, by
deriving correct-by-construction TT implementations from high-
level componentised models. To this end, we propose an automatic
transformation process from RT-BIP models into applications
for the target platform based on the TT execution model. This
transformation is already partially implemented.

I. INTRODUCTION

The Time-Triggered (TT) paradigm for the design of real-
time systems was introduced by Kopetz [11]. TT systems are
based on a periodic clock synchronization in order to enable
a TT communication and computation. Each subsystem of a
TT architecture is isolated by a so-called temporal firewall.
It consists of a shared memory element for unidirectional
exchange of information between sender and receiver task
components. It is the responsibility of the TT communication
system to transport, by relying on the common global time, the
information from the sender firewall to the receiver firewall.
The strong isolation provided by the temporal firewall is key
to ensuring the determinism of task execution and, thereby,
allowing the implementation of efficient scheduling policies.

Developing embedded real-time systems based on the TT
paradigm is a challenging task due to the increasing complex-
ity of such systems and the necessity to manage, already in
the programming model, the fine-grained temporal constraints
and the low-level communication primitives imposed by the
temporal firewall abstraction. Several Real-Time Operating
Systems (RTOS) implement the TT execution model, such as
for instance [3], [10]. However, they do not provide high-level
programming models that would allow the developers to think
on a higher level of abstraction and to tackle the complexity
of large safety-critical real-time systems. Model-based design

frameworks, such as [1], [7], allow the specification, the
design and the simulation of real-time systems. In particular,
the framework of [1] is a component-based framework for
the design of real-time systems. It allows verification of
behavioural properties, such as deadlock-freedom, and lends
itself well to model transformations.

To the best of our knowledge, few connections however
exist between high-level component-based design framework-
sand TT execution platforms. A model transformation for
generating distributed implementations from (non-real-time)
BIP models is presented in [5]. A method for generating a
mixed hardware/software system model for many-core plat-
forms from a high-level non-real-time application model and
a mapping between software and hardware components is
presented in [8]. Nevertheless, these two approaches do not
target the platforms based on TT execution model, thereby
falling short of exploiting the strong temporal determinism
guaranteed by the latter. A design framework based on UML
diagrams and targeting the TT architecture is presented in [13].
[4] presents a transformation from SCADE [7] to PharOS [3].
The former does not target generic TT implementations since
it assumes the underlying TT protocol to be the FlexRay
standard, while the latter is limited to the relatively simple
temporal behaviours. [6] presents a method to reduce the gap
between models used for timing analysis and for TT code
generation. Nevertheless, these approaches do not rely on a
single semantic framework.

In this work, we establish a link between the model-based
design framework RT-BIP [1] and a RTOS based on TT
approach. Generating TT implementations from high-level RT-
BIP models is achieved by a two-step transformation. The first
step [9] transforms a generic RT-BIP model into a restricted
one, which lends itself well to an implementation based on
TT communication primitives. The second step, which is the
subject of this paper, transforms the resulting model into
the TT implementation provided by the PharOS RTOS. We
identify the key difficulties in defining this transformation,
propose solutions to address these difficulties and study how
this transformation can be proven to be semantics-preserving.

This paper is structured as follows. In Section II, we
provide the necessary background on RT-BIP and PharOS.
The transformation is presented in Section III, while the open
issues that remain to be addressed are discussed in Section IV.

13

II. BACKGROUND

A. The RT-BIP Component Framework

RT-BIP is a component framework for constructing systems
by superposing three layers of modelling: Behaviour, Interac-
tion, and Priority. The Behaviour layer consists of a set of
components represented by timed automata extended by data
and functions given in C. The Interaction layer describes pos-
sible interactions between atomic components. Interactions are
sets of ports allowing synchronizations between components.
The third layer includes priorities between interactions using
mechanisms for conflict resolution. Thus, in RT-BIP, systems
are built by composing atomic components with interactions
(presented by connectors) and priorities.

A component in RT-BIP is essentially a timed automaton
[2] labelled by ports that represent the component’s interface
for communication with other components. A transition in RT-
BIP automata can be constrained by a guard , i.e., a predicate
on a set of its variables. A transition can also be constrained
by timing constraint tc which is a guard over a set of clocks.
Timing constraint is used to specify when actions of a system
are enabled regarding system clocks. If c is a clock, a timing
constraint tc over c is of the form: lc ≤ c ≤ uc, where
lc, uc ∈ R+. Furthermore, in RT-BIP automata, a state l can be
constrained by a time progress conditions (tpc) used to specify
whether time can progress at a given state of the system. Any
time progress condition tpc can be written as: tpc = c ≤ uc,
where uc ∈ R+ ∪ {+∞}. In the example of Figure 1, we
display two RT-BIP components C1 and C2, composed by a
binary connector. Let us assume that the system reaches the
state L1 of C1 with a tpc equals to c ≤ 2 and c ∈ [1, 2]. It can
then either let the time progress until c = 2, or execute the
transition enabled for these instants. If the state L1 is reached
when c = 2, the system can not let time progress. It has to
execute the transition p1.

C1

L1start

L2

pi

p1

1 ≤ c ≤ 3
f1(x)

reset c

c ≤ 2

p1
x

clock c, int x
C2

L1start

L2’ L2

pi

pi

p2

f2(y)

p2 y

Fig. 1. Example of RT-BIP automata

B. TCA computation model and PharOS platform

Time-Constrained Automata (TCA) [12] is a formal com-
putation model of TT tasks. The temporal behaviour of a task
is specified using a directed graph, where arcs represent the
successive jobs of the task to be executed (one at a time), and
the nodes bear the temporal constraints of the jobs. There are
four kinds of nodes:

• After node (after(d)): defines d as the relative release date
of the following job. It is symbolized by .d;

• Before node (before(d)): defines d as the relative deadline
of the preceding job. It is symbolized by /d;

• Advance node (advance(d)): is a combination of .d and
/d nodes. It is symbolized by �d and defines the absolute
visibility date of the job data;

• No constraint node: imposes no temporal constraints on
preceding and following jobs. It is symbolized by ◦d.

A job can consult data whose absolute visibility dates are
less or equal than the absolute release date of the job. The
execution of an application can be seen as cyclically walking
in the graph of each task and let the underlying scheduler
choose when each encountered job is actually executed in the
time interval defined by its release date and its deadline.

In the TCA example displayed in Figure 2, we have six
jobs, labelled a to f , and five nodes. The release date of job
d is one unit of time after the previous advance node. Two
units of time after, job d should have ended. After jobs e and
a are executed, communications take place since an advance
node is used. The visibility date of data produced by e is three
units of time later the previous after node.

1 22 3

start

b

a
c d e

f

Fig. 2. Example of TCA automata

TCA computation model is implemented in PharOS [3].
PharOS is a method to design, implement and execute safety-
critical multitasking applications based on the time-triggered
paradigm. PharOS implements different variants of TT com-
munication mechanisms. We are specially interested in the
temporal variables which are real-time data flows. Values,
available to all agents, are stored and updated by a single
writer –the owner agent– at a predetermined temporal rhythm.

III. WORK-IN-PROGRESS: FROM RT-BIP TO PHAROS
In order to derive TT implementation from a high-level RT-

BIP model, we follow a two-step transformation (see Figure 3).
Step1: RT-BIP model adaptation. This transformation

consists in adapting the initial model, in order to comply with
the TT paradigm, and especially the TT communication pat-
tern. Each intertask interaction –initially held by connectors– is
transformed in order to be handled by a dedicated component,
standing for a medium between communicating tasks. The
obtained model consists only of atomic RT-BIP components
and connectors allowing unidirectional data transfer. Ports
in TT-BIP model are send, receive or internal ports. This
transformation is published in a previous work [9], and is
proven to be semantics preserving.

Step 2: RT-BIP to TCA transformation. In this step, the
output of the previous step is transformed into TCA automa-
ton. In this section, we first detail challenges of the second step
transformation. Then, we present the actual algorithm and how
we are going to tackle the correctness proof part.

14

RT-BIP TT-BIP TCA
step 1

[9]

step 2

Fig. 3. From RT-BIP to the TCA TT computation model: a 2-step transfor-
mation.

A. Transformation subtleties

Transforming a component-based high-level model into a
RTOS based system requires to address several subtleties.

Timing constraints mapping subtlety. The initial TT-BIP
model is based on an abstract notion of time. In particular, it
assumes that actions, corresponding to the computational steps
of the system, are atomic and have zero execution times. Only
start instant of these actions have timing constraints (tc) and
timing progress conditions (tpc). However in TCA models,
both release date and deadline of actions can be specified.

This issue is addressed by making use of the tpc notion in
TT-BIP model, in order to extract the deadline of the following
action. In fact the semantics of the tpc (used to specify whether
time can progress at a given state of the system) and the before
node in TCA are strictly similar. Both of them constraint the
action preceding the node to finish before a certain date. The
action succeeding the node starts right after the previous one.
Timing constraint lc ≤ c ≤ uc in TT-BIP, constrains only
the start instant of the transition. In order to keep the same
semantics in TCA, an empty action can be executed between
nodes after(lc) and before(uc). Right after, the actions of the
initial transition can be executed.

From absolute to relative constraints subtlety. In TT-BIP,
all constraints are defined using absolute labelling. However,
TCA nodes bear only relatively expressed constraints, i.e., as
an increment to the previous .d or �d node.

In order to address this second issue, we make use of the
variable dref . It is initiated to zero and updated whenever
a before node is instantiated. It stores then the current local
clock value. Relative constraint (drelative) is computed from
its corresponding absolute constraint (dabsolute) following this
formula:

drelative = dabsolute − dref (1)

Communication mapping subtlety. In the initial TT-BIP
model, all tasks are related to communication components
via connectors. Connectors provide not only unidirectional
data transfer but also synchronization between sending and
receiving actions of respectively the sender and the receiver
components. In TCA, one communication model is called
temporal variable. New values of temporal variables are made
visible by their owners, i.e senders, at each of their synchro-
nization points. Receivers of these data can consult their new
values when their current time is equal or higher to the timing
of these synchronization points. In our transformation two
requirements need to be satisfied; (1) the receive must consult
an updated temporal variable (i.e., after the sending action of
the sender task) and (2) we need to respect communication
semantics of the initial model.

This subtlety is addressed by generating TCA synchroniza-
tion points (advance nodes) that depends on whether the TT-
BIP transition is triggered by a send, receive or an internal
port. After each nodes that corresponds to a communicating
transition we instantiate an advance(n) node defined over a
fine-grained clock. For example let a sender and receiver
components having the same clock, and suppose they are
meant to communicate in the same instant t in TT-BIP model.
We can define a smaller clock, allowing to instantiate advance
nodes (send and receive) at t + ε. If we take the example of
time lines displayed in Figure 4, the visibility instant of the
sender data is 4∗t+1 of the clock g. The receiver will consult
these data in the instant 4 ∗ t+ 2 of the clock g.

fine-grained clock g: g = 4 ∗ c
4t

Sender clock: c
t

Receiver clock: c
t
visibility instant

4t+1

consultation instant

4t+2

Fig. 4. Example of advance nodes defines on a fine-grained clock.

B. Transformation Algorithm

In Algorithm 1, for each transition of each automaton in TT-
BIP model, we check if the transition source state has a tpc
constraint. If this constraint exists, we instantiate a before node
defined on the relative bound instant of this tpc. This before
node defines the deadline of the previous action. The out
transition of that node executes actions of the initial TT-BIP
transition. If the transition source state tpc does not exist, and

Algorithm 1 Translation algorithm: Step 1
dref = 0;
for t=transition do

if t.source.hasTpc then
newTcaNode(before(t.source.tpc.value - dref));
Synchro(t.labelPort);
newOutTransition(t.actions);

else if t.hasConstraint then
newTcaNode(after(t.constraint.lowBound - dref));
newOutTransition(update(dref));
newTcaNode(before(t.constraint.upBound - dref));
Synchro(t.labelPort);
newOutTransition(t.actions);

else
newTcaNode(NoConstraint());
Synchro(t.labelPort);
newOutTransition(t.actions);

a timing constraint is defined over the transition, we instantiate
two consecutive after and before nodes, defined successively
over the lower and the upper bounds of the timing constraint
of the initial transition. The transition relating these two states
executes no actions. And then, we instantiate a transition to

15

execute the initial actions. If neither tpc nor timing constraint
are defined in the initial automata, a node with no constraint
is instantiated. Its out transition executes the initial actions.

NewTcaNode() and newOutTransition() functions and dif-
ferent considered cases answer to the first subtlety of the
transformation. The use of the variable dref and update(dref)
function goes with solving the second subtlety.

The Synchro() function in algorithm 1, answers to the
third issue. It is responsible of adding synchronization points
depending on if the transition is triggered by a send, receive
or an internal port. Mainly it instantiates after/before variables
updating, the suitable advance node bearing a well defined
label at the rhythm of a fine-grained clock. The computation
of the relation between the task clock and the fine-grained
clock as well as the constraint supported by each instantiated
advance node are subject of ongoing work.

C. Approach to prove the transformation correctness

An essential point to the transformation correctness proof
approach is that the semantics of an RT-BIP component is
defined as a Labelled Transition System (LTS).

In order to prove this correctness, we follow the method
displayed in Figure 5. In this method we (i) express the
semantics of TCA models in terms of LTS, (ii) consider the
transformation between LTSs instead of the transformation
between models directly and (iii) we prove that this trans-
formation is semantics preserving using weak bisimulation
technique. Then the direct transformation between models
is correct by construction. This correctness proof method

TT-BIP’
(1)

LTS

TCA
(3)

LTS(2)

(1) + (2) + (3)

Fig. 5. Approach of the transformation correctness proof.

concerns correctness between an atomic component of TT-
BIP model and its associated TCA model. However, to prove
that the hole TT-BIP model is equivalent to the set of the
obtained TCA models and their communication system calls,
we need to prove that synchronization points preserve the same
production/consumption order as in the initial model.

IV. OPEN CHALLENGES

We have identified several open challenges that we believe
should be addressed when defining an optimized and generic
transformation process.

Identification of OS service patterns potentially existing
in the initial model: any OS has a number of services (com-
munication, synchronization, etc.). We strongly think that in
some initial models, and in components intended for handling
communication, we can identify exactly the same behavioural
pattern of one or more OS services. Transformation should
take this redundancy into account, and only transform into
TCA automata the part of the component which can not be

mapped into an OS services. The identified pattern is thus
mapped to a system call.

What about a generic transformation process? We
strongly believe that the transformation process defined above
can be generalized to any RTOS-based implementation ap-
proach with TT execution model. In fact, we just need to
present the semantics of the computation model of the target
platform as an LTS system.

V. CONCLUSION

In this paper we outline our approach to generate correct-
by-construction TT implementation from high-level RT-BIP
models. We divide this transformation into two steps; first
we transform RT-BIP model in order to express intertask
communication according to TT communication system, then
we transform the obtained model into TCA automata (the com-
putation model of PharOS applications). The first step is being
done in previous work, we are now working on the second one.
We define different subtleties induced by this transformation,
and we give a short outline of the planned transformation
strategy as well as the correctness proof process. We further
identify open challenges related to our approach, that we plan
to address with further research.

REFERENCES

[1] Tesnim Abdellatif. Rigourous Implementation of Real-Time Systems.
PhD thesis, UJF, 2012.

[2] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical
computer science, 126(2):183–235, 1994.

[3] C Aussagues, D Chabrol, V David, D Roux, N Willey, A Tournadre, and
M Graniou. PharOS, a multicore OS ready for safety-related automotive
systems: results and future prospects. Proc. of The Embedded Real-Time
Software and Systems (ERTS2), 2010.

[4] Simon Bliudze, Xavier Fornari, and Mathieu Jan. From model-based
to real-time execution of safety-critical applications: Coupling SCADE
with OASIS. In Embedded Real Time Software and Systems, ERTS2,
page 10, February 2012.

[5] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf,
and Joseph Sifakis. From high-level component-based models to dis-
tributed implementations. In Proceedings of the tenth ACM international
conference on Embedded software, pages 209–218. ACM, 2010.

[6] Etienne Borde, Smail Rahmoun, Fabien Cadoret, Laurent Pautet, Frank
Singhoff, and Pierre Dissaux. Architecture models refinement for fine
grain timing analysis of embedded systems. In Rapid System Prototyping
(RSP), 2014 25th IEEE International Symposium on, pages 44–50. IEEE,
2014.

[7] Jean-Louis Boulanger, François-Xavier Fornari, Jean-Louis Camus, and
Bernard Dion. SCADE: Language and applications. 2015.

[8] Paraskevas Bourgos. Rigorous Design Flow for Programming Manycore
Platforms. PhD thesis, Grenoble, 2013.

[9] Hela Guesmi, Belgacem Ben Hedia, Simon Bliudze, Saddek Bensalem,
and Jacques Combaz. Towards time-triggered component-based system
models. In ICSEA15, pages 157–169, Barcelone, Spain, November 2015.
ThinkMind.

[10] Robert Kaiser and Stephan Wagner. Evolution of the pikeos microkernel.
In Proceedings of the 1st International Workshop on Microkernels for
Embedded Systems, pages 50–57, 2007.

[11] Hermann Kopetz. The time-triggered approach to real-time system
design. Predictably Dependable Computing Systems. Springer, 1995.

[12] Matthieu Lemerre, Vincent David, Christophe Aussaguès, and Guy
Vidal-Naquet. An introduction to time-constrained automata. In Proc. of
the 3rd Interaction and Concurrency Experience (ICE 2010), volume 38
of EPTCS, pages 83–98, 2010.

[13] Kathy Dang Nguyen, PS Thiagarajan, and Weng-Fai Wong. A UML-
based design framework for time-triggered applications. In Real-Time
Systems Symposium, 2007. RTSS 2007. 28th IEEE International, pages
39–48. IEEE, 2007.

16

Slot-Level Time-Triggered Scheduling on COTS
Multicore Platform with Resource Contentions

Ankit Agrawal, Gerhard Fohler
Chair of Real-Time Systems
TU Kaiserslautern, Germany
{agrawal,fohler}@eit.uni-kl.de

Jan Nowotsch, Sascha Uhrig
Airbus Group Innovations

Munich, Germany
{jan.nowotsch,sascha.uhrig}@airbus.com

Michael Paulitsch
Thales Austria GmbH

Vienna, Austria
michael.paulitsch@thalesgroup.com

I. INTRODUCTION AND MOTIVATION

A number of safety-critical domains, such as avionics, use
time-triggered (TT) architectures for reasons of reliability, ease
of certification, reduced integration and maintenance costs,
system-wide determinism, etc. [1].

The move to multicore platforms poses a number of funda-
mental problems for real-time scheduling in particular, even
in idealized scenarios without consideration of overheads or
platform characteristics. COTS multicore platforms generally
share various hardware resources such as on-chip network,
memory sub-system etc. amongst cores, introducing resource
contentions and inter-core interferences. This results in large
variability1 in the execution time of a task depending on
the latency and number of inter-core interferences from co-
executing tasks on the other cores. Further, the execution
of each new task, in turn, introduces additional inter-core
interferences, affecting the variability in execution time of
already co-executing tasks. E.g., it is shown in [2] that the
single store request latency increases by 25.82 times when the
number of active cores are increased from 1 to 8.

These challenges effect TT systems even more, as sched-
ules have to be determined offline. The extension of offline
scheduling to multicore platforms raises great concern in
safety-critical application domains using single core platforms.
E.g., in the avionics domain, in which certification and long
product life are essential, only very limited steps are currently
considered: The position paper from EASA and FAA proposes,
as next step, at most 2 active processing cores [3]. Even with
only one core active, certification is a challenge.

The problem of scheduling for TT systems on COTS mul-
ticore platform considering inter-core interferences is difficult
because of three primary reasons: Firstly, we need to provide
guarantees that offline computed bounds on variability in
execution time of each task will hold at runtime, warranting
runtime regulation of inter-core interferences during task exe-
cution. Secondly, we need to bound the variability in execution
time of a task in the offline phase considering possible run-
time inter-core interferences and task’s deadline, as reserving
hardware resources for each task considering worst-case inter-

1By variability in execution time of a task, we mean the variability
introduced beyond the traditional single-core WCET due to the inter-core
interferences in a multicore system.

core interferences would be very pessimistic. Finally, we need
to estimate at design time the maximum runtime inter-core
interferences for each task in each slot, as we cannot obtain
this information using traditional static WCET analysis tools
due to unavailability of architecture models for the complex
COTS multicore processors.

Related Work In [4], Yun et al. propose controlling memory
accesses from all but one cores to limit inter-core interferences
experienced by hard real-time tasks executing on just 1 core.
Yun et al. extended the work in [5] allowing all cores to
execute hard real-time tasks by regulating memory accesses
using a memory server on each core. However, they assume
that the given memory server budget reservations for each core
are constant for each server period. Yao et al. [6] present a
method to bound variability in execution time of each task on
all cores considering round-robin arbitration between cores for
memory accesses. However, the work does not consider ad-
ditional arbitration and contention delay introduced by shared
on-chip network in the analysis. In [2], [7], Nowotsch et al.
consider a timeline divided into unequal length process frames
and provide a method that bounds variability in execution
time of each task in a given process frame by considering
maximum inter-core interferences in the offline phase. The
runtime mechanism enforces the offline computed bound in
each process frame. However, they impose restrictions such
as a new task is only allowed to execute on the completion of
all tasks in a process frame.

A common way of operation in TT systems is to assume a
minimum temporal granularity of operation, called slots [1],
at runtime. Offline, a schedule table is created which assigns
parts of task executions to these slots. Slots can be seen as units
of resource reservation, i.e., reserving chunks of CPU time to
the assigned tasks. In this paper, we propose to extend these
reservations to several resources. We propose a two-part slot-
level based resource-control method using a TT scheduling
approach that enables the use of multicore platforms for
executing hard real-time tasks in TT systems. We propose
a runtime mechanism consisting of two servers running on
each core - processing time server and memory access server
- each having a fixed server period equal to the slot length.
We guarantee the offline computed bound on variability in
execution time of each task by enforcing offline computed slot-
level server budget reservations on each core, thereby limiting

17

inter-core interferences from co-executing tasks, as well as,
additional inter-core interferences introduced by the task under
consideration. In the offline phase, we propose to generate
schedule table containing mapping, scheduling and server
budget reservations, that bounds the variability in execution
time of each task due to inter-core interferences, such that all
tasks meet their deadlines. The computation of the bound on
variability in execution time of each task involves estimating
maximum inter-core interferences from already scheduled co-
executing tasks in each slot, as well as, limiting the slot-level
inter-core interferences that may be introduced by the task at
hand, at runtime.

Overall, our proposed method considers a real COTS mul-
ticore platform - Freescale P4080 - and accounts for the
delay introduced by arbitration and contention in the on-
chip network and the memory sub-system. Further, we did
a preliminary bare-metal implementation of our proposed
runtime mechanism on the P4080 platform. Moreover, our
method adheres to the TT architecture model [1] preserving
system-wide properties like slot-level determinism, clock syn-
chronization, etc., enabling integration of COTS multicores in
safety-critical systems using a TT approach.

II. SYSTEM MODEL, TASK MODEL, AND JOB MODEL

A. System Model

We consider an abstract multicore hardware architecture
inspired by the readily available real COTS multicore system
- Freescale QorIQ P4080 platform [8]. We focus only on the
hardware resources essential for task scheduling on the P4080
platform. These are 8 e500mc cores, the memory sub-system,
and the crossbar CoreNet on-chip network. Along similar
lines, we assume that the abstract multicore hardware com-
prises only two types of hardware resources: N homogeneous
processing cores (including private caches) from 1,..,n,...,N,
and 1 shared resource consisting of a on-chip network with
a memory sub-system. As this work is a first step, we only
consider 1 memory controller in the memory sub-system,
even though the P4080 platform has 2 memory controllers.
Further, we assume that the hardware mechanisms like pre-
fetchers, cache-coherency etc., that may implicitly introduce
unaccounted inter-core interferences are disabled.

The inter-core interference latency, includes the time taken
by a load/store request issued from a core to access the
on-chip network and the memory sub-system, considering
contentions. We consider the same latencies for our abstract
multicore architecture as used in [2], [7]. The measurement-
based approach as described in [9], using which these latencies
are obtained, tries its best to create worst-case inter-core
interference scenario, but is not guaranteed to do so, as
the hardware model is not provided by Freescale. However,
this is not a potential limitation of our proposed method in
Section III as, when available, it will also work with inter-
core interference latencies obtained through static analysis.

As shown in Table I, the latency of inter-core interference
varies with the number of active processing cores partly due
to varying arbitration delay from shared hardware resources.

Each inter-core interference latency δj depends on the j
number of active cores. E.g., as shown in Table I, if (say)
j = 3 cores are active from time [t, t + 1), we consider all
inter-core interferences that occur during this time interval to
have latency δ3 (worst case) as listed in column 2 in Table I.

We consider a time-triggered (TT) scheduling approach and
assume the timeline is divided into fixed equal length slices
called slots [1]. A slot St,n represents a time interval [t, t+1),
(where t is an integer multiple of slot length |S|) on core n. We
also assume the system is preemptive at each slot boundary.

TABLE I: Inter-core interference latency and corresponding memory
access server budget reservation for different number of active cores

No. of
active cores

(j)

Inter-core
interference latency
(δj in clock cycles)

Memory access server
budget reservation in

1ms (Accj)
1 41 29385
2 164 7346
3 245 4917
4 463 2602
5 517 2330
6 737 1634
7 784 1536
8 1007 1196

B. Task Model and Job Model
The set Γ represents V hard real-time periodic tasks with

arbitrary deadlines. Each task τi is characterized by the tuple
〈Csi ,MAi, Ti, Di〉, where, Csi is the single core WCET ex-
cluding the time taken by memory accesses, MAi is the max-
imum number of memory accesses to the shared resource, Ti
is the period, and Di is the relative deadline. Csi and MAi are
obtainable using a combination of static timing analysis tool
like aiT and measurements [7]. Tasks may have precedence
and communication constraints specified in graph G.

In our proposed method (Section III), as we allow each
instance of a task to have a different bound on variability in
execution time, we convert the given task set to jobs, where
each instance of a task is a job. The set J represents all jobs
W of all tasks in a task set Γ in time [0, H), where H is the
hyperperiod of the task set Γ. Each job τi,k is characterized
by the tuple 〈Csi,k,MAi,k, C

m
i,k, ri,k, di,k〉. Csi,k and MAi,k are

same across all jobs of task τi. Cmi,k is the multicore execution
time i.e. the bound on variability in execution time of job
τi,k, computed offline, considering possible runtime inter-core
interferences. Cmi,k may differ between different jobs of the
same task τi. ri,k is the absolute release time and di,k is the
absolute deadline of job Ji,k, which are computed based on
the related parameters of the corresponding task.

III. PROPOSED SLOT-LEVEL BASED METHOD

In this section, we present our slot-level based method using
a TT scheduling approach. The runtime mechanism is de-
scribed in Section III-A and the offline phase in Section III-B

A. Runtime mechanism
We propose two server types - processing time server and

memory access server, implemented using built-in hardware
monitors. Each server type runs on each core and controls
only one type of resource.

18

1) Processing time server: On each core n, a processing
time server τspn regulates the execution time in each server
period based on the slot-level server budget reservations com-
puted in the offline phase. During runtime, an executing job
at time t consumes the server budget reservation Qspn,t for
the computation time on core n and stall time due to cache
misses and/or memory accesses, resulting in a corresponding
decrease of the server budget.

2) Memory access server: The memory access server τsmn

regulates the total number of memory accesses allowed from
each processing core n in each slot St based on slot-level
offline computed server budget reservations Qsmn,t, thereby
controlling the inter-core interferences. At runtime, an execut-
ing job uses the server budget reservation only for memory
accesses, resulting in a decrease of server budget by 1 for
each memory access issued.

3) Runtime behaviour: During runtime, each core-level
scheduler, at the start of each slot, assigns a job to the respec-
tive core and sets the corresponding server budget reservations
for each server based on the schedule table obtained in the
offline phase. On each core, if the budget of any server
reaches 0, the corresponding core-level scheduler suspends the
executing job, irrespective of the remaining budget of the other
server. Jointly, the two servers on each core guarantee that the
server budget reservations provided for each slot in the offline
schedule table hold at runtime, thereby enabling bounding of
variability in execution time for each job in the offline phase
considering possible runtime inter-core interferences.

4) Inter-relationship amongst two servers, slots, and inter-
core interference latencies: We consider the server period of
each server is equal to the slot length |S|. For each processing
time server instance, we allow only two mutually exclusive
server budget reservation values: Either the budget reservation
equals to zero which means an idle slot (no task is allowed
to execute), or it equals to some fixed positive value X
chosen by the system designer, such that X ≤ |S|. For each
memory access server instance, we allow N + 1 mutually
exclusive server budget reservation values. The N different
budget reservation values directly associate with the different
number of active cores. An additional budget reservation value
of 0 relates to the idle slot, resulting in a total of N + 1
possible budget reservation values. Based on the description
of each server, the relationship between the server budget
reservations of the two servers and the inter-core interference
latency δj , for each active core n, is given by the formula
Qsmn,t =

⌊
Qspn,t

δj(t)

⌋
,∀t, where j represents the number of

active cores at time t. E.g., we consider a slot length |S| of
1ms and processing time server budget of 1ms. Table I then,
shows the memory access server budget reservation values
Accj (column 3) for j active processing cores (column 1).

5) Preliminary implementation: We did a preliminary bare-
metal implementation of our proposed runtime mechanism
running on all cores of the P4080 COTS multicore plat-
form. We implemented the processing time server using the
multicore programmable interrupt controller (MPIC) timer

that enables slot-level synchronization amongst all cores. The
MPIC timer also allows to set multiple processing cores as
interrupt recipients, and provides each recipient core a unique
interrupt copy [8]. We implemented the memory access server
using a core-level hardware performance monitor that counts
requests to the on-chip network [10]. We implemented our
proposed suspension rules in interrupt service routines of the
MPIC timer and hardware performance monitor on each core.

Though the idea to regulate memory accesses from each
core using memory access server may seem similar to Mem-
Guard [5], there are three key differences. Firstly, Mem-
Guard considers minimum guaranteed memory bandwidth
as constant, whereas our proposed method considers it as
variable depending on the number of active cores (see Table
I). Secondly, MemGuard assumes the memory server budget
reservations for each core as given and constant across all
server periods, whereas we do not make such an assumption.
Thirdly, MemGuard does not consider if the given server
budgets meet task deadlines, whereas our proposed method
(introduced later in the Section III-B) gives offline guarantees.

B. Offline phase: Bounding variability in execution time

In the offline phase, we bound the variability in execution
time of each job by computing server budget reservations for
each slot, such that all tasks meet their deadlines. This limits,
at runtime, the maximum inter-core interferences from co-
executing jobs as well as the additional inter-core interferences
introduced by the job under consideration.

In the offline phase, let’s consider at slot St on core n,
the offline scheduler tries to schedule job τi,k, such that
the job τi,k meets its deadline without affecting the already
scheduled jobs. In order to compute the multicore execution
time Cmi,k, the offline scheduler first tries the simple case,
where it considers a job τi,k executes in each slot on some
core n with constant memory access server budget reservation
Accj . In this simple case, we compute the multicore execution
time of job τi,k using the formula Cmi,k =

⌈
Csi,k +

MAi,k

Accj

⌉

based on some memory access server budget reservation Accj
chosen by the offline scheduler (slot length S of 1ms).

However, it is possible that the offline scheduler is unable
to find and reserve enough slots for the job τi,k that fulfill
chosen memory access server budget reservations Accj on core
n until its deadline. In that case, we propose a different way
to compute the multicore execution time.

Let’s consider on core n, in the time [t, t + z + 1), due
to already scheduled jobs on remaining cores, the offline
scheduler only finds slots with different memory access server
budget reservations in time [t, t+ z+ 1). Then (say) from slot
St+z+1, the scheduler finds slots with constant memory access
server budget reservations Accj′. In this case, we propose to
first determine the minimum progress the job τi,k can make
in time [t, t + z + 1) (both computation time and memory
accesses). Then, we subtract the same while computing the
remaining multicore execution time cmi,k(t + z + 1) based on
new budget reservation Accj′ from time t+z+1 onwards. The
offline scheduler then reserves the slots in time [t, t+ z + 1)

19

with the available server budget reservations, and from time
t+ z + 1 to t+ z + cmi,k(t+ z + 1) with Accj′. If the job τi,k
still cannot meet its deadline, the offline scheduler will try to
reschedule some already scheduled jobs, e.g., by backtracking.

IV. EXAMPLE

Figure 1 shows an example of our proposed method con-
sidering only 2 cores due to the space constraints. Each core
n has two servers: processing time server τspn and memory
access server τsmn

, with server period equal to the slot length
|S| of 1ms. For each server, the dotted horizontal lines depict
the possible server budget reservation values. During runtime,
at the start of each slot, each core-level scheduler assigns a
job to the respective core and sets the corresponding server
budgets for each server, based on the offline schedule table.

At time t = 0, as both the cores are active, each core-
level scheduler sets the corresponding processing time server
budget reservation to 1ms and memory access server budget
reservation to Acc2 = 7346 accesses (based on Table I). At
time t = 1ms, only job τ0,0 is active resulting in memory
access server budget Qsm1,1 = Acc1 = 29385 accesses (based
on Table I) and processing time server budget of 1ms. In the
time interval [1, 1.33)ms, the job τ0,0 issues memory access
as shown by corresponding decrease in memory access server
budget. Then in the time interval [1.33, 2)ms, it does not
perform any memory accesses as shown by memory access
server budget being constant. Later, it again briefly issues
memory accesses for the next 100µs. In the time interval
[1.6, 2)ms, since, only the processing time server budget
decreases and not the memory access server budget, the job
τ0,0 only performs computations. At time t = 3ms, the job τ1,0
completes execution and the scheduler of core 2 discards the
unused memory access server budget from the previous server
instance τsm2,2. Further, at time t = 3ms, as only job τ0,0 is
active, the memory access server budget Qsm1,3 equals Acc1.
The job τ0,0 issues memory accesses in the first half of the slot
as shown by decrease in memory access server budget. Then,
for the next 200µs, it does not issue any memory accesses
as the memory access server budget does not decrease and at
time t = 3.7ms completes execution, resulting in discarding
of unused server budgets by the core-level scheduler.

V. CONCLUSION AND FUTURE WORK

In this work, we presented an initial step towards enabling
time-triggered (TT) scheduling on a real COTS multicore plat-
form P4080. It takes into account inter-core interferences in the
on-chip network and the memory sub-system. Our proposed
method comprises a runtime mechanism and an offline phase.
For the runtime mechanism, we proposed a processing time
server and a memory access server for each core. Jointly, the
two servers on each core, enforce slot-level offline computed
server budget reservations, thereby limiting the maximum
inter-core interferences introduced and experienced by each
task considering different inter-core interference latencies. In
the offline phase, we proposed a procedure for the offline
scheduler to compute the bound on variability in execution

τsm1

τsp1

Core 1

τsm2

τsp2

Core 2

0.0 1.0 2.0 3.0 4.0
Time t (ms)

S

Acc1

Acc2

S

Acc1

Acc2

τ0,0

τ1,0 τ1,0

τ0,0 τ0,0

Fig. 1: Example of our proposed slot-level based method

time of each task while allowing different slot-level mem-
ory access server budget reservations. Overall, our proposed
method facilitates integration of COTS multicore platforms in
TT systems, while maintaining features of TT architecture like
slot-level determinism, clock synchronization, etc.

We did a preliminary bare-metal implementation of our pro-
posed runtime mechanism on a real COTS multicore platform
P4080. In future work, we aim to provide safe bounds for the
variability in execution time and will integrate the procedure
in our existing offline scheduler to generate schedule tables
containing mapping, schedule and server budget reservations.

ACKNOWLEDGMENT

The work was supported by ARTEMIS project 621429
EMC2. We thank the referees for several useful comments.

REFERENCES

[1] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications, 2nd ed. Springer-Verlag, 2011.

[2] J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener, and
M. Schmidt, “Multi-core interference-sensitive wcet analysis leveraging
runtime resource capacity enforcement,” in Real-Time Systems (ECRTS),
2014 26th Euromicro Conference on, July 2014, pp. 109–118.

[3] CAST-32 Multi-core Processors. Certification Authorities Software
Team, May 2014.

[4] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory access
control in multiprocessor for real-time systems with mixed criticality,”
in Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on,
July 2012, pp. 299–308.

[5] ——, “Memguard: Memory bandwidth reservation system for efficient
performance isolation in multi-core platforms,” in Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), 2013 IEEE
19th, April 2013, pp. 55–64.

[6] G. Yao, H. Yun, Z. P. Wu, R. Pellizzoni, M. Caccamo, and L. Sha,
“Schedulability analysis for memory bandwidth regulated multicore real-
time systems,” Computers, IEEE Transactions on, vol. 65, no. 2, pp.
601–614, Feb 2016.

[7] J. Nowotsch and M. Paulitsch, “Quality of service capabilities for hard
real-time applications on multi-core processors,” in Proceedings of the
21st International Conference on Real-Time Networks and Systems, ser.
RTNS ’13. New York, NY, USA: ACM, 2013, pp. 151–160.

[8] P4080 QorIQ Integrated Multicore Communication Processor Family
Reference Manual Rev. 2, Freescale Semiconductor, 2014.

[9] J. Nowotsch and M. Paulitsch, “Leveraging multi-core computing archi-
tectures in avionics,” in Dependable Computing Conference (EDCC),
2012 Ninth European, May 2012, pp. 132–143.

[10] e500mc Core Reference Manual Rev. 3, Freescale Semiconductor, 2013.

20

Scheduling Multi-Threaded Tasks to Reduce
Intra-Task Cache Contention

Corey Tessler
Wayne State University
corey.tessler@wayne.edu

Nathan Fisher
Wayne State University

fishern@wayne.edu

Abstract—Research on hard real-time systems and their mod-
els has predominately focused upon single-threaded tasks. When
multi-threaded tasks are introduced to the classical real-time
model the individual threads are treated as distinct tasks, one
for each thread. These artificial tasks share the deadline, period,
and worst case execution time of their parent task. In the presence
of instruction and data caches this model is overly pessimistic,
failing to account for the execution time benefit of cache hits when
multiple threads of execution share a memory address space.

This work takes a new perspective on instruction caches.
Treating the cache as a benefit to schedulability for a single task
with m threads. To realize the “inter-thread cache benefit” a new
scheduling algorithm and accompanying worst-case execution
time (WCET) calculation method are proposed. The scheduling
algorithm permits threads to execute across conflict free regions,
and blocks those threads that would create an unnecessary cache
conflict. The WCET bound is determined for the entire set of
m threads, rather than treating each thread as a distinct task.
Both the scheduler and WCET method rely on the calculation of
conflict free regions which are found by a static analysis method
that relies on no external information from the system designer.

By virtue of this perspective the system’s total execution
execution time is reduced and is reflected in a tighter WCET
bound compared to the techniques applied to the classical model.
Obtaining this tighter bound requires the integration of three
typically independent areas: WCET, schedulability, and cache-
related preemption delay analysis.

I. INTRODUCTION

In the classical model of real-time systems, shared re-
sources are often considered detractors to schedulability anal-
ysis and exclusively increase worst-case execution times
(WCETs). Cache memory is one such shared resource viewed
from this exclusively negative perspective. It is a natural
perspective, derived from a preempting task invalidating cache
lines, thus extending a preempted task’s execution time.

For example in the classical periodic task model [1] it
is implied that a task is a single thread of execution. These
models lack a representation for tasks with multiple threads. To
apply WCET and schedulablility techniques developed for the
classical models, a task that executes multiple threads is treated
as several duplicate tasks with a single thread of execution.
Any task that releases a job with m threads will be converted
to m tasks each releasing one job.

This research has been supported in part by an NSF CAREER Grant (No.
CNS-0953585), an NSF CRI grant (No. CNS-1205338), and a grant from
Wayne State University’s Office of Vice President of Research.

Under such models, tasks are assumed to be in competition
for cache space. The inclusion of threads, which are converted
to tasks, only amplifies the negative affect. However, threads
are not always in competition with other threads, but in fact
can mutually benefit from reusing the same resources. Threads
of the same task share a memory space (also referred to as
an address space). A cache miss during the execution of one
thread can place values into the cache that produce a cache hit
for a second thread. These unexpected cache hits reduce the
execution time of the second thread and the system overall.
This speed up is called the inter-thread cache benefit. While
other researchers have developed techniques for limiting the
impact of caches [2] [3] [4], we are unaware of any existing
analysis technique that accounts for the benefit of caches
between threads or tasks.

The purpose of this work is to illustrate the potential inter-
thread cache benefit for instruction caches, and to argue for a
new task model and schedulability analysis technique. Current
approaches to Worst Case Execution Time (WCET), Cache-
Related Preemption Delay (CRPD), and schedulability analyis
typically operate independently. Accounting for the inter-
thread cache benefit requires a unified approach, integrating
all of these disciplines.

As a first step towards a complete approach this work is
limited to a single task executing multiple identical threads.
Preemptions between threads incur no time penalty. The main
work-in-progress efforts described herein are the development
of a new thread based scheduling algorithm called BUNDLE,
and a method for calculating the WCET bound of m threads
scheduled by BUNDLE. By the nature of the WCET calcula-
tion, the bound permits any number of preemptions between
threads. When m is greater than one, the bound is guaranteed
to be less than any WCET method using the competitive
perspective from the classical model.

II. MOTIVATING EXAMPLE

An example in two parts provides the motivation for this
work. This example illustrates the inter-thread cache benefit
and highlights the pessimism in existing WCET and CRPD
approaches. As noted, the classical model provides no repre-
sentation of a threads distinct from a job. To aid the example
the classical model is augmented with two new concepts:
threads and ribbons.

Customarily, the term “thread” may refer to the execution
of a sub-job, or it may refer to the subset of instructions
reachable from an entry point. To clarify the distinction the

21

term ribbon is introduced and refers to the subset of instruc-
tions reachable from a single entry point. A thread will refer
exclusively to one instance of execution i.e., an instantiation
of a ribbon.

The computational setting is a single processor with an
instruction cache of l lines. The cache is write-through and
direct-mapped, assigning exactly one cache line to a memory
address. To simplify the presentation, every instruction com-
pletes in I time units. If an instruction is absent from the cache
before execution, its completion will be delayed by the Block
Reload Time (BRT): B. Executing an instruction out of the
cache (i.e. a hit) takes I time, while caching and executing a
miss takes (I+ B).

For periodic and sporatic tasks, the classical model accu-
mulates the n tasks in the set τ = {τ1, τ2, ..., τn}. Each task is
characterized by a tuple of minimum inter-arrival time, relative
deadline, and worst case execution time: τi = (pi, di, ci). Each
ci value is an upper bound on the amount of time one job of τi
will take to complete if the job executes without preemption.

To more closely represent the execution of threads within
jobs the model must be modified. With that purpose, each task
is represented by a tuple of minimum inter-arrival time, relative
deadline, and initial ribbon: τi = (pi, di, ri). A ribbon ri is
identified by a starting instruction within the object of a task,
it includes all reachable instructions until an exit point. The
set of m ribbons from all tasks is named R = {r1, r2, ..., rm},
where |R| ≥ |τ |. Every ribbon has an associated worst-case
execution time: rj = c(rj).

TABLE I. SUMMARY OF MODEL PARAMETERS

Tasks Task Ribbons Ribbon
τi ∈ τ τi = (pi, di, ri) rj ∈ R rj = c(rj)

Cache Lines Instruction Time BRT
l I B

A. Example Part I: 1 Linear Ribbon, 2 Threads

To demonstrate the inter-thread cache benefit, consider the
following task set of a single task τ = {τ1}. The task has only
one ribbon, the initial ribbon r1 which readies two threads, r11
and r21 for every job release. For simplicity, r1 contains no
loops or branches.

TABLE II. EXAMPLE MODEL PARAMETERS

Tasks Task Ribbons Ribbon Length
τ = {τ1} τ1 = (p1, d1, r1) R = {r1} |r1| = 50

Cache Lines Instruction Time BRT
l = 200 I = 1 B = 10

For every job release, consider a scheduling algorithm
that runs one thread of r1 to completion before permitting
the second thread to begin execution. The ribbon r1 is 50
instructions long, without loops or branches all 50 instructions
miss the cache and each take (I+ B) = 11 cycles to complete
for a total of 550 cycles per thread. An analysis that does not
consider the benefit of the cache between threads of r1 will
reserve 1100 cycles for the combined execution of r11 and r21 .

Since τ1 (and r1) contain less than l uniquely addressed
instructions, every instruction of τ1 maps to a distinct address

in the cache. Assuming no cache flushes are permitted during
the execution of r11 , the execution time of 1100 cycles is re-
duced to 600 cycles by the inter-thread cache benefit. Figure 1
illustrates the reduction.

Fig. 1. Inter-Thread Cache Benefit

During the execution of r11 every instruction is placed in
the cache consuming 550 cycles. Since r11 and r21 share the
same address space, all instructions are available in the cache
during r21’s execution; taking 50 cycles to complete. Also note,
in this task system 600 cycles is the worst case execution time
for τ1. Regardless of the thread execution order, one thread
will execute an instruction before the other thread caching the
instruction value. When the later thread executes an instruction,
it will find the value present in the cache.

B. Example Part II: Existing WCET & CRPD Approaches

To illustrate the benefit of a new approach, the existing
approaches to WCET and CRPD analysis are applied to
a slightly more complicated ribbon. The advantage will be
shown by applying the cache aware methods of Arnold [5] and
Mueller’s [6] for WCET calculation, and Lee et al.’s [7] CRPD
determination. These methods were chosen for illustrative
purposes and for their continued use in subsequent works.

The structure of r1 from the previous example is ill suited
for meaningful WCET or CRPD analysis. To continue, r1
is modified to include a prologue, loop, and epilogue for
a total instruction count of 5

4 · l. Figure 2 gives the control
flow graph [8] (CFG) of r1 which connects serial sets of
instructions, called basic blocks, by their logical control flow
through the ribbon. Below each basic block is a counting term
in square brackets listing the number of instructions in the
block. The parenthesized value at the bottom of the figure
indicates the number iterations the loop will execute.

Fig. 2. r1 CFG

22

1) WCET: Predominantly, WCET analysis that includes
cache behavior is limited to a single task, specifically between
preemption points [5]. Arnold [5] and Mueller’s [6] approach
iterates over the control flow graph categorizing instructions
as cache must-miss, first-miss, first-hit, and must-hit. Table III
lists the result of categorization for each basic block using
Arnold’s approach.

TABLE III. BASIC BLOCK CATEGORIZATION

B1 B2 B3 B4 B5 B6 B7

must-miss first-miss must-miss

Using these categorizations and the loop bound, the worst
case execution time of r1 is the sum of the excution times of
the prologue, the entry executions of B2 and B3, the repititions
of B2 and B3, and the epilogue. Table IV gives the intermedi-
ate values, using the model parameters of B = 10, l = 200, and
I = 1 the total execution time taking into consideration reloads
is: l(B+I)

4 + 2l(B+I)
4 + 8l(I)

4 + 3l(B+I)
6 = l(5B+13I)

4 = 3150

TABLE IV. SEGMENT WCET

Section Basic Blocks WCET
Prologue B1

(
l
4 · (B + I)

)

Loop Entry B2 + B3

(
l
4 · 2 · (B + I)

)

Loop Repetition (B2 + B3) · 4 (repeats)
(

l
4 · 2 · 4 · (I)

)

Epilogue B4 + (B5 or B6) + B7

(
l
6 · 3 · (B + I)

)

Using the WCET of 3150 for two threads of r1, where
the execution of each thread is considered a distinct task, the
total demand for the one task system is 6300. However, this is
overly pessimistic. The worst possible schedule for two threads
of r1 is the sequential execution of r11 followed by r21 . It is
the worst schedule because it inflicts the most cache misses
during the execution of r21 .

The prologue consumes one quarter of the cache, the loop
one half, and the epilogue another half. Meaning, after the
epilogue executes all of the cache lines of the prologue have
been invalidated. Scheduling r21 after r11 has completed requires
r21 to load the cache lines of the prologue, and half of the cache
lines from the epilogue. With this understanding, the WCET
of r21 is: l(B+I)

4 + 5l(I)
4 + l(B+I)

4 + l(I)
4 = 2l(B+4I)

4 = 1400. The
total demand for the task system is 4550 which is less than
the 6300 calculated from the WCET analysis, demonstrating
the pessimism of the Arnold and Mueller approaches. Figure
3 illustrates the worst possible schedule for r21 including the
cache contents at t = 3150, as well as the pessimistic estimate
for τ1’s execution time.

Fig. 3. Worst Schedule with Respect to r21

2) CRPD: Cache related preemption delay accounts for
the execution time extension of one task due to the cache

interference of another. A task executing in isolation may
store and reuse values from the cache. When preempted, those
stored cache values may be invalidated before they are reused.
Upon resuming the preempted task must pay the BRT for
each invalidated cache block, extending the execution time of
the preempted task. This delay is called the Cache Related
Preemption Delay (CRPD), and one method for calculating it
is the Useful Cache Block (UCB) approach developed by Lee
et al. [7].

The UCB approach borrows from the Arnold and Mueller
approaches, iterating over the control flow graph to determine
if cache blocks are useful or not. A useful cache block is
“a cache block that contains a memory block that may be
referenced before being replaced by another memory block.”
– within the same task.

From Figure 2 there are two basic blocks that contribute
UCBs to the thread r1: B2 and B3. Applying Lee’s method,
CRPD of a preemption of r1 is 2l(B+I)

4 = 1100 the sum of
cache lines from B2 and B3. However, this bound is overly
pessimistic.

Given the schedule in Figure 3 once the “Loop” instructions
are cached they cannot be invalidated. If r1 were to be
preempted after the first iteration of the loop the cache lines
mapping to the instructions of B2 and B3 would be populated.
No other instructions of r2 map to those cache lines, and
cannot invalid them. Furthermore, there is no schedule of r11
and r21 which incurs any CRPD.

Lee’s approach to CRPD calculation is known to be an
overestimate, there are refinements such as the UCB-ECB [9],
UCB-Union, and UCB-Union Multiset [10] approaches. How-
ever, the UCB calculation is a component of each of them
and the advanced techniques suffer from the same inability to
address cache memory as a benefit rather than a detriment.
Similarly, the Arnold and Mueller approaches play a role in
subsequent WCET methods. For this reason, the fundamental
approaches of Lee, Arnold and Mueller were selected for our
evaluation of the potential inter-thread cache benefit.

III. AN OPTIMAL SCHEDULE

The maximum WCET and CRPD bound determined for
r1 in the previous section relies on knowledge of the sched-
uler. A further reduction in WCET and CRPD values is
possible by crafting a schedule that considers the cache.
Figure 4 is an optimal schedule created by considering the
cache contents and thread flow. Each thread will take a
different path through the epilogue, r11 will take the “high”
road, executing the basic blocks in the following order:
〈B1, (B2, B3)

5, B4, B5, B7〉. The thread r21 will take the “low”
road, executing: 〈B1, (B2, B3)

5, B4, B6, B7〉.
Examining the structure and cache usage of r1, the pro-

logue is the problematic section. Upon completion, r1 will
remove the cache contents of the prologue. To benefit from the
cached values r21 must be scheduled to run before the prologue
has been invalidated.

The schedule is presented as the series of block executions,
the distance between marks on the time axis are not to
scale. Above each series of basic blocks is the execution time

23

Fig. 4. Optimal Schedule

required to complete the section. By preempting r11 after the
completion of B1 the total execution time is reduced to 4134.

IV. PROGRESS AND REMAINING EFFORT

Treating caches solely as detractors in schedulability anal-
ysis leads to overly pessimistic WCET bounds for multi-
threaded tasks and task systems. This pessimism is further
increased by the independent treatment of threads in CRPD
analysis. By considering the three disciplines of schedulability,
WCET, and CRPD analysis in concert a tighter bound on
execution of tasks and task systems can be achieved.

A complete solution that accounts for multiple tasks each
with an arbitrary number of ribbons is too ambitious for a
first work. By focusing on a single task with one ribbon
and m threads, a first useful solution may provide insight for
later efforts. Our current research aims include developing a
scheduling algorithm (BUNDLE), static analysis, and WCET
bound for m threads of a single ribbon.

Static analysis provides conflict free regions that are used
by the scheduling algorithm at run time and off-line timing
analysis. A conflict free region is a sub-graph of a ribbon’s
CFG. It includes a starting instruction and all reachable in-
structions that cannot create a cache conflict. Conflicts that
arise during the execution of a single thread are classified as
intra-thread, and those incurred by preemption inter-thread.

At run time, BUNDLE uses conflict free regions to group
and schedule threads. Intuitively, all threads of the same
region are allowed to run in any order and preempt each
other arbitrarily. However, when any thread would execute an
instruction outside of the region it is blocked until all other
threads reach a boundary. After all threads in a region have
been blocked, another region is selected for execution.

Determining the WCET of a set of m threads requires the
conflict free region boundaries and knowledge of the schedule
produced by BUNDLE. It also relies upon the static analysis of
structures within CFG to establish bounds on the regions. For
each conflict free region serial, looping, and branching sub-
structures are extracted and help characterize the region with
an execution time bound.

Figure 5 illustrates the result of timing characterization
for conflict free regions of a ribbon r with CFG G. This
information, along with the number of threads is passed to the
final timing analysis. After finding the longest path through
the ribbon, incorporating the behavior of BUNDLE over the m
threads produces an execution bound for the set of threads.
Figure 6 outlines the general approach to timing analysis.

Fig. 5. Sub-Graphs and Bounds for G of r

Fig. 6. Timing Analysis Overview

Two significant tasks remain to complete this work: to
evaluate and compare. The evaluation will entail more effort
due to the lack of tools. Performing an evaluation requires a
new memory restricted threading library and CPU simulator
with extensible cache configuration. Comparing with related
works such as PREM [2] and MultiPREM [3] will emphasize
the benefit of combining the three aforementioned disciplines.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp.
46–61, Jan. 1973.

[2] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for cots-based embedded
systems,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2011 17th IEEE, April 2011, pp. 269–279.

[3] A. Alhammad and R. Pellizzoni, “Time-predictable execution of mul-
tithreaded applications on multicore systems,” in Design, Automation
and Test in Europe Conference and Exhibition (DATE), March 2014,
pp. 1–6.

[4] M. Schoeberl, W. Puffitsch, and B. Huber, “Towards time-predictable
data caches for chip-multiprocessors,” in Proceedings of the 7th IFIP
WG 10.2 International Workshop on Software Technologies for Em-
bedded and Ubiquitous Systems, ser. SEUS ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 180–191.

[5] R. Arnold, F. Mueller, D. Whalley, and M. Harmon, “Bounding worst-
case instruction cache performance,” Real-Time Systems Symposium,
1994., Proceedings., pp. 172–181, Dec 1994.

[6] F. Mueller, “Static cache simulation and its applications,” Ph.D. disser-
tation, Florida State University, 1995.

[7] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y.
Park, M. Lee, and C. S. Kim, “Analysis of cache-related preemption
delay in fixed-priority preemptive scheduling,” IEEE Transactions on
Computers, vol. 47, no. 6, pp. 700–713, Jun. 1998.

[8] F. E. Allen, “Control flow analysis,” SIGPLAN Not., vol. 5, no. 7, pp.
1–19, Jul. 1970.

[9] H. S. Negi, T. Mitra, and A. Roychoudhury, “Accurate estimation of
cache-related preemption delay,” in Proceedings of the 1st IEEE/ACM/I-
FIP International Conference on Hardware/Software Codesign and
System Synthesis, ser. CODES+ISSS ’03. New York, NY, USA: ACM,
2003, pp. 201–206.

[10] S. Altmeyer and C. Maiza Burguière, “Cache-related preemption delay
via useful cache blocks: Survey and redefinition,” Journal of Systems
Architecture, vol. 57, no. 7, pp. 707–719, Aug. 2011.

24

I/O contention aware mapping of multi-criticalities
real-time applications over many-core architectures

Laure Abdallah and Mathieu Jan
CEA, LIST, Embedded Real Time Systems Laboratory

F-91191 Gif-sur-Yvette, France
Email: Firstname.Lastname@cea.fr

Jérôme Ermont and Christian Fraboul
IRIT INP-ENSEEIHT, Université de Toulouse

F-31000 Toulouse, France
Email: Firstname.Lastname@enseeiht.fr

Abstract—Many-core architectures are more promising hard-
ware to design real-time systems than multi-core systems asthey
should enable an easier mastered integration of a higher number
of applications, potentially of different level of criticalities. How-
ever, the worst-case behavior of the Network-on-Chip (NoC)for
both inter-core and core-to-Input/Output1 (I/O) communications
of critical applications must be established. The mapping over
the NoC of both critical and non-critical applications has an
impact on the network contention these critical communications
exhibit. So far, all existing mapping strategies have focused on
inter-core communications. However, many-cores in embedded
real-time systems can be integrated within backbone Ethernet
networks, as they mostly provide Ethernet controllers as I/O
interfaces. In this work, we first show that Ethernet packetscan
be dropped due to an internal congestion in the NoC, if these core-
to-I/O communications are not taken into account while mapping
applications. To solve this issue, we show on an avionic casestudy
the benefits of the core-to-I/O contention-aware mapping strategy
we propose.

I. I NTRODUCTION

The continuous need in increased computational power has
fueled the on-going move to multi-core architectures in hard
real-time systems. However, multi-core architectures arebased
on complex hardware mechanisms, such as for instance ad-
vanced branch predictors whose temporal behavior is difficult
to master. Many-core architectures are instead based on simpler
cores, so the timing predictability of cores are thus easierto
analyze [10]. Besides, they should enable the safe simultaneous
integration of both critical and non-critical applications [2].
Many-cores are thus promising hardware to host such a mix
of real-time applications with different levels of criticalities.
Note that we consider only two levels of criticalities in the
remainder of this work: critical and non critical. The main
challenge however lies in the ability to analyze the Worst-Case
Traversal Time (WCTT) of critical flows exchanged within
the Network-on-Chip (NoC). How hard real-time tasks that
generate these critical flows, but also the non critical tasks,
are mapped within cores, is therefore of utmost importance to
control the contention over the NoC and thus the WCTT of
flows. In the remainder of this paper, we simply say that we
map flows over a NoC to avoid linking flows to tasks.

The efficiency of a mapping strategy over a NoC can
be evaluated using different performance metrics. Hard-real
time applications rely on the latency metric, as the goal is
to minimize the WCTT of flows. Several contention aware
mapping strategies (for instance [3], [11], [14]) have thus
been proposed but for inter-core communications only. To

1 We use this term for both core communications from or to I/O interfaces.

the best of our knowledge, none consider communications
between cores and with I/O interfaces, that we call core-to-I/O
communications1. However, many-cores mainly provide DDR
and Ethernet controllers only as I/O interfaces. For instance,
Tilera [12] provides 3 Ethernet and 4 DDR controllers, while
MPPA [5] from Kalray provides 8 Ethernet and 2 DDR
controllers. Theses many-cores are thus more tailored to host
embedded applications whose I/O data are exchanged using
Ethernet packets.In embedded real-time systems, many-cores
can be used as processing elements within a backbone Ethernet
network, such as AFDX for the avionic domain or Ethernet
AVB in the automotive field.

Mapping strategies for many-cores should therefore also
take into consideration core-to-I/O communications, in addi-
tion to other core-to-core and core-to-memory communica-
tions. To demonstrate this strong requirement, the first con-
tribution of this paper is to show that Ethernet packets can be
dropped due to an NoC congestion, if I/O requirements are not
taken into account when mapping applications. To this end, we
rely on a case study from the avionic domain. It is made of
a critical Full Authority Digital Engine (FADEC) application
and a non-critical Health Monitoring (HM) application of the
engine, used for recognizing incipient failure conditions. We
thus propose an approach to map critical and non critical real-
time applications over many-cores that reduces the WCTT of
core-to-I/O communications. It is based on an existing strategy
but in which we treat core-to-I/O communications as first class
citizen. Our algorithm first assigns for each application tomap
a region within the NoC. Then, each task of an application is
mapped within its region, so that the paths used by core-to-
I/O communications from the Ethernet controller exhibit the
lowest contention possible. We show for two variants of our
case study that our algorithm successfully find a mapping that
avoids Ethernet packets, whose payload are making the core-
to-I/O communications, to be dropped. This demonstrates the
benefits of our proposal compared to a state of the art mapping
strategy that fails to do so.

II. PROBLEM FORMULATION

To illustrate the problem we address, we use an avionic
case study made of a FADEC and an HM application. For
the FADEC, 1270 bytes of sensors data from the engine are
received by an Ethernet interface. These data are then divided
and distributed to 6 tasks, notedtf0 to tf5. These 6 tasks
exchange 211 bytes of data between them. All these tasks also
send 211 bytes of data to a last task notedtf6. Then, tf6

stores 110 bytes within a DDR interface and sends 64 bytes of
actuators data through an Ethernet interface. On the other hand,

25

ETH

DDR

port 1port 2port 3port 4port 5

tf4

tf0

tf3

tf2 tf1

tf6 tf5

th0

th1

th2th3

th4

th5th6

th7

th8 th9

t

th12th13t

th10

h11

h14

(0,0)

(3,6)(3,0)

(0,6)

Fig. 1. Arbitrary mapping of FADEC and HM applications.

the HM application continuously receives through an Ethernet
interface, a set of frames representing data to be processed
in order to anticipate engine failures. The size of a frame is
130 KBytes and a set is made of 30 frames. When a set of
frames is received, every two frames are assigned to a different
task amongst 15 tasks, notedth0 to th14. When the processing
takes place, taskthi also sends 112 bytes of data tothi+1,
with i ∈ [0, 14]. Finally, all these tasks, finish their processing
by storing their frames into the DDR.

Figure 1 shows an arbitrary mapping of these 2 applications
over a7 × 4 mesh NoC, shipped with a single giga-Ethernet
interface. This Ethernet interface is thus shared between the
two applications. This NoC configuration is not artificial asit
can be seen as a subset of an initial largerN × N NoC that
therefore leads to consider several instances of the problem we
introduce in this section. A core of the NoC is identified by its
(x,y) coordinates and we assume that (0,0) is located on the
bottom left of the NoC. The square3 × 3, whose left corner
is located at (0,0) defines the regions where the tasks of the
FADEC application are mapped. The square4 × 4, located at
(0,3), defines the region where the HM applications is mapped.
Let us now describe the steps input I/O data received by an
Ethernet interface go through in order to be used by a core
of the NoC (blue and red arrows for respectively the HM
and FADEC applications). We assume that Ethernet packets
have a Maximum Transmit Unit (MTU) of 1500 bytes. We
further assume that NoC packets can be made of up to 19 flow
control digits (flits), as in the Tilera many-core. A flit is equal
to 32 bits. The size of an Ethernet packet is thus generally
several factors higher than the size of a NoC packet. Several
NoC packets are therefore needed to transmit to a core an
Ethernet payload, that must therefore be buffered within the
Ethernet interface. Reaching a destination core can eitherbe
done directly or through an intermediate DDR controller. This
choice is left to the user, and the last option is the case thatwe
consider in this work. Note that I/O FADEC data are sent to
the port 1 of the DDR, and can later be used from for instance
either the port 4 or 5 of the DDR.

Flits of NoC packets are transmitted one by one by routers,
i.e. in a pipeline way, by relying on wormhole switching
strategy, with an dimension ordered XY routing policy and
Round-Robin Arbitration (RRA) within routers. As routers
have buffers of a few flits due to the area cost of memories in
chips, flits of a same packet can thus be present on different
routers. A NoC congestion occurs when a contention between
two flows a at given router propagate backward due to the
credit-based mechanism, preventing flits of other flows to also
make progress.In this work, we first consider the paths
taken by flows originating from an Ethernet interface when

0

HM

12.336
1500

14.772

12.336
FADEC

HM

Ethernet

Buffer ETH

ETH To DDR

delay (μs)

delay (μs)

Buffer ETH
utilization

(Bytes)

10.49

0

0 0

Fig. 2. Timeline of Ethernet and NoC packets showing that theFADEC
Ethernet packet is dropped when the mapping of Figure 1 is used.

reducing the contentions, as we claim that many-core will
be used as processing elements within a backbone Ethernet
network.If a NoC congestion occurs on one of these paths,
the estimated WCTT of a flow can be higher than the
arrival delay of the next incoming Ethernet packet. In that
case, this Ethernet packet may be dropped due to the lack of
space in the Ethernet buffer. Previous Ethernet packets could
indeed be stored in this buffer while waiting associated NoC
flows can progress towards the DDR interface. Note that in
this work we neglect the time a DDR request takes, however
this delay would only increase the global one.

At both the Ethernet and NoC levels (and up to the DDR
only), the Figure 2 shows the timeline of a frame from the
HM application followed by one from the FADEC application.
When the HM frame with payload size of 1500 bytes arrives
at the single giga-Ethernet interface, i.e. after 12.336µs (link
traversal), it is stored into the interface buffer. Thus, ifwe
consider that the Ethernet buffer size is 2 KB, as in Tilera,
the buffer can only receive frames with 500 bytes of payload.
Then FADEC frame can only be stored if all the HM frame
has been transmitted to the DDR, as its size is 1270 bytes. The
transmission of HM frame at the NoC level will use 20 packets
of 19 flits and one packet of 15 flits. The WCTT of each HM
packets on the NoC takes701.5 ns. This value is obtained by
reusing an existing method that gives the tightest WCTT values
over RRA-based NoC [1]. Other strategies will therefore lead
to even higher WCTT values and worsen the situation. We
define the worst-case scenario as when each of these NoC
packets will be blocked at each router by all NoC flows that
can be encountered. So, as the HM frame is decomposed into
21 NOC packets, the global transmission delay of an HM
frame to the DDR through the NoC will taket1 = 14.772µs.
However, the transmission of the FADEC frame on Ethernet
takest2 = 10.49µs (transmission of 1270 bytes of payload
at 1Gb/s). As the Ethernet buffer still contains the HM frame
when the FADEC frame arrives, ast1 > t2, then FADEC frame
is dropped. Therefore, the mapping proposed in Figure 1 does
not take into account the I/O requirements leading to losing
frames. The goal of the paper is then to propose a mapping
approach considering the I/O transmission on the NoC.

III. L IMITATIONS OF EXISTING WORK

However, to the best of our knowledge, no mapping strate-
gies for many-cores take into account core-to-I/O communica-
tions. We thus briefly review in this section existing contention-
aware mapping strategies for core-to-core communicationsand
discuss their limitations with respect to our problem.

Different strategies exist to reduce the number of con-
tention flows on the path of the transmitted flows ([3], [11],
[14], [13]) using minimization functions. However, all these
approaches consider only the mapping of a single application.

26

Conversely, [6] considers the mapping of several applications
by arbitrarily dividing the NoC into clusters. Each cluster
is dedicated to an application. Then, within each cluster a
congestion-aware mapping heuristic, similar to one in [14],
minimizes the bandwidth utilization of NoC links. Authors
of [4] enhance the definition of clusters for applications by
making them near convex regions. Generating non-contiguous
regions is avoided, thus reducing the congestion that can
occur between applications, called the external congestion.
But, due to the first core selection policy when building
regions, mapping of an application over a fragmented region
is possible [9]. In order to solve this problem, [9] propose
to select the core having the most available neighbors (up
to 4) to avoid region fragmentation and thus decrease both
internal and external congestions. This solution, called CoNA,
only considers direct neighbors when selecting the first core
and then still lead to fragmentation of areas [7]. Smart Hill
Climbing (SHiC) approach [7] considers a new metric called
square-factor (SF) for selecting the first core when building
regions. The SF of a core is the maximal size of the square
area in which that core can be put in, to which the number of
free cores around this square is added. The first core is then the
one having a SF greater or equal to the size of the applicationto
be mapped, i.e. the number of cores that are needed assuming
a core can only execute a single task. [8] adapts SHiC so
that contiguous regions as used to map critical applications,
in order to reduce contentions, while non-critical applications
are mapped over non-contiguous regions to increase the system
throughput.

SHiC is the best congestion-aware mapping approach
which is the closest related work to ours. The mapping done
in Figure 1 has been in fact obtained using SHiC. As we can
see, SHiC, and also all others existing mapping strategies,does
not consider where I/O interfaces are located within the NoC
when mapping applications. The NoC core-to-I/O flows may
therefore suffer from external congestions, if the applications
are not mapped close to the I/O interfaces they use. However,
these interfaces could be shared between several applications.
Besides, the internal mapping of applications also influence
the WCTT of these core-to-I/O flows. Mapping the most
communicating task to the first selected core, as most existing
strategies do, may no longer be appropriate. The number of
contentions core-to-I/O flows experiences should instead be
reduced, so that their WCTT are decreased and avoid dropping
incoming I/O packet. Finally, SHiC defines strict contiguous
regions preventing the mapping of a set of applications whose
total size is equal to the size of NoC.

IV. PROPOSAL OVERVIEW

To overcome these limitations, our approach also relies on
a two steps process to map applications of different levels
of criticalities. In this paper, instead of giving the mapping
algorithms, we propose to describe our approach using on
overview of these two steps. We currently assume a single
Ethernet controller for the I/O interface, a single critical
application amongst a set of non-critical applications anda
single core-to-I/O flow per application, called core-to-Ethernet.

The first step of our mapping process, called theexternal
mapping, assigns to each application a region and determine its
shape. Our second step then maps the tasks of each application
within its assigned region. When the sum of the size of each
application is equal to the size of the NoC, i.e there is no free

ETH

tf3

tf6

tf5

tf0 tf2tf1

tf4th0

th1

th2th3

th4

th5th6

th7

th8 th9

t

th12th13t

th10

h11

h14

DDR

port 1port 2port 3port 4port 5

Fig. 3. Mapping of the FADEC and HM applications using our approach.

cores available, the external mapping starts with the critical
application and assigns to it a region next to the Ethernet
interface. In the other case, the external mapping consider
the non-critical applications first. It starts to map them from
the opposite side where the Ethernet interface is located. The
critical application is thus the last one to be considered, in
order to gather remaining free cores within its corresponding
region. These cores will be used to provide more laxity in the
second step of our mapping process when mapping the critical
application. When assigning a region to an application, we
consider the minimal rectangular shape that corresponds toits
size and favors biggest shapes in next assignment of regions.

The second step of our mapping process is called the
internal mapping. When mapping applications, its goal is to
reduce the WCTT of NoC core-to-I/O flows for both the
critical and non-critical applications. To this end, the internal
mapping reduces the number of contentions on the paths taken
by these flows according to different specific rules. On the
example of Figure 3, the available free cores within the region
of the critical application are put in priority on the path taken
by core-to-I/O flow. Note that for application that are not
mapped on the paths taken by core-to-I/O flows, we rely on
the SHiC strategy.

Figure 3 shows the final mapping that our approach gen-
erates for our case study. Remember that it is composed of
28 cores, as it is a7 × 4 mesh NoC. The FADEC application
requires 7 cores, while the HM application requires 15 cores.
The total size of both applications is thus22, leaving initially6
free cores. The external mapping therefore starts by assigning
a region to the HM application. To this end, a4 × 4 square
region is defined and located at (0,0). One free core is thus
lost and left unused when defining this region. The FADEC
application is then assigned a3×4 rectangular region, located
at (0,4), and that integrates the5 remaining free cores. The
internal mapping uses4 free cores, amongst the5 available in
its region, in a2×2 square area next to the Ethernet controller.

V. PRELIMINARY EVALUATION

First, let us assume that the internal mapping maps the
applications by following the SHiC strategy. Compared to
the mapping shown by Figure 1, the mapping of applications
is thus simply permuted. For this mapping, the WCTT for
reaching the DDR by a NoC packet of the core-to-Ethernet
flow of the HM application is610 ns. This leads to a WCTT
for the core-to-Ethernet flow of12.8 µs. This delay is thus
reduced compared to the one shown by Figure 2. However,
it is still higher than what is required to avoid dropping the
the FADEC Ethernet packet. This demonstrates the need for a

27

Ethernet

delay (μs)

Buffer ETH

Buffer ETH
utilization

(Bytes)

ETH To DDR

0

HM

12.336

1500

0.98

12.336
FADEC

1270

HM
0.83

FADEC

22.8

13.3

10.49

delay (μs)

0

0 0 0

23.6

Fig. 4. Timeline of Ethernet and NoC packets showing that theFADEC
Ethernet packet is no longer dropped when mapped using our approach.

strategy in the internal mapping that further reduces the WCTT
of the NoC core-to-I/O flows of non-critical applications, in
addition to the critical one.

Let us now assume that our internal mapping takes advan-
tage of the free cores gathered by our external mapping. This
corresponds to the mapping shown by Figure 3. The timeline
of Figure 4 shows that the FADEC Ethernet packet is no
longer dropped in that case. The free cores are indeed located
on the path taken by the Ethernet-to-core NoC flows of the
FADEC and HM applications. These flows are thus no longer
blocked while progressing towards the DDR. The WCTT of
NoC core-to-Ethernet packets (made of19 flits) from the HM
application is thus reduced to47.15 ns. The global WCTT
of the corresponding NoC flow of the HM application is then
0.98 µs thanks to our approach where the internal mapping
reduces the number of blocking flows with the core-to-Ethernet
flow. The HM Ethernet packet is therefore removed from the
Ethernet buffer before the FADEC Ethernet packet arrives to
the Ethernet interface. The global WCTT of the NoC core-to-
Ethernet flow from the FADEC application is0.83 µs.

We also evaluated our approach when all the cores of the
NoC are used. To this end, we added two taskstf7 andtf8 to
the FADEC application. These additional tasks have the same
characteristics as the taskstf0 to tf5. For the HM application,
we reduced the number of tasks from15 to 12 tasks. We
assume a reduced7× 3 mesh NoC. Compared to the mapping
shown by Figure 1, SHiC mapstf7 andtf8 at respectively (2,0)
and (2,2). In this case, the same timeline as the one of Figure2
is obtained. The FADEC Ethernet frame is thus still dropped.
When however considering our approach, the external mapping
assigns to the FADEC application a3 × 3 square region next
to the Ethernet interface. The internal mapping of the FADEC
application leads to a WCTT of483.5 ns for the NoC core-
to-Ethernet packets of the HM application. This corresponds
to a global WCTT of10.15 µs for reaching the DDR. The
FADEC frame can thus reaches the Ethernet interface after the
removal of the HM Ethernet packet from the Ethernet buffer.
This example shows that our approach seems promising even
if all the core of the NoC are used.

VI. CONCLUSION AND FUTURE WORK

Existing contention-aware mapping strategies aim to min-
imize the inter-core congestion without taking into account
requirements of I/O communications of applications. How-
ever, a NoC is mostly connected to other external systems
through several Ethernet interfaces. The WCTT of NoC core-
to-Ethernet flows depends on the congestions generated by the
mapping of both critical and non-critical applications.

In this paper, we first show on an avionic case study
that the solution generated by a state of the art contention-
aware mapping strategies even lead to drop Ethernet packets

used by a critical application, when mapped together with
a non-critical application. We then show on the same case
study that a two steps mapping strategy solve this issue. An
external mapping step assigns the critical application near the
considered Ethernet interface and reclaim free cores for the
definition of the region where the critical application will
be mapped in. Within this region, an internal mapping step
reduces the contention both NoC core-to-Ethernet criticaland
non-critical flows experience. Work underway shows that our
approach can be successfully applied over other case studies.
Next step is the generalization and formalization of the internal
mapping rules.

Further work includes the development of a software tool
implementing our mapping strategy as well as consider all
types of flow in our mapping strategy. We are also interested
in generalizing our algorithm by supporting additional core-
to-I/O flows, several critical applications and I/O interfaces.

REFERENCES

[1] L. Abdallah, M. Jan, J. Ermont, and C. Fraboul. Wormhole networks
properties and their use for optimizing worst case delay analysis of
many-cores. In10th IEEE International Symposium on Industrial
Embedded Systems (SIES), pages 59–68, Siegen, Germany, June 2015.

[2] A. Burns, J. Harbin, and L. S. Indrusiak. A wormhole noc protocol for
mixed criticality systems. InProc. of the IEEE 35th Real-Time Systems
Symposium, RTSS, pages 184–195, Rome, Italy, December 2014.

[3] C.-L. Chou and R. Marculescu. Contention-aware application mapping
for network-on-chip communication architectures. InIEEE Intl. Conf.
on Computer Design (ICCD), pages 164–169, 2008.

[4] C.-L. Chou, U. Y. Ogras, and R. Marculescu. Energy-and performance-
aware incremental mapping for networks on chip with multiple voltage
levels. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(10):1866–1879, 2008.

[5] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager. Time-
critical computing on a single-chip massively parallel processor. In
Proc. of the Conf. on Design, Automation & Test in Europe (DATE’14),
pages 97:1–97:6, 2014.

[6] E. L. de Souza Carvalho, N. L. V. Calazans, and F. G. Moraes. Dynamic
task mapping for mpsocs.Design & Test of Computers, 27(5):26–35,
2010.

[7] M. Fattah, M. Daneshtalab, P. Liljeberg, and J. Plosila.Smart hill
climbing for agile dynamic mapping in many-core systems. InProc. of
the 50th Annual Design Automation Conference, page 39, 2013.

[8] M. Fattah, A.-M. Rahmani, T. C. Xu, A. Kanduri, P. Liljeberg, J. Plosila,
and H. Tenhunen. Mixed-criticality run-time task mapping for noc-
based many-core systems. In22nd Euromicro Intl. Conf. on Parallel,
Distributed and Network-Based Processing (PDP), pages 458–465.
IEEE, 2014.

[9] M. Fattah, M. Ramirez, M. Daneshtalab, P. Liljeberg, andJ. Plosila.
Cona: Dynamic application mapping for congestion reduction in many-
core systems. In30th Intl. Conf. on Computer Design (ICCD), pages
364–370, 2012.

[10] V. Nélis, P. M. Yomsi, L. M. Pinho, J. C. Fonseca, M. Bertogna,
E. Quiñones, R. Vargas, and A. Marongiu. The Challenge of Time-
Predictability in Modern Many-Core Architectures. In14th Intl. Work-
shop on Worst-Case Execution Time Analysis, pages 63–72, Madrid,
Spain, July 2014.

[11] A. Racu and L. S. Indrusiak. Using genetic algorithms tomap hard real-
time on noc-based systems. In7th Intl. Workshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), pages 1–8, 2012.

[12] Tilera corporation.Tile processor user architecture manual, Nov. 2011.
UG101.

[13] B. Yang, L. Guang, T. Säntti, and J. Plosila. Tree-model based
contention-aware task mapping on many-core networks-on-chip. Com-
munications in Information Science and Management Engineering,
2012.

[14] C. Zimmer and F. Mueller. Low contention mapping of real-time tasks
onto tilepro 64 core processors. In18th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 131–140, 2012.

28

Memory-aware Response Time Analysis
for P-FRP Tasks

Xingliang Zou, Albert M. K. Cheng
Department of Computer Science

University of Houston
Houston, TX, 77004, USA

Email: xzou@uh.edu, cheng@cs.uh.edu

Abstract—Functional Reactive Programming (FRP) is playing
and potentially going to play a more important role in real-time
systems. Priority-based (preemptive) FRP (P-FRP), a variant of
FRP with more real-time characteristics, demands more research
in its scheduling and timing analysis. In a P-FRP system, similar
to a classic preemptive system, a higher-priority task can preempt
a lower-priority one and make the latter aborted. The lower-
priority task will restart after higher-priority tasks complete
their execution. Unlike the classic preemptive model, when a task
aborts, all the changes made by the task are discarded (abort and
restart). In previous studies, the value of Worst Case Execution
Time (WCET) of a task is used for all its restarted tasks. However,
in practice the restarted tasks likely consume less time than the
WCET when considering the memory effect such as cache-hit
in loading code and data. In this work, we use different task
execution time for restarted tasks when conducting schedulability
and response time analysis for P-FRP tasks.

I. INTRODUCTION

There are two distinct types of programming paradigms in
computer programming: imperative and functional. Functional
Programming has a distinct difference from imperative pro-
gramming in that it is immune to side-effects caused by using
states and mutable data. Since the formal system of λ-calculus
(lambda-calculus) was first devised by Church [1] and Kleene
[11], many functional programming languages have been in-
vented: LISP, Ocaml, Haskell, Scheme, Erlang, F#, Atom,
Scala and so on. Haskell and Erlang have been studied and
commercially developed intensively. Scala is recently adopted
by companies such as Linkedin, Twitter and Walmart [7].
Functional Reactive Programming (FRP) [16] is a framework
for constructing reactive applications using the building blocks
of functional programming.

In real-time systems, the correctness of a program is
measured by its logical output as well as its ability to complete
within certain time limits. FRP is demonstrated to be effective
in modeling and building reactive systems such as graphics,
robotic and vision applications. However, another significant
feature of real-time systems, priority, is not considered in FRP.
To address this problem, the P-FRP [10] model has been
proposed as a variant of the FRP model. P-FRP maintains
both the type-safety and the state-less execution paradigm
of FRP, and supports priorities assigned to different tasks
while not requiring the use of synchronization mechanisms

∗The work is supported in part by the United States National Science
Foundation (NSF) under awards No. 0720856 and No. 1219082.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 2

1

1

1
2
3

2
1 2

3

t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 21

1
2
3

2 2 2
2 2

1 1 11

3

t

12 23 3

1 1 12 2 2 2 2 2 2 22 3 333 3

2



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 21

1
2
3

2 2 2
2 2

1 1 11

3

t
1 1 12 2 2 2 2 2 223 3

2 2

2

2 2

2 2
1

3

1 1 1

1

1

1 1

(a) Classic Model0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 2

1

1

1
2
3

2
1 2

3

t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 21

1
2
3

2 2 2
2 2

1 1 11

3

t

12 23 3

1 1 12 2 2 2 2 2 2 22 3 333 3

2



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 21

1
2
3

2 2 2
2 2

1 1 11

3

t
1 1 12 2 2 2 2 2 223 3

2 2

2

2 2

2 2
1

3

1 1 1

1

1

1 1

(b) P-FRP Model

Fig. 1: Schedules of fixed priority task set
(C1 = 1, C2 = 2, C3 = 2, T1 = 5, T2 = 4, T3 = 20)

between tasks in the system. It has the potential to transform
the building of more and more complicated Cyber Physical
Systems (CPSs). Christoffersen and Cheng [8] presented an
impact of P-FRP in building controllers in automobile anti-
lock brake systems.

In order to maintain the state-less paradigm of the FRP
model, unlike the classic preemptive scheduling (shortened to
classic model) (Fig.1.(a)), P-FRP uses an Abort and Restart
(Fig.1.(b)) semantics where if a lower-priority task is inter-
rupted by a higher-priority task, it has to restart from the
beginning when it is resumed. Here we consider a typical
task life cycle without being interrupted (cold started task):
(1) code is loaded from hard drive and data is loaded from
external memory; (2) computation is done by processor(s); (3)
results are committed to external memory. In the P-FRP model,
the time spent in phase (2) and (3) is wasted when a task is
aborted, however, since the existence of memory hierarchy, the
time spent in phase (1) can be less when a task is restarted, for
example, the task code is still in cache and does not need to be
read from slow external memory again. This memory effect is
not considered in previous studies of P-FRP systems. In this
paper, we present our preliminary memory-aware P-FRP task
response time analysis and experimental results.

II. SYSTEM MODEL AND RELATED WORKS

We consider a hard real-time uniprocessor system with
hierarchical memory components. n-task system Γn =

29

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 2

1

1

1
2
3

2
1 2

3

t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 21

1
2
3

2 2 2
2 2

1 1 11

3

t

12 23 3

1 1 12 2 2 2 2 2 2 22 3 333 3

2



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 21

1
2
3

2 2 2
2 2

1 1 11

3

t
1 1 12 2 2 2 2 2 223 3

2 2

2

2 2

2 2
1

3

1 1 1

1

1

1 1

Fig. 2: Memory-aware P-FRP scheduling of fixed priority
task set (C1

1 = 1, C2
1 = 1;C1

2 = 2, C2
2 = 1;C1

3 = 2, C2
3 =

1;T1 = 5, T2 = 4, T3 = 20)

{τ1, τ2, ..., τn} of periodic tasks with fixed priorities is sched-
uled in the P-FRP abort and restart model. Task τi is assigned
a unique fixed priority i (1 ≤ i ≤ n), where 1 is the highest
priority and n is the lowest. An instance or invocation of a
periodic task is called a job. Jk

i refers to the k-th job of τi.
Each periodic task τi is characterized by a constant arrival
time period Ti between two successive jobs of the task, a
relative deadline Di(Di ≤ Ti), and two computation times:
C1

i and C2
i , the execution time of the task in cold started and

restarted modes respectively. The Response Time (RT) of a job
is the time between the release of a job and its completion.
The response time of a task in a given priority assignment is
the largest response time among those of all its jobs. A task
is referred to as schedulable according to a given scheduling
policy if its response time under the given scheduling policy
is less than or equal to its deadline. A task set is referred to
as schedulable according to a given scheduling policy if all
of the tasks in the task set are schedulable under the given
scheduling policy.

Jiang et al presented their research on P-FRP task schedu-
lability analysis in [13][14] to find tighter feasibility intervals.
Belwal and Cheng have shown in [3] that RM is not optimal
in P-FRP systems with synchronous release and it is even
unknown if there exists an optimal one other than an exhaustive
test over all possible priority assignment algorithms. Belwal
and Cheng [2] presented a utilization-based analysis that
the current schedulability condition only holds true with the
utilization bound of 1/n under certain restrictions on periods
and release scenarios. Wong et al [5] conducted research on
other priority assignment algorithms: Utilisation Monotonic
(UM), Execution-time Monotonic (EM), and a combination
of UM and EM, Execution-time-toward-Utilisation Monotonic
(EUM) priority assignment algorithm. By comparing with an
Exhaustive Search schema, they confirmed that none of RM,
DM, EM or EUM is optimal for the P-FRP model. Zhou et
al [9] presented their research on WCRT and schedulability
analysis for real-time software transactional memory-lazy con-
flict detection for P-FRP tasks. Wong et al [6] proposed the
Deferred Abort model to reduce the number of preemptions in
scheduling P-FRP tasks. Zou et al [12] proposed a non-work-
conserving Deferred Start model to eliminate preemptions in
scheduling P-FRP tasks. However, none of these researches
considers the different execution time of cold started tasks
and restarted tasks. On the other hand, Kazemi and Cheng
[15] studied the P-FRP task execution time on a scratchpad
memory-based platform, and showed that the task execution
time changes because of the memory hierarchy.

3 4 5 6 7 8

f=1.0 772 873 936 919 733 572

f=0.7 595 687 790 787 635 517

f=0.5 410 525 642 668 565 469

0
100
200
300
400
500
600
700
800
900

1000

N
u

m
b

er o
f U

n
sch

ed
u

lab
le Tasks

N-task set

Fig. 3: Number of Unschedulable Task Sets

III. OUR WORK

A. Memory-aware P-FRP model

In Fig.1, we schedule three tasks with a given priority
assignment under the classic model and the P-FRP model. If
the execution time of a task in cold start and restart cases
are different, we will have a memory-aware P-FRP model
scheduling as Fig.2 shows.

In Fig.2, the second job of τ2, J2
2 , is preempted at time

point 5 since it requires 2 time units of cold start execution
time (C1

2) and executes only 1 time unit when the second job
of the highest priority task τ1 is scheduled to execution. And
when J2

2 is resumed at time point 6, it needs only 1 time unit
of restart execution time (C2

2) and hence finishes execution at
time point 7. For the job J3

2 that arrives at time point 8, it
requires 2 time units of cold start execution time and finishes
execution at time point 10. The similar scheduling applies to
task τ3. We can see, under the same priority assignment and
scheduling policy, compared to Fig.1(b) of P-FRP scheduling,
in time interval of [0, 20) the number of preemptions is reduced
from 4 to 2, the CPU idle time unit is increased from 0 to 4.
Also, the response time of τ2 is reduced from 4 to 3, and the
response time of τ3 is reduced from 20 to 8. Thus the memory-
aware P-FRP scheduling saves CPU time and potentially is
able to schedule more tasks.

B. Experiment and Result

The experiments are designed and conducted on a desktop
computer with a CPU of i3-4130 3.4GHz, 8 GB memory
and Ubuntu 14.04.3 LTS 64-bit Desktop operating system. We
generate task sets and run the P-FRP scheduling with and
without considering memory effect. The task sets we generated
have 3, 4, ..., 8 tasks respectively; the periods are randomly
generated in range of [15, 75]; the total utilization of a task
set is 0.6. We use the UUniFast algorithm [4] to generate
n (n = 3, 4, .., 8) utilization factors Ui (1 ≤ i ≤ n) in a
descending order such that the total utilization U =

∑n
i=1 Ui

equal to the given value, 0.6 in this experiment. We then
shuffle those Ui to a random order for the consideration of
generalization. The computation time of each task is computed
as C1

i = Ui ∗ Ti, C2
i = C1

i ∗ f , where f is a factor that shows
the difference of task execution time in cold start and restart.
f is 0.7 and 0.5 in our experiments. As comparison, we also
run the task sets in original P-FRP model, which is equivalent
to f=1.0. For each n-task set, we generate 1000 task sets.

30

Fig.3 shows the number of unschedulable task sets with
different f for the n-task sets (n = 3, 4, .., 8) we generated.
The case of f=0.7 has 22.9%, 21.3%, 15.6%, 14.4%, 13.4%
and 9.6% less unschedulable task sets compared to the original
P-FRP scheduling. The case of f=0.5 has 46.9%, 39.9%,
31.4%, 27.3%, 22.9% and 18.0% less unschedulable task sets
compared to the original P-FRP scheduling. Thus the memory
effect of restarted P-FRP tasks must not be ignored.

IV. CONCLUSION AND FUTURE WORK

We have proposed our preliminary research of memory-
aware P-FRP model. Simulation results show the schedula-
bility and response time improvement when considering the
different execution time of a task in cold start and restart cases.
Our ongoing research is to present more theoretical response
time analysis and priority assignment research in the memory-
aware P-FRP task scheduling. And since the execution time
difference is likely related to data placement/locality, we will
address this difference in our multi-core P-FRP task scheduling
research too.

REFERENCES

[1] A. Church. An unsolvable problem of elementary number theory. Amer-
ican Journal of Mathematics 58, pp.345-363, 1936.

[2] C. Belwal, A. M. K. Cheng. A Utilization based Sufficient Condition
for P-FRP. 9th IEEE/IFIP Int’l Conf. on Embedded and Ubiquitous
Computing (EUC), 2011, pp.237-242.

[3] C. Belwal, A.M.K. Cheng. On priority assignment in P-FRP. RTAS 2010
WiP Session.

[4] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time System, 30(1-2):129-154, 2005.

[5] H. C. Wong, A. Burns. Improved Priority Assignment for the Abortand-
Restart (AR) Model. Technical Report YCS-2013-481, University of
York, Department of Computer Science, 2013.

[6] H. C. Wong, A. Burns. Priority-based Functional Reactive Programming
(P-FRP) using Deferred Abort. RTCSA 2015.

[7] https://typesafe.com/company/casestudies, 09/24/2014.
[8] K. R. Christoffersen, A. M. K. Cheng. Model-based design: Antilock

brake system with priority-based functional reactive programming. RTSS
2013 WiP Session.

[9] Q. Zhou, Y. Li, X. Zou, A. M. K. Cheng, Y. Jiang. Worst Case Response
Time and Schedulability Analysis for Real-Time Software Transactional
Memory-Lazy Conflict Detection (STM-LCD). DPRTCPS workshop,
2015.

[10] R. Kaiabachev, W. Taha, A. Zhu. E-FRP with priorities. ACM EMSOFT
2007.

[11] S. Kleene. A theory of positive integers in formal logic. American
Journal of Mathematics 57, pp.153-173 and 219-244, 1935.

[12] X. Zou, A. M. K. Cheng, Y. Jiang. A Non-Work-Conserving Model for
P-FRP Fixed Priority Task Scheduling. RTSS 2015 WiP session.

[13] Y. Jiang, A. M. K. Cheng, X. Zou. Schedulability Analysis for Real-
Time P-FRP Tasks Under Fixed Priority Scheduling. RTCSA 2015.

[14] Y. Jiang, Q. Zhou, X. Zou, A. M. K. Cheng, X. Zou. Minimal Schedu-
lability Testing Interval for Real-Time Periodic Tasks with Arbitrary
Release Offsets. IEEE ICESS 2014.

[15] Z. Kazemi, A. M. K. Cheng. A Scratchpad Memory-Based Execution
Platform for Functional Reactive System and its Static Timing Analysis.
RTAS 2015 WiP session.

[16] Z. Wan, P. Hudak. Functional reactive programming from first princi-
ples. ACM SIGPLAN PLDI 2000.

31

32

Cache Persistence Aware Response Time Analysis
for Fixed Priority Preemptive Systems

Syed Aftab Rashid, Geoffrey Nelissen, Eduardo Tovar
CISTER/INESC TEC, ISEP

Polytechnic Institute of Porto, Portugal

Abstract—A task can be preempted by several jobs of a higher
priority task during its response time. Assuming the worst-case
memory demand for each of these jobs leads to pessimistic worst-
case response time (WCRT) estimations. Indeed, there is a high
chance that a big portion of the instructions and data associated
with the preempting task τj , are still available in the cache when
τj releases its next jobs. We call this content “persistent cache
blocks” (PCBs). Accounting for PCBs in the memory demand of
the preempting task allows to significantly reduce the pessimism
on the total memory demand considered by the WCRT analysis.
In this work, we propose a refined WCRT analysis for fixed
priority preemptive systems considering (i) the effect of PCBs on
the memory demand of the preempting task, and (ii) accounting
for the number of PCBs that can be evicted by the preempted
tasks between two successive job releases of the preempting tasks.

I. INTRODUCTION

The existing gap between the processor and main memory
operating speeds necessitates the use of intermediate cache
memories to accelerate the average case access time to in-
structions and data that must be executed or treated on the
processor. The introduction of cache memories in modern
computing platforms is the cause of big variations in the
execution time of each instruction depending on whether the
instruction and the data it treats are already loaded in the cache
(cache hit) or not (cache miss).

These last years, a lot of attention has been placed on the
analysis of the impact of preemptions on the worst-case exe-
cution time (WCET) and worst-case response time (WCRT) of
tasks in systems where preemptions are allowed. Indeed, the
preempted tasks may suffer additional cache misses if memory
blocks are evicted from the cache during the execution of
the preempting tasks. These evictions cause extra accesses to
the main memory, which result in additional delays in the
task execution. This extra-cost is usually referred to as cache-
related preemption delays (CRPDs).

Over the years, different approaches have been proposed to
counter the effect of preemptions. Some (e.g., [1], [2]) use
non- or limited preemption scheduling schemes to eliminate
or reduce the number of preemptions. Others [3]–[9] use
information about the task memory access pattern to bound
and incorporate the preemption costs into the WCET and the
WCRT analyses. In this work, we focus on the latter and
propose a method, complementary to [3]–[9], to bound the
memory overhead during the task response time.

Several approaches have been proposed in the literature to
compute accurate bounds on CRPDs. They are based on the
study of memory access patterns of the preempted task [4], the

preempting tasks [3], [5], or both [5]–[9]. However, all these
approaches still result in pessimistic WCRT bounds due to the
fact that they only consider the effect of preemptions on the
memory demand of the preempted task but do not consider the
variation in the memory demand of the preempting tasks. They
all assume that every job of a high priority task τj preempting a
low priority task τi will ask for its maximum memory demand,
i.e., its worst-case memory demand in isolation. Although true
for the first job released by the preempting task τj , subsequent
jobs of τj may re-use most of the data and instructions that
were already loaded in the cache during the execution of its
previous jobs. Noticeably, the memory blocks loaded by a
job Jj,k of τj remain in the cache until the execution of
the next job Jj,k+1 of τj unless evicted by any other task
executing between the completion of Jj,k and the beginning
of the execution of Jj,k+1.

Therefore, in order to propose tighter bounds on the memory
overhead, and hence on the WCRT of each task τi executing
in a preemptive system, we (i) model the impact of persistent
cache contents associated with each preempting tasks on the
WCRT of the preempted task, and (ii) analyze the effect of
the preempted task cache accesses on the memory demand of
the preempting tasks.

II. SYSTEM MODEL

This work targets single-core platforms with a single level
(L1) data/instruction cache. The cache is assumed to be direct-
mapped, that is, each memory block in the main memory can
be mapped to only one block in the cache.

We consider sporadic tasks with constrained deadlines
where each task has a fixed priority. Any priority assignment
scheme (e.g., Rate Monotonic [10]) is acceptable. We also
assume that the tasks are independent and do not suspend
themselves during their execution. A task τi is defined by a
triplet (Ci, Ti, Di); where Ci is the WCET of τi, Ti is its
minimum inter-arrival time and Di is the relative deadline
of each instance (or job) of τi. We assume that the tasks
have constrained deadlines, i.e., Di ≤ Ti. In this work, we
further decompose each task WCET into two terms, namely,
the worst-case processing demand Pi and the worst-case
memory demand MDi . Pi denotes the worse case execution
time of τi considering that every memory access is a cache
hit. Consequently, it only accounts for execution requirements
of the task and does not include the time needed to fetch
data and instructions from the main memory. MDi is the

33

worst-case memory demand of any job of task τi, that is,
it is the maximum amount of time during which any job of
τi is performing memory operations. Because the worst-case
processing demand and the worst-case memory demand may
not necessarily be experienced on the same execution path of
τi, it results that Ci ≤ Pi + MDi . The WCRT of task τi is
denoted by Ri and is defined as the longest amount of time
between the arrival and the completion of any of its jobs. A
task τi is said to be schedulable if Ri ≤ Di. Similarly, a task
set is schedulable if all of its tasks are schedulable.

In this work, we consider that preemption costs only refer
to additional cache reloads due to those preemptions. Other
overheads due to context switches, scheduler invocations and
pipeline flushes are assumed to be included in the WCET.

For notational convenience, we define the following task
sets:
• hp(i): the set of tasks with a priority higher than that of τi.
• hep(i): the set of tasks with priorities higher than or equal

to that of τi.
• aff (i , j): the set of tasks with priorities higher than or equal

to the priority τi but strictly lower than that of τj . This set
contains the intermediate priority tasks, which may affect
the response time of τi but may also be preempted by τj .

III. STATE OF THE ART

As already explained in the introduction, when a task τi is
preempted by a higher priority task τj , it is likely that τj will
evict memory blocks of τi from the cache. On resumption, τi
might consequently require to reload cache blocks from the
main memory along with its normal memory requirements.
This CRPD caused by τj on τi is denoted by γi,j . Several
methods have been proposed in the literature to compute γi,j .
In one of the earlier works, Lee et al. [4] introduced the
concept of useful cache block (UCB). As defined in [9], “a
memory block m is called a useful cache block (UCB) at
program point P , if it is cached at P and will be reused at
program point Q that may be reached from P without eviction
of m”. Lee et al. [4] used the maximum number of UCBs
among all the tasks in aff (i , j) to upper bound the preemption
cost γi,j . Busquets et al. [3] and Tomiyama et al. [5] rather
used the notion of evicting cache block (ECB), i.e, any cache
block accessed during the execution of the task and which
can then evict the memory block cached by another task, to
upper bound the preemption cost that can be caused by each
preempting task. Other approaches by Tan and Mooney [7],
Staschulat et al. [6] and Altmeyer et al. [8] used both the
UCBs of the preempted tasks and ECBs of the preempting
tasks in order to come up with more precise bounds on the
preemption cost. Notably, the ECB and UCB-union and the
multi-set approaches presented in [8] and [9] dominate all
the existing approaches for CRPD calculation. We first detail
the ECB-union approach and then the UCB-union multi-set.
Readers are referred to [9] for the description of UCB-union
and ECB-union multi-set approaches.

The ECB-union approach [8] uses the ECBs of all tasks
in hep(j) maximized over the UCBs of tasks in aff (i , j) to

calculate the preemption cost γi,j . The resulting value for the
preemption cost, denoted as γecbi,j , is given by

γecbi,j = dmem × max
∀k∈aff (i,j)

(∣∣∣UCBk ∩
(⋃

∀h∈hep(j)

ECBh

)∣∣∣
)

(1)
where dmem is the time required to reload one memory block
from the main memory to the cache, and UCBk and ECBj

are the sets of UCBs and ECBs of task τk and τj , respectively.
The preemption cost can then be accounted for in the WCRT
analysis using the following formulation:

Rk+1
i = Ci +

∑

∀j∈hp(i)

⌈
Rk

i

Tj

⌉
× (Cj + γecbi,j) (2)

When combined, the ECB and UCB-union approaches
provide a reasonably precise upper bound on the preemption
cost. However, it can also lead to overestimations in different
situations as shown in [9]. To further reduce the pessimism
associated to the ECB and UCB-union approaches, Altmeyer
et al. [9] proposed two new solutions, namely, the UCB-
union multi-set and the ECB-union multi-set approaches.
These multi-set versions of the UCB-union and ECB-union ap-
proaches additionally take into account the maximum number
of jobs Ej(Ri)

def
=
⌈
Ri

Tj

⌉
that each higher priority task τj can

release during the response time of τi. Under that framework,
the WCRT equation becomes:

Rk+1
i = Ci +

∑

∀j∈hp(i)

⌈
Rk

i

Tj

⌉
× Cj +

∑

∀j∈hp(i)

γmul
i,j (3)

where γmul
i,j accounts for the total preemption cost that can be

caused by all the jobs of τj released during the response time
of τi. Using the UCB-union multi-set approach γmul

i,j is upper
bounded by γucb−mi,j defined as follows:

γucb−mi,j = dmem ×
∣∣Mucb

i,j ∩Mecb
i,j

∣∣ (4)

where Mucb
i,j and Mecb

i,j are multi-sets defined as

Mucb
i,j =

⋃

∀k∈aff (i,j)


 ⋃

Ej(Rk)Ek(Ri)

UCBk


 (5)

and

Mecb
i,j =

⋃

Ej(Ri)

ECBj (6)

Note that the ECB-union multi-set approach dominates the
ECB-union approach [8] whereas the UCB-union multi-set
approach dominates the UCB-union approach [7]. Yet, it is
shown in [9] that the ECB-union and UCB-union multi-set
approaches are incomparable.

For a more detailed description on the formulation of
Equations (2) to (6), the reader is referred to [9].

34

IV. MOTIVATIONAL EXAMPLE

As presented in the previous section, the impact of a high
priority task τj on the WCRT of lower priority task τi can
be estimated in a fairly accurate manner by analyzing the
mapping of UCBs and ECBs in the cache. The impact of
τi on the memory demand of τj is however ignored during
the WCRT analysis of τi. Yet, high priority tasks may often
execute more than one job during the response time of a lower
priority task. Therefore, to accurately estimate the WCRT of
a low priority task τi, one must consider the impact of the
preempted tasks on the memory demand of each job released
by the preempting tasks. In the literature, this is dealt with
by assuming that the memory demand for each job of a high
priority task τj executing within the response time of a low
priority task τi is always maximum, i.e, equal to the maximum
memory demand MDj . As a result, the total memory overhead
MOi that must be accounted by τi during its WCRT is upper
bounded by the following equation derived in [11].

MOi = MDi +
∑

∀j∈hp(i)

⌈
Ri

Tj

⌉
× (MDj + γi,j) (7)

There is a significant level of pessimism involved in Equa-
tion (7) as we will demonstrate using the example given below.

Example 1. Consider the two tasks τ1 and τ2 (where τ1 has
a higher priority than τ2) presented in Fig. 1. We assume that
the time dmem needed to access the main memory and load
a memory block to the cache is equal to 1 time unit, and
that the memory demand of τ1 and τ2 are MD1 = 6 and
MD2 = 81, respectively. We also assume that the memory
block {9} accessed by τ1 contains some data that must be
reloaded at the beginning of each of its job’s execution. Fig. 1
depicts a possible schedule together with the evolution of the
cache content over time. The memory blocks that must be
loaded/reloaded from the main memory after each preemption
or resumption are shown on a grey background.

Initially, the cache is empty and τ2 loads all its ECBs from
the main memory as soon as it starts to execute. When τ1
preempts τ2 for the first time, it loads MD1 = 6 memory
blocks into the cache. Since there is an overlap between the
ECBs of τ1 and the UCBs of τ2, τ1 evicts some of the useful
cache blocks of τ2. When τ2 resumes its execution, it has to
reload γ2,1 = 2 cache blocks from the main memory. As
the second job of τ1 preempts τ2, one can notice that its
memory demand is no longer equal to MD1 . In fact, most
of the memory blocks needed by τ1 are still in the cache.
As a consequence, τ1 must only reload the memory blocks
{5, 6} which have been evicted by τ2, as well as the memory
block {9} which must be reloaded at each new job execution.
The same scenario happens for all the jobs released by τ1 at
the exception of the first one. Therefore, the actual memory
demand for the second and third job of τ1 is much less (i.e.,
3) than MD1 = 6.

1Note that because the same cache block may be used by several memory
blocks of the same task τi, the worst-case memory demand MDi of τi may
be larger than the number of ECBs of τi multiplied by dmem.

In the presented example, the memory blocks {5, 6, 7, 8, 10}
are called persistent cache blocks (PCBs) as they are never
evicted from the cache when τ1 executes in isolation. A PCB
is therefore a memory block that remains cached during the
entire execution of a task unless evicted by another task
executing on the same processor. The cache block {9} however
is called non-persistent cache block (nPCB) as it must be
reloaded at the beginning of each job execution. nPCBs may
be cache blocks that are shared by several memory blocks
of the same task, or simply some data that must be reloaded
before each job execution of a task. One must note that PCBs
and nPCBs are different from the notions of UCBs and ECBs
in the sense that it does not matter if they are referenced more
than once during a single execution of a task. However, a PCB
must never be evicted from the cache by the task itself once
it is fetched from the main memory.

The state-of-the-art does not consider PCBs while calcu-
lating the memory overhead suffered by a task τi in case
of preemptions. This results in pessimistic memory overhead
evaluations and hence pessimistic WCRT computations. This
can easily be shown using the example of Fig. 1. If τ2’s
memory overhead is computed using Eq. (7), one would get:

MO2 = MD2 +3×MD1+3×γ2,1 = 8+3×6+3×2 = 32

Equation (7) considers the worst-case memory demand, i.e.,
MD1 for each job of τ1 that executes during the response time
of τ2. As we have shown in Example 1, the actual memory
demand of the second and third job of τ1 is in fact much less.
Considering the PCBs of τ1 while calculating the memory
overhead MO2 , the resulting value is given as:

MO2 = MD2 + MD1 + 2× (MD1 − |PCB1 | × dmem)

+ 3× γ2,1
= 8 + 6 + 2× (6− 5× 1) + 3× 2 = 22

This simple example demonstrates why it is important to
account for PCBs when calculating the memory demand and
hence the WCRT of a task.

V. WCRT ANALYSIS USING MEMORY OVERHEAD COST OF
HIGH PRIORITY TASKS

Two interesting properties can be observed in the example
of Section IV:
1) The tasks with a high number of PCBs will have a lower

memory demand after the execution of their first job than
their worst-case memory demand in isolation. Therefore,
we define MDr

i as the worst-case memory demand over
all the jobs of τi except the first one.

2) The PCBs of a task τj can be evicted due to the execution
of lower and high priority tasks (i.e., tasks in aff (i , j) ∪
hp(j)) between the arrivals of two successive jobs of τj .
This requires to consider the effect of the tasks in aff (i , j)∪
hp(j) on the memory demand of τj during the WCRT of
τi. This extra memory demand caused by the eviction of
the PCBs of τj by the tasks in aff(i, j)∪hp(j) is denoted
by ρj,i.

35

Fig. 1. Task schedule and cache content for Example 1.

ρj,i can be computed using a similar formulation to the ECB-
union approach described in Section III (see Eq. (2)). First,
we note that every task τk ∈ aff (i , j) ∪ hp(j) can execute
between the releases of two successive jobs of τj . Second,
we consider the fact that each task τk may need to load new
content in all its ECBs at any time of its execution. Since we
are interested in upper bounding the number of PCBs of τj that
can be evicted by the tasks in aff (i , j) ∪ hp(j), we therefore
check how many PCBs of τj intersect with the ECBs of the
tasks in aff (i , j)∪hp(j). Consequently, the memory overhead
ρj,i is given by:

ρj,i = dmem ×
∣∣∣∣PCBj ∩

(⋃

∀k∈aff (i,j)∪hp(j)

ECBk

)∣∣∣∣ (8)

Considering the two properties identified at the beginning
of this section, we present a more elaborate formulation of the
WCRT equation presented in Section III (see Eq. (3)):

Ri =Pi + MDi +
∑

∀j∈hp(i)

(Pj + MDj) +
∑

∀j∈hp(i)

γmul
i,j

+
∑

∀j∈hp(i)

⌈
Ri

Tj
− 1

⌉
×
(
Pj + MDr

j + ρj,i
)

(9)

In this equation, we separately account for the processing and
memory demand of each task, i.e., Pi and MDi . Similarly, so
as incorporate the effect of both MDi and MDr

i , we separate
the execution of the first job of each preempting task from
the execution of their next jobs. While the first job of each
task τj in hp(i) has a worst-case memory demand MDj , all
the other jobs have a worst-case memory demand MDr

j +ρj,i,
where ρj,i is calculated using Equation (8). The CRPD γmul

i,j

is calculated using the multi-set approach given by Eq. (4).
Note that in cases where PCBs are also UCBs, γmul

i,j and ρj,i
may account twice for the same block evictions. Yet, Eq. (9)
improves over the state-of-the-art (i.e., Eq. (3)) as long as Cj

is larger than (Pj + MDr
j + ρj,i).

VI. CONCLUSION

This work proposes a method to calculate the memory
overhead of high priority tasks executing during the response
time of a low priority task. In order to bound this overhead,
we identified the existence of persistent cache blocks

associated with each task. We showed with an example that,
due to existence of PCBs, the memory demand of a task can
significantly vary over time. We also presented an approach,
complementary to [9], to upper bound the number of PCBs
of a preempting task that can be evicted by the execution
of the preempted tasks. Finally, we reformulated the WCRT
analysis so as to consider the effect of the PCBs and the
memory demand overhead. In future, we plan to extend our
approach to set associative caches. We also aim to present
a less pessimistic multi-set approach for memory demand
overhead calculation. We further plan to generate results for
the proposed WCRT analysis using available benchmarks.

Acknowledgments.This work was partially supported by National Funds through
FCT/MEC (Portuguese Foundation for Science and Technology) and co-financed by
ERDF (European Regional Development Fund) under the PT2020 Partnership, within
project UID/CEC/04234/2013 (CISTER); also by FCT/MEC and the EU ARTEMIS
JU within project(s) ARTEMIS/0003/2012 - JU grant nr. 333053 (CONCERTO) and
ARTEMIS/0001/2013 - JU grant nr. 621429 (EMC2).

REFERENCES

[1] G. C. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive schedul-
ing for real-time systems. a survey,” Industrial Informatics, IEEE
Transactions on, vol. 9, no. 1, pp. 3–15, 2013.

[2] K. Jeffay, D. F. Stanat, and C. U. Martel, “On non-preemptive scheduling
of periodic and sporadic tasks,” in RTSS’91. IEEE, 1991, pp. 129–139.

[3] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A. Wellings,
“Adding instruction cache effect to schedulability analysis of preemptive
real-time systems,” in RTAS’96. IEEE, 1996, pp. 204–212.

[4] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C. S. Kim, “Analysis of cache-related preemption delay
in fixed-priority preemptive scheduling,” Computers, IEEE Transactions
on, vol. 47, no. 6, pp. 700–713, 1998.

[5] H. Tomiyama and N. D. Dutt, “Program path analysis to bound
cache-related preemption delay in preemptive real-time systems,” in
Proceedings of the eighth international workshop on Hardware/software
codesign. ACM, 2000, pp. 67–71.

[6] J. Staschulat, S. Schliecker, and R. Ernst, “Scheduling analysis of real-
time systems with precise modeling of cache related preemption delay,”
in ECRTS’05. IEEE, 2005, pp. 41–48.

[7] Y. Tan and V. Mooney, “Timing analysis for preemptive multitasking
real-time systems with caches,” ACM (TECS), vol. 6, no. 1, p. 7, 2007.

[8] S. Altmeyer, R. Davis, C. Maiza et al., “Cache related pre-emption delay
aware response time analysis for fixed priority pre-emptive systems,” in
RTSS’11. IEEE, 2011, pp. 261–271.

[9] S. Altmeyer, R. I. Davis, and C. Maiza, “Improved cache related pre-
emption delay aware response time analysis for fixed priority pre-
emptive systems,” Real-Time Systems, vol. 48, no. 5, pp. 499–526, 2012.

[10] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” JACM, vol. 20, no. 1, pp. 46–61,
1973.

[11] S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke,
“A generic and compositional framework for multicore response time
analysis,” in RTNS’15. ACM, 2015, pp. 129–138.

36

An Optimizing Framework for Real-time Scheduling
Sakthivel Manikandan Sundharam, Sebastian Altmeyer, Nicolas Navet

University of Luxembourg
FSTC/Lassy

6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg

firstname.lastname@uni.lu

Abstract—Scheduling is crucial in real-time applications. For
any real-time system, the desired scheduling policy can be se-
lected based on the scheduling problem itself and the underlying
system constraints. This paper discusses a novel optimization
framework which automates the selection and configuration of
the scheduling policy. The objective is to let designer state
the permissible timing behavior of the system in a declarative
manner. The system synthesis step involving both analysis and
optimization then generates a scheduling solution which at run-
time is enforced by the execution environment.

I. Introduction

Real-time scheduling is now a mature and well established
research field. Many scheduling policies and results have been
proposed and derived over the last four decades providing
efficient scheduling solutions for most hardware platforms
and application-level needs. Tools and frameworks have been
developed implementing these scheduling algorithms and their
analyses [1]. To the best of our knowledge, apart from few
early works in that direction for specific execution platforms
(e.g. [8]), none of these frameworks target the automatic
configuration and selection of the best suited policy and
parameters in a systematic manner.

Fig. 1. Inputs/Outputs of the Framework

In this paper, we present an optimizing framework that
selects the best suited scheduling configuration for a partially

specified task set and the given system constraints. In Figure 1,
we illustrate the structure of the framework. The inputs to the
framework are:
• a partially specified task set (see Section II),
• the performance objectives, and
• the hardware constraints.

The framework performs the selection of the policy, optimiza-
tion of the scheduling parameters, and outputs
• the complete task set specification and scheduling con-

figuration,
• the performance metrics of the different scheduling algo-

rithms.
This work is motivated by the ongoing research on timing-
augmented Model-Based Design [7] at the University of Lux-
embourg. Our aim is to develop the framework such that the
system designer only focuses on the high-level timing behavior
of the system, where the implementation choices of the low-
level timing behavior are taken care of by the framework.
The framework fits in the early design phases as a device to
automate system synthesis and hide away from the designer
the complexity of the underlying runtime environments.

II. Defining The Framework

The inputs is the high-level description of the scheduling
problem, whereas the output is the scheduling solution with
all the required configuration parameters. In this section, we
define inputs and outputs of our optimizing framework.

Partially specified task set:
We assume that the application is composed of n
tasks {τ1, . . . τn}. The task set is defined partially
to reflect the freedom in the selection of certain
parameters. Each task τi is specified by a tuple

τi : (Ci,Ti,Di),

a) where Ci is the worst-case execution time and is
assumed to be given as single value,
b) the execution period Ti is potentially defined as a
range of permissible values,
c) the deadline relative to the release time of the task,
denoted by Di, is given as single value. A range of
values for the deadline would be futile, as the run-
time environment must ensure the system is feasible
with respect to the most stringent deadline.

37

Fig. 2. Flow of the scheduler synthesis framework

Performance objectives:
Examples for performance objectives are through-
put (efficiency), power consumption, predictability
constraints such as requirement of uninterrupted ex-
ecution for a task, minimal activation or end-of-
execution jitters, etc. These objectives are achieved
for example by minimizing the periods within the
allowed range in order to reduce the power consump-
tion. If for instance throughput is to be maximized,
the frequency of execution is increased.

Hardware constraints:
The selected hardware further constraints the choices
of the framework. Typical hardware, and more gen-
erally constraints of the run-time environment, are
number of processing cores, preemptiveness, type of
the system clock (e.g., global clock or distributed
clock in the system). These inputs are accounted by
the framework in the derivation of the scheduling
solution.

Scheduling configuration:
The main outcome of the framework is the schedul-
ing solution, that is the complete specification of
the task set and the scheduling configuration. This
scheduling configuration covers all low-level config-
uration parameters and no further input is needed
to execute the application on the target system. In
addition to the policy, scheduling parameters include
periods, offsets and possibly deadlines and priorities.

Performance metrics:
The performance of the candidate algorithm is eval-
uated by selected performance metrics. Typical per-
formance metrics are schedulability (a task set is
schedulable or not under a policy), numerical values
of the response times and jitters, power-consumption,
or the ability of the system to grow further measured
for instance by the minimum slack time.

38

III. Scheduler Synthesis

In this section, we explain the core of the framework,
i.e., the scheduler synthesis. In contrast to other approaches
towards scheduler synthesis [3], we do not generate new or
non-standard scheduling policies. Instead, we focus on the
selection of the most appropriate scheduling policy (including
parameter optimization) amongst a set of well-studied and
widely-implemented real-time scheduling policies. In Fig-
ure II, we illustrate the general steps of our framework.

In a first step, the framework performs a pre-selection of
the scheduling policies on the basis of the system constraints
and the hardware to execute the application. All policies that
violate some of the requirements are excluded at this step.
Policies that are compliant with the requirements under some
side-constraints are considered with those side-constraints.
This step results in the set of candidate policies which are
subject to the actual parameter optimization.

The next step, the parameter optimization is then highly
specific to the policy, and thus has to be performed for
each policy individually. Also, the type of parameters to be
optimized differ. However, we can build on a large variety
of existing methods and techniques. For the selection of the
periods, for instance, we can use a recent work by Nasri et
al. [6], offsets in case of offset-aware policies can be optimized
using [5] and for the selection of priorities, we have optimality
results such as [2].

Real-time scheduling problems are in most contexts NP-
hard. Due to the computational complexity of the problems, an
optimal scheduling solution cannot be guaranteed. However,
the candidate optimization techniques and heuristic algorithms
have proven to be robust and lead to satisfactory solutions in
many application domains (e.g., [5, 6, 8]).

IV. Illustrating Example

We illustrate our approach using the following task set Γ:

Ci Ti Di constraints objective
τ1 1 [4 : 5] 4 reduce period
τ2 2 [4 : 8] 8 non-preemptive reduce period
τ3 6 [15 : 24] 24 -

Constraints and scheduling policies

A side constraint besides meeting deadlines is that task
τ2 has to be executed non-preemptively and the objective
is to minimize the values of the periods of τ1 and τ2 (i.e.,
increase frequency to achieve a better control of the system).
To simplify the example, we restrain ourselves to a limited
number of well-known scheduling policies: earliest deadline
first (EDF), both preemptively and non-preemptively (EDF-
NP), fixed-priority preemptive scheduling (FPP), fixed-priority
non-preemptive scheduling (FPNP), and FIFO:

EDF EDF-NP FPP FPNP FIFO

The policy selection identifies that all policies can indeed
satisfy the system constraints, but in case of the preemptive

policies, i.e., EDF and FPP, further constraints are required to
ensure the non-preemptive execution of τ2:

EDF EDF-NP FPP FPNP FIFO
X X X X X

if D2 ≤ Di if pr2 = 1

All non-preemptive policies fail since the execution time of
τ3 exceeds even the largest permissible period of τ1. Hence, the
search has to concentrate only on the two remaining policies
EDF and FPP (both with the appropriate side constraints).

EDF scheduling

Using EDF we are able to achieve a processor utilization
of 1 and execute tasks τ1 and τ2 with the smallest possible
periods. This is the optimal result and it will be selected as
the scheduling solution with the following parameters for the
task set:

Ci Ti Di

τ1 1 4 4
τ2 2 4 4
τ3 5 20 20

For this particular scheduling problem — as well as in many
other cases — EDF is the optimal solution. This situation
changes when more complex side and system constraints are
in place, or when we consider realistic scheduling overheads.
The cache-related preemption delays (CRPDs) constitute an
example of such overheads that, in this particular case,
penalize preemptions. As a result, the advantages of EDF
scheduling over FPPS often becomes negligible under CRPD
overheads [4], As future work, we plan to include the modeling
of these overheads, which will lead to other, less trivial optimal
solutions.

V. Conclusions and Discussions

We are developing an optimizing framework that consid-
ers as inputs a partially specified task set, the performance
objectives of the system and the constraints of the run-time
environment, importantly the hardware support. The frame-
work synthesizes the scheduling solution that best meet the
requirements. Our framework currently includes a number
of basic real-time scheduling policies and ongoing work is
devoted to enrich the set of available policies with customized
scheduler that make optimal use of underlying execution
hardware and improvements in system behavior. This work
is a contribution towards a more automated design process
building on the wide set of techniques and results developed
within the real-time system community.

The applicability and precision of the framework is deter-
mined by the optimization algorithms and schedulability anal-
yses. But these algorithms and heuristic techniques are limited
in precision. Consequently, for some scheduling problems, the
framework cannot guarantee optimality. A future work is to
develop techniques such as lower bounds to estimate how far
is a solution computed with the framework from the optimal
solution.

39

Acknowledgment

This research is supported by FNR (Fonds National de la
Recherche), the Luxembourg National Research Fund (AFR
Grant n°10053122).

References

[1] K. Altisen, G. Gossler, A. Pnueli, J. Sifakis, S. Tripakis,
and S. Yovine. A framework for scheduler synthesis. In
Proceedings of the 20th IEEE Real-Time Systems Sympo-
sium (RTSS), Dec. 1999.

[2] N. C. Audsley. On priority asignment in fixed priority
scheduling. Inf. Process. Lett., 79(1):39–44, May 2001.

[3] M. Grenier and N. Navet. Fine tuning MAC level protocols
for optimized real-time QoS. IEEE Transactions on
Industrial Informatics, special issue on Industrial Com-
munication Systems, 4(1), 2008.

[4] W. Lunniss, S. Altmeyer, and R. I. Davis. A comparison
between fixed priority and edf scheduling accounting for

cache related pre-emption delays. Leibniz Transactions on
Embedded Systems, 1(1), 2014.

[5] A. Monot, N. Navet, B. Bavoux, and F. Simonot-Lion.
Multisource software on multicore automotive ecus com-
bining runnable sequencing with task scheduling. IEEE
Transactions on Industrial Electronics, 59(10):3934–3942,
Oct 2012.

[6] M. Nasri and G. Fohler. An efficient method for assigning
harmonic periods to hard real-time tasks with period
ranges. In 27th Euromicro Conference on Real-Time
Systems (ECRTS 2015), pages 149–159. IEEE, 2015.

[7] N. Navet, L. Fejoz, L. Havet, and S. Altmeyer. Lean
model-driven development through model-interpretation:
the CPAL design flow. In Embedded Real-Time Software
and Systems (ERTSS2016), January 2016.

[8] N. Navet and J. Migge. Fine tuning the scheduling of tasks
through a genetic algorithm: Application to Posix1003.1b
compliant OS. IEE Proceedings Software, 150(1):13–24,
2003.

40

Preliminary Performance Evaluation of HEF
Scheduling Algorithm
Carlos A. Rincón †∗ and Albert M. K. Cheng∗

†Networking and Telematics Academic Unit, Universidad del Zulia, Maracaibo, Venezuela. Email: crincon@fec.luz.edu.ve
∗Real-time Systems Laboratory, University of Houston, Houston, USA. Email: cheng@cs.uh.edu

Abstract—The purpose of this paper is to analyze the performance
of the Highest Entropy First (HEF) scheduling algorithm for
real-time tasks. We generate multiple task sets using the Seoul
National University (SNU) real-time benchmark. The tasks were
implemented on WindRiver Workbench 3.3 to estimate the
WCET. A linear programming solution was implemented to set
the period of the tasks aiming to maximize the utilization of
the system based on a predefined hyper-period. We measure the
performance of HEF scheduling algorithm using as parameters
the number of context switches and the deadline-miss ratio. As
preliminary result we show that the number of context switches
is directly proportional to the number of tasks in a task set. The
deadline-miss ratio for all the studied cases was 0%, because the
utilization for all the task sets was at most 1 (U ≤ 1).

Keywords—Highest Entropy First; real-time systems; scheduling;
performance.

I. INTRODUCTION

In recent years the use of entropy as a parameter has been
proposed as a new approach to schedule real-time tasks [1].
In 2015, Rincon and Cheng [2] presented the mathematical
background to measure the entropy of a task set in a real-
time system as well as the design, feasibility analysis and
implementation of the highest entropy first (HEF) algorithm
to schedule real-time tasks in uni-processors.

The HEF algorithm is a new dynamic priority technique to
schedule real-time tasks that tries to minimize the uncertainty
(based on the probability of the execution of a task during the
hyper-period) of the scheduling problem by executing the task
with the highest entropy first without missing any deadline.

The purpose of the research is to measure the performance of
the highest entropy first scheduling algorithm in order to have
a guideline about the behavior of the studied algorithm under
certain conditions.

The contributions of this paper are:

• Generate multiple task sets by implementing the programs
from the SNU real-time benchmark [3] in Wind River Work-
bench 3.3 [4] to calculate the WCET and generating the
periods by using a linear programming solution aiming to
maximize the utilization of the system based on a predefined
hyper-period.

• Measure the performance of HEF algorithm to schedule real-
time tasks using as metrics the number of context switches
and deadline-miss ratio.

The rest of the paper is organized as follows. In the next
section, we describe the related work about using entropy

∗Supported in part by the National Science Foundation under Awards No.
0720856 and No. 1219082.

as a parameter to schedule real-time tasks. In section 3, we
present the design of the HEF scheduling algorithm. Section 4
presents the methodology used to generate the task set for the
performance evaluation. Section 5 presents the performance
evaluation of the HEF algorithm running the generated task
set. We give our conclusions and future work in section 6.

II. RELATED WORK

A. Entropy as a Parameter for Real-time Scheduling

Entropy is defined as the product of the information generated
by an event x and the probability of occurrence of that event
(px*Ix) [5]. Considering a periodic task system with implicit
deadlines where the worst case execution time = Ci, period
= Ti, hyper-period (hperiod) = least common multiple of the
periods and applying the information-theoretic concepts, we
define the following parameters:

Entropy of a Single Time Unit from a Scheduling Diagram
HSU : we define the information generated by a single time unit
of the scheduling diagram (Is) as log2(1/Ps), where Ps is the
probability of a single time unit = 1/hperiod. The entropy of
a single time unit = Ps ∗ Is = log2(hperiod)/hperiod bits.

Total Entropy of a Task HTask: is defined as the product
of the number of single time units on the scheduling diagram
used by a task (number of task instances times Ci) and the
entropy of a single time unit (HSU).

HTask =
hperiod

Ti
∗ Ci ∗HSU = log2(hperiod) ∗

Ci

Ti
bits (1)

Total Normalized Entropy of a Task NHTask: is defined as
the total entropy of a task (HTask) divided by its computation
time (Ci). This parameter is critical for using entropy in real-
time systems because it prioritizes the scheduling based on the
task deadlines.

Total Entropy of the System HSys: is the summation of the
entropies of all m tasks (with m=number of tasks).

HSys =

m∑

i=1

HTaski
= log2(hperiod) ∗

m∑

i=1

Ci

Ti
bits (2)

Relationship between HSys and Utilization: Based on
Shannon’s information theory [5], we know that the maxi-
mum value of the entropy (Hx) = log2(number of possible
cases=hperiod). Then HSys ≤ log2(hperiod). Based on this
inequality, we have:

log2(hperiod) ∗
m∑

i=1

Ci

Ti
≤ log2(hperiod) (3)

This inequality is true only if U =
∑m

i=1 Ci/Ti ≤ 1.

41

III. THE HIGHEST ENTROPY FIRST SCHEDULING
ALGORITHM

The studied algorithm is a dynamic priority scheduler that
uses the normalized entropy of the task (NHTask) and the
total entropy of the task (HTask) to decide which task to run
first. Basically, every time the scheduler needs to decide which
task to run, it will choose the task with the highest entropy
(normalized and total), in order to minimize the complexity of
the scheduling problem.

A. Algorithm’s Design

The proposed scheduling algorithm based on entropy has the
following steps:

1) Determine the schedulability of the given task set using
the relationship between entropy and utilization proposed
in equation (3).

2) Calculate the normalized and total entropy for each task.
3) Select the task to be executed using the following criteria:

• Select the task with the highest normalized entropy.
• If two or more tasks have the highest normalized

entropy, then select the task with the highest total
remaining entropy.

• If two or more tasks have the highest total remaining
entropy and one of these tasks is the one running, then
select the task that is running (to minimize preemption),
else select the task based on its process identifier (PID).

4) Update the values of Ti and Ci for all tasks.
5) Go to step 2 until time = hperiod.

IV. GENERATING THE TASK SETS

In order to generate the tasks sets to measure the performance
of the HEF scheduling algorithm we selected 5 programs from
the SNU Real-time benchmark (sqrt.c, fibcall.c, crc.c, minver.c
and select.c). Table I shows a description of each selected
program.

TABLE I: Selected programs from the SNU real-time benchmark
Task Number SNU Program Description

1 sqrt.c Square root,function implemented
by Taylor series

2 fibcall.c Summing the Fibonacci series

3 crc.c A demonstration for CRC
(Cyclic Redundancy Check) operation

4 minver.c Matrix inversion for 3x3 floating point matrix

5 select.c A function to select the Nth largest
number in the floating point array size 20

After selecting the programs we implemented them on a server
with an Intel i7-3770 processor running at 3.4 GHz, with 16
GB of RAM and 2 TB hard drive using Wind River Workbench
3.3 to calculate the worst case execution time (WCET). We run
each program 100 times to average the results. Table II shows
the average WCET for the selected programs.

A. Task sets

To measure the performance of the HEF scheduling algorithm
we decided to use as independent variable the number of tasks
in the task set. We created 4 task sets with 2, 3, 4, and 5 tasks

respectively. For each task set we use 100 ms as the hyper-
period and applied a linear programming solution to calculate
the periods for each task (aiming to maximize the utilization
of the system). For the deadlines, we implemented a system
with implicit deadlines. Tables III and IV show the generated
task sets.

TABLE II: WCET for the selected tasks
Task Number WCET ROUND WCET

1 13.34 ms 14 ms
2 7.32 ms 8 ms
3 13.54 ms 14 ms
4 16.41 ms 17 ms
5 25.73 ms 26 ms

TABLE III: Task sets 1 and 2

Task Number Ci Ti Task Number Ci Ti

1 14 ms 50 ms 1 14 ms 100 ms
2 8 ms 12 ms 2 8 ms 50 ms

3 14 ms 20 ms

TABLE IV: Task sets 3 and 4

Task Number Ci Ti Task Number Ci Ti

1 14 ms 100 ms 1 14 ms 100 ms
2 8 ms 34 ms 2 8 ms 100 ms
3 14 ms 50 ms 3 14 ms 100 ms
4 17 ms 50 ms 4 17 ms 50 ms

5 26 ms 100 ms

The utilization of the generated task sets are: Task set 1 =
0.946666667, Task set 2 = 1, Task set 3 = 0.995294118 and
Task set 4 =0.96.

V. PRELIMINARY PERFORMANCE EVALUATION OF HEF

With the generated task sets, we run the HEF scheduling algo-
rithm to measure its performance. We calculated the number
of context switches and the deadline-miss ratio for each task
set. The results are shown in figure 1.

16
20

44 45

0 0 0 0

2 3 4 5

Number	of	Tasks	per	Task	Set

Context	Switches

Missed	Deadlines

Fig. 1: Number of context switches and deadline-miss ratio for HEF

For task set 1 (2 tasks) the number of context switches is 16
and the deadline-miss ratio is 0%, for task set 2 (3 tasks) the
number of context switches is 20 and the deadline-miss ratio
is 0%, for task set 3 (4 tasks), the number of context switches

42

is 44 and the deadline-miss ratio is 0% and for task set 4 (5
tasks), the number of context switches is 45 and the deadline-
miss ratio is 0%.

These results show that when the number of tasks in the task
set increases, the number of context switches increases. The
obtained deadline-miss ratio (0 missed deadlines) for all the
tasks sets is a consequence of the utilization values (less or
equal than 1 for all task sets).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a methodology to generate task
sets using the programs from the SNU real-time benchmark
(implemented on Wind River Workbench). We calculated the
periods for the tasks in the task set using a linear programming
solution to maximize the utilization of the system.

The results from the preliminary performance evaluation of the
HEF scheduling algorithm show that the number of context
switches is directly proportional to the number of tasks in the
task set. For the deadline-miss ratio, further analysis must be
made to confirm that it depends on the utilization of the system
(U ≤ 1 = no deadline misses).

The HEF algorithm has some similarities with the earliest
deadline first algorithm [6] (EDF) because selecting the task
with the lowest absolute deadline is the same as selec-
ting the task with highest normalized entropy (NHTask =
log2(hperiod)∗ 1

Ti
). However when two or more tasks have the

same absolute deadline, HEF will select the task that adds more
complexity to the scheduling problem using as a parameter the
total remaining entropy of the task. Therefore we propose as
future work to compare the performance of HEF against EDF
using the task sets generated by the methodology proposed in
this paper.

REFERENCES

[1] R. Sharma and Nitin, “Entropy, a new dynamics governing parameter in
real time distributed system: a simulation study,” IJPEDS, vol. 29, no. 6,
pp. 562–586, 2014.

[2] C. A. Rincon and A. M. Cheng, “Using entropy as a parameter to
schedule real-time tasks,” in Real-Time Systems Symposium. WiP Session,
2015 IEEE, Dec 2015, pp. 375–375.

[3] “Snu real-time benchmark suite,” http://archi.snu.ac.kr/realtime/benchmark.
[4] WindRiver, “Wind river workbench,” http://www.windriver.com.
[5] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell

System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.
[6] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in

a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61, 1973.

43

44

Using Linked List in Exact Schedulability Tests for
Fixed Priority Scheduling

Jiaming Lv∗, Xingliang Zou§, Albert M. K. Cheng§, and Yu Jiang+∗
∗School of Computer Science and Technology, Heilongjiang University, Harbin, Heilongjiang 150080, China

Email: 962831141@qq.com, jiangyu@hlju.edu.cn
§Department of Computer Science, University of Houston, Houston, TX 77004, USA

Email: xzou@uh.edu, cheng@cs.uh.edu

Abstract—Efficient exact schedulability tests are one of im-
portant considerations of both research motivation and practice
stage. In this paper, we investigate the exact response-time
schedulability tests for fixed priority preemptive systems. The
linked list is introduced to represent the simulated schedule of
a given task set. Each node in the linked list represents a busy
period. In addition, the memory space needed for the linked list
is managed in the user space. Experiments show that the linked
list-based exact test outperforms the current best exact response-
time test and the hyperplanes exact tests (HET) in the case of
task periods spanning no more than three orders of magnitude.

I. INTRODUCTION

Real-time systems are playing a crucial role in our daily
lives and in industry production, and fixed priority preemptive
scheduling is widely supported by most commercial real-time
operating systems [6].

In the context of fixed priority preemptive real-time systems,
it is known that for periodic/sporadic tasks that comply with a
restrictive system model and that have implicit deadlines the
Rate-Monotonic (RM) scheduling is optimal, i.e., if a feasible
scheduling exists for some task set then the RM scheduling is
feasible for that task set [11], [14]. RM means that the priority
of each task is assigned inversely proportional to its period
(i.e., minimum inter-arrival time between jobs of the task). It is
also known that when these tasks are released simultaneously
(i.e., sharing a common release time) the time required by
the first job of each task defines its response time [11], [14].
Therefore, it needs only to make response time analysis or
conduct exact schedulability test within a time length no more
than the maximum task period, and these tests are thus known
to be pseudo-polynomial in time complexity [8], [9], [1].

Although the response time computation for RM schedules
of implicit-deadline task-systems has been proved to be an
NP-hard problem [7], the scale of many commercial systems
is such that pseudo-polynomial exact tests can be used, and
to achieve more efficient exact tests for use such as online
response time analysis (RTA) is one of important consid-
erations of both research motivation and practice stage. A

This work is sponsored in part by the State Scholarship Fund of China under
award No. 201308230034, the US National Science Foundation under award
Nos. 0720856 and 1219082, the Funds of Heilongjiang Education Office of
China under award Nos. 12541627 and GJZ201301027, and the Heilongjiang
Student’s Platform for Innovation and Entrepreneurship Training Program of
China under award No. 2015102121008.

+Corresponding author.

significant research effort has been dedicated to improve the
performance of exact response-time tests [8], [1], [12], [2],
[6], [4], [13], such as finding good initial values, and to the
best of our knowledge the authors of [6] presented the current
best response-time test with better initial values.

In this paper, we investigate exact response-time schedula-
bility tests of the RM scheduling in an n-task real-time system.
For concision we use the Burns Standard Notation [5], such
as the number of tasks n, for 1 ≤ i ≤ n, the priority Pi, the
worst-case execution time Ci, the relative deadline Di, the
period Ti, the worst-case response time Ri, and the utilization
Ui, for a task τi.

The innovative aspect of our solution is that we use a linked
list for representing the schedule in the exact response-time
test, referred to as the LList-based exact test, for calculating the
worst-case response time. The time complexity of the LList-
based exact test is polynomial-time O(N) where N is the
total number of jobs within the time length Tn, while the
total number of nodes used in the linked list is no more than
N − n + 1 in the worst case. Our experiments show that the
LList-based exact test outperforms the current best exact RTA
test [6] and the hyperplanes exact tests (HET) [2] in the case of
task periods spanning no more than three orders of magnitude,
and the needed memory space is also affordable.

II. OUR METHOD

We calculate the response time of each task set by simu-
lating its schedule within a time length Tn. In our method,
the schedule of a task set is represented by a linked list, and a
busy period [10] in the schedule is represented by a linked list
node. Each list node has three fields: the starting time of the
busy period, the end time of the busy period, and the pointer
to the next node. The simulation is performed task per task
in the priority order, from 1 to n, and, when the starting time
or the end time of a priority level-i busy period is the same
as that of a priority level-j busy period where j < i, then
the two nodes are merged into one node to represent a longer
busy period.

Another key factor for improving the efficiency of the LList-
based exact test is that before the simulation a memory array
is allocated as a whole and then the following operations of
memory allocation and recycle for each node are performed
in the user space instead of in the operating system space.

45

Fig. 1. Average execution time required by the HET, RTA, and LList-based
exact schedulability tests versus number of orders of magnitude range of
task periods. The range of periods starts from 10 and 104 for (a) and (b),
respectively. Note both x and y-axes are logarithmic scales.

TABLE I
HET, RTA, AND LLIST-BASED ALGORITHMS, EXECUTION TIME IN

COUNTER CLOCK CYCLES × 1,000

Orders of magnitude spanning tasks periods
Algorithm 1(a) 1(b) 2(a) 2(b) 3(a) 3(b) 4

HET 6.9 9.4 26.6 30.8 112.8 127.4 464.9
RTA 29.56 29.82 32.47 32.48 34.63 34.49 36.67
LList 1.01 1.17 4.12 4.35 25.19 25.94 208.9

RTA/LList 29.3 25.5 7.9 7.5 1.4 1.3 0.2

For an n-task set, the total number of jobs, N , in the
time interval [0, Tn) is N =

∑n
i=1(Tn/Ti) and only these

jobs are simulated in the LList-based exact test. This number
is sensitive to the span and the distribution of task periods.
Since one busy period in the schedule is represented with
merely one node and the simulation is performed task per
task in the task priority order, the total running time is mainly
determined by the time of operating linked list nodes, and thus
the time complexity of the LList-based exact test is related to
the number of nodes used in the simulation. Particularly, as
long as task periods span only one order of magnitude, only
O(n) time are needed for simulating an n-task set, regardless
of the length of the maximum period of the task set as well
as the total utilization. In the above mentioned case, the total
number of list nodes used in simulation is very small, and this
is the root cause why the LList-based test is performing better.

III. EXPERIMENT AND PRELIMINARY RESULTS

For comparison, we use the same parameters as those in
[6], the current best exact RTA test. Specifically, for each 24-
task set 24/M tasks were assigned to each of the M order
of magnitude ranges (e.g., 100-1,000, 1,000-10,000, 10,000-
100,000, etc.). Task periods were then uniformly and randomly
generated from the assigned range. The overall utilization
was fixed at 0.85 and the UUniFast algorithm [3] was used
to determine task utilizations Ui, and, hence, task execution
times, Ci = Ui ∗ Ti. There are 10,000 task sets in each order
of magnitude ranging from 1 to 5.

Fig. 1 and Table I show how the average number of
clock cycles required by the HET algorithm with initial
values Ri−1 + Ci, by the RTA test with initial values
maxi

k=1(R
LB
i (k)) [6], and by the LList-based test varied with

the number of orders of magnitude spanning task periods.
From the figure we can see that the execution time of the

TABLE II
THE MAXIMUM NUMBER OF NODES AND CORRESPONDING MEMORY

SPACE

Orders of magnitude spanning tasks periods
1(a) 1(b) 2(a) 2(b) 3(a) 3(b) 4

max # nodes 28 58 236 441 2302 3246 20996
KB(int32) 0.3 0.7 2.8 5.2 27.0 38.0 246.0

RTA test goes nearly steady while the HET and the LList-
based tests increase exponentially with increasing number of
orders of magnitude spanning task periods. Within three orders
of magnitude spanning task periods, however, the performance
of the LList-based test outperforms both the HET test and the
RTA test with the current best initial values.

Table II shows the maximum number of list nodes used
in the LList-based test versus number of orders of magnitude
range of task periods. From the table we can see that, within
three orders of magnitude spanning task periods, the memory
space needed by the linked list is completely affordable.

IV. CONCLUSION

The work presented in this paper is part of our ongoing
research on the response time analysis and exact scheduability
test for fixed priority preemptive systems. Our preliminary
results have shown that the LList-based exact test is a better
candidate in exact response-time tests when task periods span
no more than three orders of magnitude. More comprehensive
experiments will be conducted to investigate the suitable scope
of the LList-based exact test by varying the number of tasks,
the range of task periods, and the total utilizations.

REFERENCES

[1] N. C. Audsley, A. Burns, M. Richardson, K. W. Tindell, and A. J.
Wellings. Applying new scheduling theory to static priority preemptive
scheduling. Software Engineering Journal, 8(5):284–292, 1993.

[2] E. Bini and G. C. Buttazzo. Schedulability analysis of periodic fixed
priority systems. IEEE Trans. on Computers, 53(11):1462–1473, 2004.

[3] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Syst., 30(1-2):129–154, 2005.

[4] R. I. Davis. A review of fixed priority and EDF scheduling for hard real-
time uniprocessor systems. ACM SIGBED Review, 11(1):8–19, 2014.

[5] R. I. Davis and A. Burns. Burns standard notation for real-time
scheduling. In Real-Time Systems: The past, the present, and the future.
N. Audsley, S.K. Baruah Editors, pages 38–41, Mar. 2013.

[6] R. I. Davis, A. Zabos, and A. Burns. Efficient exact schedulability
tests for fixed priority real-time systems. IEEE Trans. on Computers,
57(9):1261–1276, 2008.

[7] F. Eisenbrand and T. Rothvoss. Static-priority real-time scheduling:
Response time computation is NP-hard. In IEEE RTSS 2008, pages
397–406, 2008.

[8] M. Joseph and P. Pandya. Finding response times in a real-time system.
The Computer J., 29(5):390–395, 1986.

[9] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In IEEE
RTSS 1989, pages 166–171, 1989.

[10] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. In IEEE RTSS 1990, pages 201–209, 1990.

[11] C. Liu and L. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. Journal of ACM, 20(1):46–61, 1973.

[12] W. C. Lu, K. J. Lin, H. W. Wei, and W. K. Shih. Period-dependent
initial values for exact schedulability test of rate monotonic systems. In
Proc. IPDPS 2007, pages 1–8.

[13] M. Park and H. Park. An efficient test method for rate monotonic
schedulability. IEEE Trans. on Computers, 63(5):1309–1315, 2014.

[14] O. Serlin. Scheduling of time critical processes. In Proc. AFIPS Spring
Computing Conf., pages 925–932, 1972.

46

Online Semi-Partitioned Multiprocessor Scheduling of Soft

Real-Time Periodic Tasks for QoS Optimization

Behnaz Sanati, Albert M. K. Cheng

Department of Computer Science, University of Houston, Texas, USA

Emails: {bsanati; acheng}@cs.uh.edu

Abstract—In this paper, we propose a novel semi-

partitioning approach with an online choice of two

approximation algorithms, Greedy and Load-Balancing,

to schedule periodic soft real-time tasks in

homogeneous multiprocessor systems. Our objective is

to enhance the QoS by minimizing the deadline misses

and maximizing the total reward or benefit obtained by

completed tasks in minimum response time. Many real-

time applications and embedded systems can benefit

from this solution including but not limited to video

streaming servers, multi-player video games, cloud

applications, medical monitoring systems, and IoT.

Keywords: Periodic tasks, Quality of service, Partitioning,

Multiprocessor scheduling, Approximation algorithms.

1. INTRODUCTION

Multiprocessor systems are widely used in a fast-

growing number of real-time applications and embedded

systems. Two examples of such systems are Cloud

applications [1] and IoT [2]. In hard real-time systems,

meeting all deadlines is critical, while in soft real-time

systems, missing few deadlines does not drastically

affect the system performance. However, it would

compromise the quality of the service.

 In such systems, jobs meeting their deadlines

will gain a reward (also called benefit). Hence,

researchers focus on maximizing rewards to improve the

QoS. Besides the total reward, other factors also

influence QoS, such as overall response time (makespan

plus scheduling time) and deadline-miss ratio.

Multiprocessor real-time scheduling algorithms may

follow a partitioned or global approach or some hybrid

of the two, called semi-partitioning.

Global scheduling can have higher overhead in at

least two respects: the contention delay and the

synchronization overhead for a single dispatching queue

is higher than for per-processor queues; the cost of

resuming a task may be higher on a different processor

than on the processor where it last executed, due to

inter-processor interrupt handling and cache reloading.

The latter cost can be quite variable, since it depends on

the actual portion of a task’s memory that remains in

cache when the task resumes execution, and how much

of that remnant will be referenced again before it is

overwritten [1]. These issues are discussed at some

length by Srinivasan et al. [3]. Elnably et al. [1] study

fair resource allocation and propose a reward-based

model for QoS in Cloud applications. In contrast,

Alhussian, Zakaria and Hussin [4] prefer global

scheduling and try to improve real-time multiprocessor

scheduling algorithms by relaxing the fairness and

reducing preemptions and migrations.

Amirijoo, Hansson and Son [5] discussed

specification and management of QoS in real-time

databases supporting imprecise computations. Reward-

based scheduling of periodic tasks has also been studied

by Aydin et al. [6], and Hou and Kumar [7]. Aweruck et

al. [8] proposed a reward-maximizing model for

scheduling aperiodic tasks on uniprocessor systems

which can also be applied to multiprocessors. We have

also previously studied reward-based scheduling of

aperiodic real-time tasks on multi-processor systems.

We proposed two algorithms, GBBA [9] and LBBA

[10], and provided performance analysis and

comparative experimental results of those algorithms

versus another state-of-the art algorithm [8].

Significant improvements obtained by LBBA

method, especially in reducing the overall response time

(i.e., scheduling time plus makespan of the task sets), in

addition to maximizing the total reward and minimizing

tardiness, showed promising enhancement in QoS. That

encouraged us to expand our research to solving the

problem of scheduling periodic (and sporadic) soft real-

time tasks on multi-processor systems, on which

relatively very little research has been done. LBBA is

using partitioning strategy for aperiodic tasks. Now to

extend it for scheduling periodic (and sporadic) tasks,

we use semi-partitioning at job boundaries.

Semi-partitioned real-time scheduling algorithms

extend partitioned ones by allowing a subset of tasks to

migrate. Given the goal of “less overhead,” it is

desirable for such strategy to be boundary-limited, and

allow a migrating task to migrate only between

successive invocations (job boundaries). Non-boundary-

limited schedulers allow jobs to migrate, which can be

expensive in practice, if jobs maintain much cached

state.

Previously proposed semi-partitioned algorithms

for soft real-time (SRT) tasks such as EDF-fm and EDF-

os [11], have two phases: an offline assignment phase,

where tasks are assigned to processors and fixed tasks

47

(which do not migrate) are distinguished from migrating

ones; and an online execution phase. In their execution

phase, rules that extend EDF scheduling are used. The

goal in these strategies is to minimize tardiness.

In this paper, we propose a new online reward-

based semi-partitioning approach to schedule periodic

soft real-time tasks in homogeneous multiprocessor

systems. We use an online choice of two approximation

algorithms (Greedy approximation and Load-Balancing)

for partitioning, which provides an optimized usage of

processing time. In this method, no prior information is

needed. Hence, there is no offline phase.

Our objective is to enhance the QoS by

minimizing tardiness and maximizing the total reward

obtained by completed tasks in minimum makespan.

Therefore, we allow different jobs of any task get

assigned to different processors (migration at job

boundaries) based on their reward-based priorities and

workload of the processors. This method can also direct

SRT systems with mixed set of tasks (aperiodic,

sporadic and periodic) by defining their deadlines

accordingly.

Many real-time applications can benefit from this

solution including but not limited to video streaming

servers, multi-player video games, mobile online

banking and medical monitoring systems. For example,

consider mobile banking applications that are set to send

monthly statements, weekly or daily balance notific-

ations (periodic) and also notifications when a check is

posted or the balance is less than specific amount

(aperiodic).

Another example is a medical monitoring application

installed on a physician´s laptop or smart phone which

periodically receives the patients´ vital signs, such as

blood pressure, number of heart beat, breathing per

minute, etc. from the body sensor networks attached to

the patients. It process and records them periodically

and in case they go out of range and the situation is

critical, sends alert (aperiodic). In the next sections, we

explain our novel semi-partitioning hybrid model, which

combines reward and cost models, for optimizing

quality of service in soft real-time systems.

2. OUR CONTRIBUTION

2.1. System and Task Model
A multiprocessor system with m identical processors

is considered for partitioned, preemptive scheduling of

periodic soft real-time task sets with implicit deadline.

Each processor has its own pool (for ready tasks), stack

(for preempted and running tasks) and garbage

collection (for completed and tasks which missed

deadlines). Each periodic task may be released at any

time. Tasks are independent in execution and there are

no precedence constraints among them. Pre-emption is

allowed. A desired property of the system in this

method is the possibility to delay jobs without

drastically reducing the overall system performance.

2.2. Our Methodology
Semi-Partitioning Model:

 This algorithm applies online semi-partitioning. In

our partitioning approach, no job migration is allowed.

In other words, each job, i.e. an instance of a task, will

be assigned to a processor at release time, based on its

priority and worst-case execution time, and also the

current workloads of the processors, and it has to stay

with that processor during its entire runtime in the

system. However, different instances of a periodic task

may be assigned to different processors. This method is

possible since each processor has its own pool for the

ready tasks assigned to it.

Online Choice of Approximation Algorithms:

 We consider Greedy and Load-balancing approx-

imation algorithms, one of which will be chosen online

based on the conditions of the system at each time

instance, for partitioning and scheduling task instances

in order to optimize the CPU usage, minimize the

makespan and prevent starvation of low priority tasks.

We explain it in more details in subsection 2.4.

2.3. Definitions

Periodic Tasks:

A periodic task, in real-time systems, is a task that is

periodically released at a constant rate. Usually, two

parameters are used to describe a periodic task Ti; its

execution wi as well as its period pi. An instance of a

periodic task (i.e release) is known as a job and is

denoted as Ti,j, where j=1, 2, 3, … . The deadline of a

job is the arrival time of its successor. For example, the

deadline of the jth
 job of Ti, which is Ti, j, would be the

arrival time of job Ti,(j+1), that is at jpi.

Notations:

We define the notations used throughout this paper

as follows:

ri,j – release time of job Ti, j

wi – execution time of job , simply considered as

workload of job Ti, j in this paper

pi – period of task Ti

si,j – start time of job Ti, j

ci,j – completion time of job Ti,,j

Bri,j – break point or deadline of job Ti,,j, is the minimum

of: Bri,j = min (pi || si,j +2wi) (1)

βi(t) – benefit density function of task Ti at time t, for (t

≥ wi), which is a non-increasing, non-negative function,

with the following restriction to be satisfied for each

βi(t):

 (2)

Note: for t < wi, there would be no benefit gained by job

Ti,j, since it has certainly not completed its execution at

time t.

f i,j – flow time of job Ti,j:

 fi,j= ci,j - ri,j (3)

b i,j – benefit, gained by a completed job Ti,j :

b i,j = wi. β i (f i,j) (4)

48

LBBA Algorithm for Periodic Tasks

1 Required: One or more jobs arrive at time t ≥ 0

2 {

Job Arrival

 3 /* TempList: list of ready jobs waiting for

 4 distribution among processors */

 5

 6 Append the arrived job(s) to the TempList

Benefit-Based Scheduling

7 Calculate the priority of each job Ti,j in the

 8 TempList:

 9 d i,j (t) = βi(t + wi - ri,j)

 10 Sort TempList based on the priority

 11 If (at least one stack is empty)

 12 {

 13 Push the highest priority job(s) Ti,j

 14 onto empty stack(s) of idle processor(s) l;

 15 Add its execution time wi to total workload

 16 of the stack of the processor l (∑ Wsl),

 17 Recalculate total workload of processor l:

 18 Wl = ∑ Wpl + ∑ Wsl

 19 Calculate the fixed priority of j using its

 20 start time si,j:

 21 d’i,j(t) = βi(si,j + wi – ri.j)

 22 Start executing j,

 23 }

 24 Else

 25 {

 26 /* no stack is empty */

 27 /* preempt if possible otherwise distribute

 28 among the pools */

29 Compare the priority of the ready jobs in

30 TempList with the priority of the running

31 jobs (indicated by index k) on top of the

32 stacks:

33 If (di,j(t) ≤ 4d’k for (each job Ti,j in TempList

34 and each running job Tk))

35 {

36 /* no preemption allowed */

37 /* partition the ready jobs among

38 pools of the processors */

Load-Balancing Approximation (for Partitioning)

39 For (each job Ti,j in TempList)

40 {

41 Sort the processors in ascending order of

42 their total remaining workload on their

43 pools and stacks:

44 Wl = ∑ Wpl + ∑ Wsl

45 Append the jobTi,j with largest

46 execution time wi to the pool of the

47 processor l with minimum remaining

48 work load; /* load balancing */

49 Remove Ti,j from TempList;

50 Add its execution time wi to total

51 workload of the pool of processor l

52 (∑ Wpl);

53 Recalculate total workload of

54 processor l:

55 Wl = ∑ Wpl + ∑ Wsl

56 }

57 }

58 Else

59 /* if (di,j(t) > 4d’k) then (Ti,j preempts Tk)*/

Greedy Approximation (multiple-choice Preemption)

60 /* If Ti,j has more than one choice of

61 processors, it will be pushed onto

62 the stack whose processor has the

63 least work load (greedy) */

64 {

65 Stop the execution of job k (preempt k),

66 Push the job Ti,j onto the stack on top of Tk,

67 Start executing Ti,j,

68 Calculate the fixed priority of Ti,j using its

69 Start time si,j,: d’i,j(t) = βi(si,j + wi – ri,j)

70 Add the execution time of Ti,j to the total

71 workload of that stack (∑ Wsl),

72 Recalculate total workload of the

73 Processor l:

74 Wl = ∑ Wpl + ∑ Wsl

75 }

Check for missed Deadlines

76 /* at each time instance t, if any of the running jobs

77 on top of the stacks has reached its break point:

78 (t > Bri,j), Bri,j = min (pi || si,j +2wi)

79 remove the job from the stack and send

80 it to the processor Garbage Collection

81 otherwise, if not preempted, continue its

82 execution */

Benefit Gained by Completed Jobs

83 /* for every completed job Ti,j calculate bi,j */

84 bi,j = wi. βi(fi,j)

85 }

Total Benefit Calculation

86 /* calculate the sum of all benefits gained,

87 B is initially set to zero*/

89 B = B + bi,j

90 }

49

d i,j (t) – variable priority of job Ti,j at time t, before

scheduling (t < si,j): d i,j (t) = β i (t + wi - ri,j) (5)

d i,j – fixed priority of job Ti,j, when it is scheduled and

starts running: di,j = β i (s i,j + wi - ri,j) (6)

2.4. Our Algorithm
In this system, the events are new job arrival, job

completion, and reaching the break point of a job. The

algorithm takes action when a new job arrives, a

running job completes, or when a running job reaches

its break point. When new jobs arrive they will be

prioritized, and partitioned among the processors. The

job on top of each stack is the job that is running and all

other jobs in the stacks are preempted.

A. Prioritizing:

The priority of each ready and unscheduled job

(located in each pool) at time t which is denoted by di.j(t)

(for t si,j) is variable with time. However, when a job

Tk (k can be any i,j) starts its execution, its priority is

calculated as d’k = β k (sk + wk – rk) (lines 19 and 68 of

the pseudo-code). The notation d’k is used for the fixed

priority of the running job Tk on top of the stack. This

priority is given to the job Tk when it starts its execution.

Its start time, sk, is used in the function instead of

variable t, therefore its priority is no longer dependent

on time. Since sk , wk and rk are all constants, the priority

of a job will not change after its start time (for t > sk).

B. Scheduling / Execution / Preemption:

Once a new job Ti,j is released, if there is a

processor such that its stack is empty (lines 11 through

22), then the newly released job is pushed onto the stack

and starts running. If there is no idle processor, but for

any running processor di,j(t) > 4d’k (lines 58 through

66), the job Ti,j preempts the currently running one, and

starts its execution. The analysis [9] shows that the

factor 4 in the preemption condition (di,j(t) > 4d’k) plays

role in constant ratio competitiveness being equal to

10C
2
.

C. Online Partitioning (Load-Balancing/Greedy):

If more than one high priority job is able to preempt

some running job(s), to decide which job should be sent

to which stack, we send the largest job to the processor

with the minimum remaining work load, the second

largest job to the processor with the second smallest

remaining work load, so on so forth. This way we are

able to balance the work load among the processors.

 However, in case there is only one high priority job

at a time instance which can preempt more than one

running job, we assign it to the stack of the processor

with minimum remaining execution time (Greedy

approximation). If the priority of the released job is not

high enough to be scheduled right away, it will be

partitioned among the pools of the processors using an

online choice of load balancing or Greedy

approximation (lines 39 through 75).

D. Reaching Break Point:

If a job reaches its break point and its execution is

not completed yet, it will not be able to gain any benefit;

therefore, it will be popped from the stack and sent to

the garbage collection. The break point or deadline of a

job is either its period or twice its execution time after it

starts running, whichever is less.

E. Reward Accumulation / Completion / Discarding:

When a currently running job on a processor

completes, it is popped from the stack. Then, the

processor runs the next job on its stack (i.e. resumes the

last preempted job) if di,j(t) ≤ 4d’k for all the jobs Ti,j in

its pool. Otherwise, it gets the job with max di,j(t) from

its pool, pushes it onto the stack and runs it. The

completed jobs or those that reach their break points are

going to be sent to the garbage collection. If a job

completes before reaching its break point, its gained

benefit is calculated and added to the total benefit.

3. FUTURE WORK
Ongoing work conducts both theoretical and

experimental performance analysis of this algorithm. In

order to compare it with state-of-the-art, we consider

metrics such as total gained reward, tardiness and

overall response time. It also studies the upper bounds

on task utilization.

REFERENCES
[1] A. Elnably, K. Du, P. Varman, “Reward scheduling for QoS in cloud

applications,” in Proc. of the 12th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, 2012.

[2] J. Gubbi, R. Buyya, S. Marusic , M. Palaniswami, “Internet of
Things (IoT): A vision, architectural elements, and future directions,”

Future Generation Computer Systems 29 (2013) 1645–1660

[3] A. Srinivasan, P. Holman, J. H. Anderson, and S. Baruah, “The case

for fair multiprocessor scheduling,” in Proc. of the 11th International

Workshop on Parallel and Distributed Real-time Systems, April

2003.

[4] H. Alhussian, N. Zakaria, F. A. Hussin, “An efficient real-time

multiprocessor scheduling algorithm,” in Journal of Convergence
Information Technology, January 2014.

[5] M. Amirijoo, J. Hansson, and S. H. Son, “Specification and

management of QoS in real-time databases supporting imprecise

computations,” in IEEE Transactions on Computers, vol. 55, pp.

304–319, March 2006.

[6] H. Aydin, R. Melhem, D. Mosse and P. M. Alvarez, “Optimal

reward-based scheduling for periodic real-time tasks,” in IEEE
Transactions on Computers, vol. 50, no. 2, February 2001.

[7] I-H. Hou, P.R. Kumar, ”Scheduling periodic real-time tasks with

heterogeneous reward requirements,” in Proc. of the 32nd IEEE

Real-Time Systems Symposium, 2011.

[8] B. Awerbuch, Y. Azar, and O. Regev, “Maximizing job benefits

online,” in Proc. of the 3
rd

 International Workshop, APPROX,

Germany, September 2000.

[9] B. Sanati and A.M.K. Cheng, “Maximizing job benefits on
multiprocessor systems using a greedy algorithm,” in WiP session of

the 14th IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS), April, 2008.

[10] B. Sanati and A.M.K. Cheng, “Efficient Online Benefit-Aware

Multiprocessor Scheduling Using an Online Choice of

Approximation Algorithms,” in Proc. of the 11th IEEE International

Conference on Embedded Software and Systems (ICESS 2014),

Paris, France, August 20-22, 2014.
[11] J.H. Anderson, J.P. Erickson, U.C. Devi, B.N. Casses, “Optimal

semi-partitioned scheduling in soft real-time systems,” in Proc. of the

20th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA), August 20-22,

2014.

50

Towards Worst-Case Bounds Analysis
of the IEEE 802.15.4e

Harrison Kurunathan§, Ricardo Severino§, Anis Koubaa§∗, Eduardo Tovar§
§CISTER/INESC TEC and ISEP-IPP, Porto, Portugal

∗ Prince Sultan University, Saudi Arabia.
Email: (hkur, rarss, aska, emt)@isep.ipp.pt, akoubaa@psu.edu.sa

Abstract—The IEEE 802.15.4e amendment provides important
functionalities to address timeliness and reliability in time-
sensitive WSN applications, by extending the IEEE 802.15.4-2011
protocol. Nevertheless, in order to make the appropriate network
design choices, it is mandatory to understand the behavior of such
networks under worst-case conditions. This paper contributes in
that direction by proposing a methodology based on Network
Calculus that will, by modeling the fundamental performance
limits of such networks, enable in the future a quick and efficient
worst-case dimensioning of the networks’ schedule and resources.

I. INTRODUCTION

Wireless Sensor Networks have been enabling an ever-
increasing span of applications and usages in domains such as
industrial automation, environmental monitoring and personal
health care. Naturally, each use case imposes a different
balance of Quality of Service aspects that must be fulfilled in
order to guarantee the correctness of the application. In general
Cyber-Physical Systems (CPS) for instance, the provision of
deterministic guarantees is of crucial importance. In addition,
specially in the industrial domain, robustness and reliability
are also of increasing importance, considering the harsh envi-
ronment in which often these systems must be deployed.

To address several of these properties, the 802.15e Work-
ing Group proposed the IEEE 802.15.4e amendment, aim-
ing at enhancing and extending the functionalities of the
IEEE 802.15.4-2011 protocol. 802.15.4-2011 protocol. This is
achieved for instance by proposing several MAC behaviors,
which besides providing deterministic communications are
also fitted with a multi-channel frequency hopping mecha-
nisms, such as in the case of the Deterministic and Syn-
chronous Multichannel Extension (DSME) and Time Slotted
Channel Hopping (TSCH). However, to correctly address the
demands in terms of latency and resources, it is mandatory to
carryout a thorough network planning. To achieve this, mod-
eling the fundamental performance limits of such networks is
of paramount importance to understand their behavior under
the worst-case conditions.

In this paper, we present a model for the DSME and
TSCH MAC behaviors of IEEE 802.15.4e, based on Network
Calculus formalism. The remaining of the paper is organized
as follows: in the following section we overview the related
work. In Section III we overview the IEEE 802.15.4e protocol
and in particular the TSCH and DSME MAC behaviors. The
network model for each of these is proposed next and the

paper ends with some final remarks and a discussion of future
work.

II. RELATED WORK

There are already a few works that analyze the DSME and
TSCH performance. The authors in [1] have compared the
DSME MAC behaviour of IEEE 802.15.4e to the traditional
IEEE 802.15.4 in terms of throughput and end-to end-latency,
using an analytical model. The throughput of the DSME
MAC protocol was found to be 12 times higher than that
of the IEEE 802.15.4 slotted CSMA-CA in a multi-hop
network. The DSME MAC behaviour was also analyzed in
[2] under WLAN interference, showing that DSME-GTS was
much more resilient to interference in comparison with IEEE
15.4 slotted CSMA-CA due to the included channel hopping
mechanism.

Concerning TSCH, in [3], and [4], authors have devel-
oped analytical models for channel hopping mechanisms,
and proposed efficient ideas to extend these, such as black
listing and improved frequency hopping sequence algorithms.
A comparative assessment [5] of DSME and TSCH MAC
behaviors has also been developed using the OMNet++ simu-
lation environment. QoS parameters such as delay, scalability
and reliability were computed in this assessment. Interestingly
DSME was found to outperform TSCH in terms of end-to-end
latency in some scenarios.

The analytical works of the researchers are more dedicated
to determine the throughput and end to end latency. In our
researc, we propose to define the delay bounds of the MAC
behaviors by using network calculus. As far as we know we
are the first to use this methodology to determine the delay
bounds of 802.15.4e

III. OVERVIEW OF THE IEEE 802.15.4E PROTOCOL

The IEEE standard 802.15.4e [6] proposes an enhanced
version of IEEE 802.15.4-2011 [7], introducing a set of MAC
behaviors which are tailored to suit the needs of industrial
real time communications. Ideas which are prominent in the
industrial communications field such as frequency hopping,
dedicated and shared timeslots and multichannel communica-
tion have been implemented in this amendment. In this section,
we provide an insight into two MAC behaviors: DSME and
TSCH. These aim fundamentally at guaranteeing determinism
and enhancing the network’s resilience to interference.

51

A. DSME MAC Behavior

A DSME enabled PAN coordinator uses a multi superframe
structure. A multi superframe is composed of a cycle of
multiple superframes similar to the IEEE 802.15.4 superframe
format. Every superframe in a DSME multi superframe will
have a Contention Access Period (CAP) and a Contention
Free Period (CFP). Details like the number of superframes
in a multi superframe and the timing synchronization are
conveyed to the nodes through an enhanced beacon which is
transmitted by the PAN Coordinator at the beginning of the
multi superframe. The nodes contend for the channel in the
CAP region and the CFP is composed multiple Guaranteed
Time Slots (GTS). An available GTS slot can be occupied
by any pair of nodes within the transmission range, these
occupied slots are called DSME GTSs. Figure 1 shows the
multi superframe and superframe structure of the DSME MAC
behaviour. In the CFP region of the superframe structure in
Figure 1, the columns indicate timeslots and the rows indicate
the channels available for hopping.

Beacon' Beacon'

CAP''''''''''''''''CFP'''''''''''CAP''''''''''''''CFP'''''''''''''CAP'''''''''''CFP'''''''''''''''CAP'''''''''''''CFP'

Mul/frame'1' Mul/frame'2'

Superframe'3'

CAP' CFP'

Superframe'2'Superframe'1'

Fig. 1. Multi-frame structure of DSME

B. TSCH MAC Behavior

The concept of superframes has been amended into slot-
frames in TSCH. Every slotframe is comprised of multiple
timeslots. TSCH uses either contention free or contention
based communication during the slotframe period, depending
on if it is using a guaranteed or a shared timeslot respectively,
to transmit a frame and eventually an acknowledgement.

The slotframes are scheduled by the PAN Coordinator and
are set to repeat periodically, advertised by enhanced beacons.
Multi-channel support is one of the major characteristics of
the TSCH MAC behaviour. There are 16 channels available
for hopping in TSCH. Every channel is denoted by a channel
offset that varies from 0-15. A timeslot absolute number
(ASN), which increments globally, is used to compute the
channel in any pairwise communication.

Figure 2 shows a three timeslot slotframe in which two
devices communicate through 2 channels. In time slot 0 device
A transmits its data to B through channel 1 and during time
slot 1 B transmits to C through channel 2 and during time slot
2 the device remains in an idle state. The slot frame repeats
periodically.

ASN=0 ASN=1 ASN=2 ASN=3 ASN=4 ASN=5

 Ts1 Ts2 Ts3 Ts1 Ts2 Ts3
 A->B B->C A->B B->C

 MACTsCCA offset MAC CCA Transmission of Data ACK delay Rxr Wait for ACK and receive ACK

Mac transmission offset

MAC TxRx offset Reception of Data frame ACK Delay Txr Transmit Acknowledgement

Transmitter

Receiver

Fig. 2. Three time-slot frame in TSCH

IV. DELAY BOUND USING NETWORK CALCULUS

Among several analytical methods that have been used to
determine the delay bound analysis of distributed networks,
Network Calculus is well adapted to controlled traffic sources
and provides upper bounds on delays for traffic flows [8]. For
a cumulative arrival function R(t) there exists an arrival curve
α(t) = b + r.t where b, r, t are the burst rate, data rate and
time interval respectively. A minimum service curve β(t) is
guaranteed to R(t). The maximum delay of the network is
given by the horizontal distance between the arrival and the
service curves. The delay is computed in accordance to the
maximum latency of the service T and the data rate as shown
in equation 1:

Dmax =
b

r
+ T, (1)

The leaky bucket (b, r) model is used to derive the network
models of DSME and TSCH. It is simple and it can represent
the higher bound of any kind of traffic. The variance between
the (b, r) curve and the realistic model is also adequate for
periodic traffic which is commonly the case the of Wireless
Sensor Networks. Figure 3 depicts the basic (b, r) model with
the arrival and service curves, and the delay bound.

Latency T

Maximum
delay

A
rr

iv
al

 (b
its

)

Time(ms)

Maximum
buffer

Fig. 3. Arrival curve, service curve, delay bound

A. Service curve analysis of DSME

Let us consider a single PAN coordinator and a set of nodes
forming a DSME IEEE 802.15.4e network. The PAN coordi-
nator sends an enhanced beacon for every multi superframe,
and a beacon for each superframe. The beacon interval and
superframe duration are computed as follows:

BI = aBaseSuperframeDuration × 2BOsymbols (2)

for 0 ≤ BO ≤ 14

52

SD = aBaseSuperframeDuration × 2SOsymbols (3)

for 0 ≤ SO ≤ BO ≤ 14

In these equations aBaseSuperframeDuration repre-
sents the minimum length of the superframe (i.e. SO = 0). The
IEEE 802.15.4e standard has fixed this value to 960 symbols.
Each symbol corresponds to 4 bits, resulting in a duration of
15.36 ms, considering an ideal data rate of 250 Kbps.

It is mandatory that the data transmission, intra-frame
spacing and acknowledgements/Group acknowledgments (if
requested) are completed within the end of a DSME GTS
slot for successful transmission of a message. For the sake of
simplicity, we consider one data frame transmission in each
a DSME GTS per superframe. As the number of superframes
in a multi superframe will remain the same, it is ideal to
calculate the delay for a single superframe and multiply by the
number of superframes in the multi superframe. Considering
the time duration of a superframe is SD, the time duration of
a multi superframe will be Mx(SD), where M is the number
of superframes. The value of a timeslot in a superframe, Ts
is given by equation 5.

Ts =
SD

16
= aBaseSuperframeDuration × 2SO−4 (4)

Every timeslot Ts in a superframe is made up of Tdata
and Tidle. Tdata is the maximum duration used for data
transmission inside the guaranteed timeslots. Tidle is the time
which is not used by the data, this mainly comprises of the
time of inter frame spacing and acknowledgments. The latency
is the difference of the bursts arrival and the time the data is
served. Burst arrives at the beacon interval. The maximum
latency T is given by equation 6, the maximum latency is the
time a burst may wait for a service. This is the latency for
service provided for the node that allocated one timeslot.

T = BI − Ts (5)

The overall service provided by the network can be given
by the product of the data rate and the time at which system
receives the service. For the first superframe, the service curve
calculated over time t, this is the minimum number of bits
that has to be transmitted during a GTS, this value is given in
equation 8.

β1 =

{
C ((t− (BI − Ts)))+,∀ 0 ≤ t ≤ BI − tidle

0, otherwise
(6)

wherex+ = max(0, x)

This value of the service curve can be derived to N number of
superframes, similarly to the equation derived for the service
curve for n superframes of IEEE 802.15.4 in [9]. The service
of the Nth superframe is given by:

βN =





(N − 1).C.tdata + C (t− (N.BI − TN))
+

∀0 ≤ t ≤ (N − 1)BI − tidle
0, otherwise

(7)

The DSME GTS service curves of DSME MAC behaviour is
given as a Stair case model in Figure 4.

CAP$ CFP$ CAP$ CFP$

Arrival curve α (t)

A
rr

iv
al

 (b
its

)

Tdata
Tidle

 Ts = Tdata + Tidle

Dmax

DSME GTSs

Superframe$1$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Superframe2

Mul2frame$

Fig. 4. Service curve of DSME MAC

B. Delay bound analysis of DSME

In a multi superframe the delay bound is calculated for every
superframe separately. The sum of these delay bounds will be
the overall delay bound of the multi superframe. Considering
the burst size b is greater than C.tdata, the maximum delay
bound of the first superframe will be the horizontal angular
distance between the arrival curve and the first stair. We
consider that a minimum service of (t) will be provided for
cumulative data flow R(t):

Dmax1 =
b

C
+ (BI − Ts) if b ≤ C.tdata (8)

In general when N.(C.Tdata) < b ≤ (N + 1).C.Tdata), the
delay of the system with N number of slotframes is given by:

DmaxN =
b

C
+ ((N + 1).BI − Ts)−N.tdata (9)

ifN(C.Tdata) < b ≤ (N + 1).C.Tdata

C. Service curve analysis of TSCH

Although TSCH supports peer-to-peer topologies, in this
model we consider only a star topology in which the PAN
coordinator sends an enhanced beacon to initiate the slotframe.
The aim of this network model is to derive an expression for
the delay bound of a data flow R(t) bounded by a (b, r) curve,
and that has allocated one timeslot in a slotframe either con-
tention or non-contention-based. The default duration of every
timeslot Ts is 10 ms [7], during which it has to accommodate
Acknowledgment delays (on the receiver and transmitter end),
and the receiver and transmitting frames during a transmission
in non-shared timeslot. In shared timeslots, the duration for
CCA and CCA CSMA-CA offset also has to be considered.

Every timeslot Ts (time duration of a single timeslot)
is of equal duration and is composed of Tdata and Tidle.
Tdata is the maximum duration used for data transmission
inside the guaranteed timeslots. Tidle is the time which is

53

not used by the data, this mainly comprises of the time of
CCA offsets, Acknowledgement delays, MAC transmission
and reception offsets and Acknowledgments. Let us consider
the fixed duration for which the slotframes repeat in a periodic
fashion as Tcycle. If a slot is insufficient for a complete
message transmission, then the message has to wait for the
next timeslot. The latency of the data transmitted in one
timeslot of the slotframe is given by:

T = Tcycle − Ts (10)

For the first slotframe, the service curve calculated over a
time period t, this is the minimum number of bits that has to
be transmitted during a timeslot, this value is given in equation
11.

β =

{
C (t− (Tcycle − Ts))+ ∀ 0 ≤ t ≤ Tcycle − tidle

0, otherwise
(11)

The service curve will remain constant over time and the
entire service of the system can be computed by equation 12:

βN =





(N − 1).C.tdata + C (t− (N.tcycle − TN))
+

∀0 ≤ t ≤ (N − 1) . (tcycle − tidle)
0, otherwise

(12)
The service curve of TSCH MAC behavior results in a stair

case format as depicted in Figure 5.

Arrival curve α (t)

A
rr

iv
al

 (b
its

)

Time(ms)(

Tdata
Tidle

Data(transmission(

Ts0(((((((Ts1(((((((((Ts2((((((Ts0((((((((Ts1(((((((Ts2(((((Ts0((((((((((Ts1(

Dmax

Ts

Tcycle

Tcycle-Ts

Fig. 5. Service curve of TSCH MAC

D. Delay bound analysis of TSCH
For the first slotframe, assuming b ≤ C.Tdata the maximum

delay bound will be the horizontal angular distance between
the arrival curve and the first stair. We consider that a minimum
service of β(t) will be provided for cumulative data flow R(t)
using equation 1, resulting as follows:

Dmax1 =
b

C
+ (T cycle − Ts) (13)

The delay of the entire system consisting of N slotframes can
be given as:

Dmax network =

N∑

0

. DmaxN (14)

V. DISCUSSION AND FUTURE WORK

Modeling the performance limits of a network is essential
to guarantee the right latency and reliability requirements of
a network. In this paper we have derived expressions for
computing the worst case delays of DSME and TSCH MAC
behaviors using Network Calculus. Though we have provided
derivations based on star topology, the proposed results can
be extended to all peer-to-peer communication networks. As a
continuation of this work the end-to-end delay bounds will be
derived for the rest of the MAC behaviors of IEEE 802.15.4e.
We also aim at proposing new scheduling algorithms and a
simulation model to compare with the analytical results.

ACKNOWLEDGMENT

This work was partially supported by National Funds
through FCT/MEC (Portuguese Foundation for Science and
Technology) and co-financed by ERDF (European Regional
Development Fund) under the PT2020 Partnership, within
project UID/CEC/04234/2013 (CISTER Research Centre);
also by FCT/MEC and the EU ARTEMIS JU within
project(s) ARTEMIS/0004/2013 - JU grant nr. 621353 (DEWI,
www.dewi-project.eu) and ARTEMIS/0001/2012 - JU grant nr.
332987 (ARROWHEAD). This work is also support by the
Research and Translation Center (RTC) at Prince Sultan Uni-
versity via Grant Number GP-CCIS-2013-11-10. This work is
also supported by the Research and Translation Center (RTC)
at Prince Sultan University via Grant Number GP-CCIS-2013-
11-10.

REFERENCES

[1] W.-C. Jeong and J. Lee, “Performance evaluation of ieee 802.15. 4e dsme
mac protocol for wireless sensor networks,” in Enabling Technologies for
Smartphone and Internet of Things (ETSIoT), 2012 First IEEE Workshop
on. IEEE, 2012, pp. 7–12.

[2] J. Lee and W.-C. Jeong, “Performance analysis of ieee 802.15. 4e dsme
mac protocol under wlan interference,” in ICT Convergence (ICTC), 2012
International Conference on. IEEE, 2012, pp. 741–746.

[3] P. Du and G. Roussos, “Adaptive time slotted channel hopping for wire-
less sensor networks,” in Computer Science and Electronic Engineering
Conference (CEEC), 2012 4th. IEEE, 2012, pp. 29–34.

[4] C.-F. Shih, A. E. Xhafa, and J. Zhou, “Practical frequency hopping
sequence design for interference avoidance in 802.15. 4e tsch networks,”
in Communications (ICC), 2015 IEEE International Conference on.
IEEE, 2015, pp. 6494–6499.

[5] G. Alderisi, G. Patti, O. Mirabella, and L. L. Bello, “Simulative as-
sessments of the ieee 802.15. 4e dsme and tsch in realistic process
automation scenarios,” in Industrial Informatics (INDIN), 2015 IEEE 13th
International Conference on. IEEE, 2015, pp. 948–955.

[6] IEEE standard for information technology, WPANs Part 15.4 IEEE Std
802.15.4-2006 (Revision of IEEE Std 802.15.4-2003), Sept 2006.

[7] IEEE standard for information technology, WPANs- Part 15.4 amendment
1: Mac sublayer,” IEEE Std 802.15.4e-2012 (Amendment to IEEE Std
802.15.4-2011), April 2012.

[8] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of deterministic
queuing systems for the internet. Springer Science & Business Media,
2001, vol. 2050.

[9] A. Koubâa, M. Alves, and E. Tovar, “Energy and delay trade-off of the
gts allocation mechanism in ieee 802.15. 4 for wireless sensor networks,”
International Journal of Communication Systems, vol. 20, no. 7, pp. 791–
808, 2007.

54

Demo Papers

TEMPO: Integrating Scheduling Analysis in the
Industrial Design Practices

Rafik HENIA, Laurent RIOUX, Nicolas SORDON
Thales Research & Technology

1 Avenue Augustin Fresnel, 91767, Palaiseau Cedex, France
{Rafik.Henia, Laurent.Rioux, Nicolas.Sordon}@Thalesgroup.com

Usually, the industrial practices rely on the subjective

judgment of experienced software architects and developers to
predict how design decisions may impact the system timing
behavior. This is however risky since eventual timing errors are
only detected after implementation and integration, when the
software execution can be tested on system level, under realistic
conditions. At this stage, timing errors may be very costly and
time consuming to correct. Therefore, to overcome this problem
we need an efficient, reliable and automated timing estimation
method applicable already at early design stages and continuing
throughout the whole development cycle. Scheduling analysis
appears to be the adequate candidate for this purpose. However,
its use in the industry is conditioned by a seamless integration in
the software development process. This is not always an easy task
due to the semantic mismatches that usually exist between the
design and the scheduling analysis models. At Thales Research &
Technology, we have developed a timing framework called
TEMPO that solves the semantic issues through appropriate
model transformation rules, thus allowing the integration of
scheduling analysis in the development process of real-time
embedded software. In this demonstration paper, we present the
basic building blocks and functionalities of the TEMPO
framework and describe the main visible stages in the model
transformations involved.

Keywords—timing verification; scheduling analysis; model-
based design; model transformation

I. INTRODUCTION

It has always been a challenge to introduce scheduling
analysis into the industrial development process as the inputs
required for the analysis, in particular the worst-case execution
time and the system behavior description, are moving target all
across the different development process phases. Thanks to the
introduction of model based methods (in particular viewpoints
for non-functional properties) in the industrial development
process, this goal seems to be reachable. Starting from very
high level system architecture and rough timing allocations, the
scheduling analysis has to be refined at each step of the project
(architectural design, detailed design, coding, unit test and
software validation phases) down to concrete timing
measurements on the final system. A major problem however
persists: scheduling analysis is often not directly applicable to
conceptual design due to the semantic gaps between their
respective models. Solving this issue is essential to break the
remaining walls separating the scheduling analysis from the
development process of real-time embedded systems, and to
enable its use in the industry.

At Thales Research & Technology, we have therefore
developed a timing framework called TEMPO allowing
adapting design models to the semantic of the scheduling
analysis timing models through a set of transformation rules.
The transformation preserves the timing behavior modeled in
the conceptual design. After performing scheduling analysis,
the obtained results are, in turn, adapted back to the semantic
of the design model.

In this demonstration, we present an integrated tool chain
from a design modeling tool to a scheduling analysis tool via
the timing framework TEMPO and show how the issue of the
semantic gaps between design and scheduling analysis is
solved.

II. TEMPO FRAMEWORK STRUCTURE

The TEMPO timing framework that we present in this
demonstration represents a contribution to the industrial
exploitation of model-driven technologies and response time
scheduling analysis in the design of real-time systems in a
variety of application domains. The TEMPO framework
structure is illustrated in Figure 1. It is composed of two
building blocks (the TEMPO Design and the TEMPO Analysis
pivot models) as well as a set of transformation rules between
them.

Figure 1: Tool chain including the TEMPO framework

A. TEMPO Design Pivot Model

The TEMPO design building block uses a subset of the
UML Profile for MARTE standard [1] as a basis to represent a
synthetic view of the system design model that captures all
elements, data and properties that impact the system timing
behavior and that are required to perform the scheduling
analysis (e.g. tasks mapping on processors, communication

57

links, execution times, scheduling parameters, etc.). TEMPO
Design is not limited to the use of a particular design modeling
tool and environment. It can be connected to various
environments such as UML, SysML, AADL or any other
proprietary environment. This was imposed by the fact that
THALES divisions are using various modeling tools,
languages and methodologies to design their systems.

B. TEMPO Transformation Rules

Scheduling analysis is very often not directly applicable to
the conceptual design models in general and to TEMPO
Design models in particular due to the semantic mismatch
between the latter and the variety of scheduling analysis
models known from the classical real time systems research
and represented by academic [2] [3] and commercial tools [4].
For instance, in the common scheduling analysis models, a
standard assumption is that a task writes its output data at the
end of its execution. This is not always the case in design
models. Very often in design models, operation calls are either
synchronous (blocking) or asynchronous (non-blocking). As a
consequence, the task, to which the caller operation is mapped,
may write data into the input of a connected task, to which the
called operation is mapped, at any instant during its execution
and not necessarily at the end. In order to overcome the
semantic mismatch between design and scheduling analysis,
we have defined a set of rules transforming the TEMPO
Design model into a corresponding TEMPO Analysis model,
while preserving the initial modeled timing behavior.

Figure 2: Synchronous call between two operations in the TEMPO Design
pivot model

In the following, we present an example of a transformation
rule. Figure 2 illustrates an example of a synchronous call
between two operations (m1 and m2) in TEMPO design. Let us
assume that operation m1 (composed of two operation
fragments m1,a and m1,b) is mapped to a task called T1, while
the operation m2 is mapped to a task called T2. Let us assume
static priority preemptive scheduling for the tasks. Regardless
of the priority assignment for the tasks, the execution order of
the operations will always be the following: after its activation,
task T1 will first execute the operation fragment m1,a. Then, it
calls task T2. Since the call is blocking, task T1 is suspended
until task T2 finishes executing the operation m2 and sends data
back. Then, task T1 executes the operation fragment m1,b.

In order to keep the synchronous call behavior of the
operations and tasks while being compliant with the scheduling
analysis model semantic, we split the operation m1 in two
distinct operations corresponding to the operation fragments
m1,a and m1,b as illustrated in Figure 3. We also split task T1 in

two tasks T1,a and T1,b that inherit its priority. Then, we to map
the operations m1,a and m1,b respectively to the tasks T1,a and
T1,b. Obviously, this transformation preserves the same
execution order and thus, the synchronous call behavior of the
original operations and tasks in the system design model. In
addition, it is compliant with the above mentioned timing
analysis standard assumption, since task T1,a calls task T2 at the
end of its execution and not before as task T1 does in TEMPO
Design.

Figure 3: Transformed synchronous call between two operations in the

TEMPO Analysis pivot model

C. TEMPO Analysis Pivot Model

The TEMPO Analysis pivot model is based on generic
modeling concepts known from the classical real time systems
research, such as tasks, processors, busses, scheduling
parameters (priorities, time slots, deadlines, etc.). TEMPO
Analysis models preserve the timing behavior modeled in the
corresponding TEMPO Design models, while ensuring the
compatibility with the variety of existing scheduling analysis
tools. As for TEMPO Design, TEMPO Analysis is not limited
to a specific scheduling analysis tool. This ensures a minimum
of independence from the analysis tools specificities and
allows hiding its complexity to the designer. If required, the
used analysis tool can be easily replaced by another. After
analysis in the selected scheduling analysis tools, the results are
injected in TEMPO Analysis. Then, they are translated to be
compliant with the original design model and injected in
TEMPO Design

III. DEMONSTRATION

Several practical use cases are available as hands-on
demonstration of the quality of the TEMPO framework. One in
particular might be of interest to the attendees since it appears
reported as an industrial challenge for the timing verification of
a deployable real system in WATERS 2015 [5].

REFERENCES
[1] Object Management Group, UML profile for MARTE: Modeling and

Analysis of Real‐ Time Embedded Systems, version 1.1, OMG
document formal/2011‐06‐02, 2011.

[2] M. González Harbour, J.J. Gutiérrez, J.C.Palencia and J.M.Drake,
MAST: Modeling and Analysis Suite for Real‐Time Applications, in
Proc. of the Euromicro Conference on Real‐Time Systems, June 2001.

[3] PyCPA: Compositional Performance Analysis in Python ;
https://code.google.com/p/pycpa/

[4] SymTA/S: Symbolic Timing Analysis for Systems;
https://www.symtavision.com/symtas.html

[5] https://waters2015.inria.fr/files/2014/11/FMTV‐2015‐Challenge.pdf.

58

Applications of the CPAL language to model,
simulate and program Cyber-Physical Systems

Loïc FEJOZ
RealTime-at-Work (RTaW), France

loic.fejoz@realtimeatwork.com

Nicolas NAVET, Sakthivel SUNDHARAM,
Sebastian ALTMEYER

University of Luxembourg, Luxembourg
firstname.lastname@uni.lu

Abstract— CPAL is a new language to model, simulate, verify

and program Cyber-Physical Systems (CPS). CPAL serves to
describe both the functional behaviour of activities (i.e., the code
of the function itself) as well as the functional architecture of the
system (i.e., the set of functions, how they are activated, and the
data flows among the functions). CPAL is meant to support two
use-cases. Firstly, CPAL is a development and design-space
exploration environment for CPS with main features being the
formal description, the editing, graphical representation and
simulation of CPS models. Secondly, CPAL is a real-time
execution platform. The vision behind CPAL is that a model is
executed and verified in simulation mode on a workstation and
the same model can be later run on an embedded board with a
timing-equivalent run-time behaviour. The design and
development of CPAL have been organized around a set of
realistic case-studies that will be demonstrated during the demo
session.

I. MODEL AS THE CODE

CPAL has been initially inspired by the success of three
interpretation-based runtime environments, successfully
certified at the highest criticality levels and deployed at large
scale in railway interlocking systems over the last 20 years at
SNCF and RATP in France, and in UK and other countries
through the Westlock interlocking system from
Westingshouse. Surprisingly to the best of our knowledge,
except above applications and some industrial automation
(PLCs) model interpretation has not been widely explored,
albeit it possesses a number of key advantages such as: the
model can be directly uploaded on the target, there is no
difference between the model and the code, the total software
size is greatly reduced both off-line and on the target,
hardware independence is ensured, etc.
CPAL supports two types of model interpretation: the direct
interpretation of the design models on an interpretation engine
running on top of the hardware, called “bare-metal model
interpretation” (BMMI), and the interpretation on top of an
OS. The latter is less predictable from a timing point of view
but more convenient for development and experimentations.
CPAL and its associated tools are jointly developed by our
research group at the University of Luxembourg and the
company RTaW since 2012. The CPAL documentation,
graphical editor and execution engine for Windows, Linux,
embedded Linux, and Raspberry Pi are freely available for all
uses at http://www.designcps.com. A BMMI port of CPAL is
available for Freescale FRDM-K64F boards.

II. CPAL: PROVIDING HIGH-LEVEL ABSTRACTIONS FOR

EMBEDDED SYSTEMS

Figure 1, shows that Model-Driven Development is an
enabling technology to fill the programming languages gaps.
But still existing languages lack the high-level abstractions and
automation features that would make them more productive. In
addition, the design and development of embedded systems,
especially ones with dependability constraints, necessitates the
use of many best practices. None of the programming
languages we are aware of are well suited to make the
development of safe and provably correct embedded systems
as quick and easy as possible.

Figure 1: Spectrum of Model-Based Design approaches (core

of the figure from [Br04]).

The main requirement when designing CPAL was to natively
provide the high-level abstractions which are (i) familiar in the
domain of embedded systems, and (ii) needed to express in an
unambiguous and concise manner domain specific patterns of
functional behaviors as well as non-functional properties. A
process denotes the core language entity to implement a
recurrent activity with its own dynamic. A process is
automatically activated at a specified rate, with the optional
requirement that a specific logical condition is fulfilled to
execute (this is called guarded execution). CPAL processes are
classically referred to as tasks, runnables or threads in other
contexts.
CPAL provides the programmers with high-level abstractions
well suited for the domain of CPS such as

 Real-time scheduling mechanisms: processes are
activated with a user-defined period, possibly with an

59

offset relationship with each other, and additional
execution conditions such as for instance the
occurrence of some external events.

 Finite State Machines (FSM): the logic of a process
can be defined as a Finite State Machine (FSM) based
on Mode-Automata.

 Communication channels to support data flow
exchanges between processes, and reading/writing to
hardware ports.

 Introspection mechanisms that enable processes to
query at run-time their execution characteristics such
as their activation rate and activation jitters.

A key objective behind CPAL is to let designer state the
permissible timing behavior of the system in a declarative
manner while a system synthesis step involving both analysis
and optimization then generates a scheduling solution which at
run-time is enforced by the execution environment.

III. DEMONSTRATION OF CPAL USE-CASES

CPAL [Na16] supports several use-cases discussed below and
that will be demonstrated during the demonstration session.

A. High-level programming language for network simulation
environments

CPAL can serve to describe the functional behavior of
applications and high-level protocol layers. A CPAL model is
for instance used in [Se15] to simulate the SOME/IP Service
Discovery protocol in a Daimler Car’s prototype network. The
model hands over the frames once created to the simulation
kernel of RTaW-Pegase, a communication architecture
performance analysis tool from RTaW. Interestingly, the same
CPAL simulation model can be executed with no changes on
an embedded target or a workstation to experiment on a test-
bed later in the design process.
This use-case will be briefly demonstrated through a CPAL
model that transmits video streams with different coding
standards (raw video, H.263) with segmentation an automotive
Ethernet network.

B. Modeling and simulation language for Design Space
Exploration

CPAL is meant to support the formal description, the editing,
graphical representation and simulation of cyber-physical
systems. It can be used in its own development environment,
like done for the FMTV Challenge [Al15], or within
Matlab/Simulink to implement the controller, as done for the
landing gear case-study [Bo14]. The simulation models can be
executed in real-time (i.e., activation periods are respected) or
as fast as possible in simulation mode.
This use-case will be briefly illustrated on the FMTV
Challenge 2015, highlighting also the limits of what can be
automated.

C. Real-time execution engine

The intention of CPAL is to provide not only a modeling
language, but also an interpreter which ensures equivalence
between the simulated behavior of the model and the behavior
on the execution platform, both in the functional and the
temporal domain.

As in Figure 2, this use-case will be demonstrated on the
“smart parachute”, a remote termination add-on component
improving safety of UAS [Ci16] developed in partnership with
the company Alérion. The parachute is controlled by a CPAL
program, on top of the bare-metal interpreter, executing on a
Freescale FRDM-K64F board.

Figure 2: From simulation to field test

D. CPAL for teaching and research

CPAL has been used for teaching Model-Based Design
(MBD) for embedded systems since 2012 at the University of
Luxembourg at the 3rd year Bachelor level. Practicals include
programming a capsule coffee machine, a simplified
programmable floor robot and elevator control system, etc.
Our experience has been positive in terms of how fast students
have been able to work autonomously on the development of
the system. Indeed, most students are able to master the
language within a few hours. In addition to the simplicity of
the language, the free availability of the tools, the on-line
examples and the CPAL-Playground facilitate the learning
process. CPAL is also used in the experiments of the research
conducted at the University of Luxembourg on timing-aware
Model-Driven Engineering. We will present small case-studies
used in teaching and research outcomes based on CPAL.

REFERENCES
[Al15a] S. Altmeyer, N. Navet, L. Fejoz, “Using CPAL to model and validate

the timing behaviour of embedded systems”, WATERS Workshop, July
2015.

[Al15b] S. Altmeyer, N. Navet, "Towards a declarative modeling and
execution framework for real-time systems", First IEEE Workshop on
Declarative Programming for Real-Time and Cyber-Physical Systems,
San-Antonio, USA, December 1, 2015

[Bo14] F. Boniol, V. Wiels, “The landing gear system case study”, pp1-18,
Proc. ABZ 2014, 2014.

[Br04] A. Brown, “An Introduction to Model Driven Architecture – Part1:
MDA and today’s systems”, IBM technical library, 2004.

[Ci16] L. Ciarletta, L. Fejoz, A. Guenard, N. Navet, “Development of a safe
CPS component: the hybrid parachute, a remote termination add-on
improving safety of UAS”, to appear at ERTSS2016, Toulouse, January
2016.

[Na16] N. Navet, L. Fejoz, L. Havet, S. Altmeyer, “Lean Model-Driven
Development through Model-Interpretation: the CPAL design flow”,
Embedded Real-Time Software and Systems (ERTS 2016), Toulouse,
France, January 27-29, 2016.

[Se15] J. Seyler, T. Streichert, M. Glaß, N. Navet, J. Teich, “Formal Analysis
of the Startup Delay of SOME/IP Service Discovery”, DATE 2015,
Grenoble, France, March 9-13, 2015.

60

Demonstration of the FMTV 2016
Timing Verification Challenge

Arne Hamann, Dirk Ziegenbein, Simon Kramer, Martin Lukasiewycz
Robert Bosch GmbH

Corporate Research, Germany
Email: {arne.hamann|dirk.ziegenbein|simon.kramer2|martin.lukasiewycz}@de.bosch.com

Abstract—In [1] we argued that the complex dynamic be-
havior of automotive software systems, in particular engine
management, in combination with emerging multi-core execution
platforms, significantly increased the problem space for timing
analysis methods. As a result, the risk of divergence between
academic research and industrial practice is currently increasing.

Therefore, we provided a concrete automotive benchmark for
the Formal Methods for Timing Verification (FMTV) challenge
2016 [2], a full blown performance model of a modern engine
management system based on [1], with a goal to challenge existing
timing analysis approaches with respect to their expressiveness
and precision.

In the demo session we will present the performance model
of the engine management system using the Amalthea tool [3].
Furthermore, we will show the model in action using professional
timing tools such as from Symtavision [4], Timing Architects [5],
and Inchron [6]. By this means, the demo gives an impression of
the current state-of-practice in industrial product development,
and serves as baseline for further academic research.

I. THE FMTV 2016 CHALLENGE

In short, the FMTV 2016 challenge consists in determining
tight end-to-end latency bounds for a set of given cause-effect
chains in a full blown engine management software. For this
purpose, an Amalthea [3] performance model of the software
can be downloaded at [2].

As mentioned above, the dynamic behavior of a engine man-
agement software is quite complex and contains mechanisms
that explore the limits of existing approaches:

• preemptive and cooperative priority based scheduling
• periodic, sporadic, and engine synchronous tasks
• multi-core platform with distributed cause-effect chains

including cross-core communication
• label (i.e. data) placement dependent execution times of

runnables
The provided Amalthea model contains a hardware model of

a simplified microcontroller architecture with four symmetric
cores (see Figure 1). The cores are interconnected by a
crossbar (full connectivity, FIFO arbitration at memories).
The system-wide frequency is 200 MHz. Furthermore, initial
mappings (runnable to task, task to core) are specified.

Each core COREx is connected to a local memory
LRAMx. Additionally, there exist a global memory GRAM
that is shared among all cores. The specified runnable execu-
tion times assume that code is executed directly from core-
exclusive flashes without contention. In contrast, access to
labels including memory arbitration effects are not included
in the execution times. Initially, all labels are assumed to
be stored in the global memory. The following symmetric
memory access times are assumed:

• Reading from and writing to the global memory: 9 cycles
• Reading from and writing to the core local memory: 1

cycle
• Reading from and writing to the local memory of a

different core: 9 cycles

Fig. 1. Microcontroller architecture used in the challenge

The memory access model assumes that runnables read all
required labels at the beginning of their execution, afterwards
the calculation takes place, before all labels are written back.
Local RAMs are single-ported, such that concurrent accesses
to the same memory lead to contention, and are arbitrated
according to the FIFO policy.

Obviously, solving the intertwined problem of scheduling
including the effects of memory accesses to the execution
times is very hard. Therefore several separate challenges are
formulated:

• calculate tight end-to-end latencies ignoring memory ac-
cesses and arbitration

• calculate tight end-to-end latencies including memory
access and arbitration accesses

• optimize end-to-end latencies by mapping the labels
among the local and global memories

II. APPROACHES

Figure 2 visualizes different approaches that are addressed
by the FMTV 2016 challenge. Two Pareto-fronts show the
general trade-off between accuracy and effort of the different
approaches.

The first Pareto-front converges towards the the actual
worst-case coming from formal and, thus, conservative ap-
proximations. Here, compositional timing analysis methods,
on the one hand, are very efficient in terms of computational
complexity and modeling efforts, but usually lead to overes-
timated worst-case bounds, especially for distributed systems.
Formal method like timed automata, on the other hand, scale
badly to large systems due to the underlying exponential nature
of model checking.

The second Pareto-front shows simulation-based approach
that optimistically underestimate the worst-case. Here, the
challenge lies in finding stimuli for the system under simu-
lation, leading to values that are close to the worst-case since
enumerating and simulating all possible situation is infeasible
from a practical point-of-view.

61

worst-case

Simulative Formal
Model checking

Holistic

Compositional

accuracy

ef
fo

rt

Fig. 2. Illustration of different approaches with respect to accuracy and effort.

In a nutshell, novel methods should improve state-of-the-art
and not be dominated by any method on the Pareto-front. That
means, either improve in terms of accuracy or reduce effort.

Please note, that the demo focuses on applying industrial-
strength simulation tools (see Section II-B) to determine laten-
cies for the end-to-end cause-effect chains formulated in the
FMTV 2016 challenge. Nevertheless, we also briefly discuss
formal approaches that we would like to be seen applied to
the challenge.

A. Formal Approaches
Classical real-time scheduling [7], [8] considers tasks on

a single processor and their schedulability, taking into ac-
count execution times, release times, and deadlines. These
approaches use problem-specific formalizations to model sys-
tems and cannot be applied directly to distributed systems
with heterogeneous components, schedulers and protocols.
An extension of the classical approaches towards distributed
systems is known as holistic scheduling [9], [10]. Here, the
equations of the specific scheduling approaches are com-
bined by introducing dependency formalizations. Due to the
quickly growing complexity of this approach, its applicability
is limited by the fast increasing number of equations and
dependencies that are introduced with each component in the
system.

In contrast to holistic scheduling, compositional approaches
promise a better extensibility by relying on components that
exchange information via event streams [11], [12], [13]. These
event streams capture properties like periodic behavior or jitter
while end-to-end latencies can be determined by adding delays
along the entire data flow. These compositional approaches can
deliver relatively tight latencies, but further reduction of the
inherent over-approximations of the determined latencies are
obliviously limited by the information in the event streams.

Of course a system might be modeled using timed automata
such that the resulting end-to-end latencies are exact when
applying model checking. However, as the approaches scale
exponentially, they are generally integrated as components into
compositional approaches [14].

B. Simulative Approaches
In contrast to the formal approaches, simulative approaches

do not require an abstraction of the model and can therefore
be easily extended with new components, schedulers, and
protocols. Without the need to abstract the model, simulative
approaches are theoretically capable of determining the exact
latency values without any over-approximation. However, de-
termining the right stimuli for the simulation that will result
in the actual worst-case latency is extremely difficult, and
therefore usually randomized inputs are chosen. It is obvious

that with a longer runtime of simulative approaches, the
undesirable under-approximation can be reduced.

Due to their good usability and simple integration, sim-
ulation tools like TIMING ARCHITECTS SIMULATOR [5],
CHRONSIM [15], or SYMTA/S with TRACEANALYZER [4]
enjoy great popularity in industry. Nevertheless, for safety
critical application it can be dangerous to rely on simulative
approaches as they do not guarantee to capture the actual
worst-case even if a certain safety margin is added to the
observed worst-case after extensive simulations.

C. Hybrid Approaches
Finally, hybrid approaches that combine simulations and

formal approaches might be considered. These approaches
might use traces of simulations for the input of formal methods
to deliver a worst-case that is larger than the simulation
result and at the same time lower than a purely analytically
determined value. Another approach to mix the two views of
simulation and formal approach is the consideration of typical
worst-case analysis [16]. Here, a so-called typical worst-case is
determined that is only violated by a strictly bounded number
of occurrences in a given time window. This approach is
very useful in specific scenarios where occasional deadline
violations do not affect the correct behavior of the system.
As a result, this approach is applied in combination with the
domain knowledge of the underlying system, e.g., a control
application.

REFERENCES

[1] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmark for free,” in Sixth International Workshop on Analysis Tools
and Methodologies for Embedded Real-time Systems (WATERS), 2015.

[2] “Formal Methods for Timing Verification (FMTV) Challenge
2016. Bosch Engine Management System.” http://ecrts.eit.uni-
kl.de/forum/viewtopic.php?f=27&t=62.

[3] “Amalthea 4 Public Project,” http://www.amalthea-project.org/.
[4] “Symtavision GmbH,” https://www.symtavision.com/.
[5] “Timing Architects,” http://www.timing-architects.com/.
[6] “Inchron GmbH,” https://www.inchron.de/.
[7] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-

ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[8] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time
scheduling theory: A historical perspective,” Real-time systems, vol. 28,
no. 2-3, pp. 101–155, 2004.

[9] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing and microprogram-
ming, vol. 40, no. 2, pp. 117–134, 1994.

[10] J. P. Gutiérrez, J. G. Garcı́a, and M. G. Harbour, “On the schedulability
analysis for distributed hard real-time systems,” in Proceedings of the
Ninth Euromicro Workshop on Real-Time Systems. IEEE, 1997, pp.
136–143.

[11] K. Gresser, “An event model for deadline verification of hard real-time
systems,” in Real-Time Systems, 1993. Proceedings., Fifth Euromicro
Workshop on. IEEE, 1993, pp. 118–123.

[12] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Proceedings of the IEEE Inter-
national Symposium on Circuits and Systems, vol. 4. IEEE, 2000, pp.
101–104.

[13] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst, “System level performance analysis–the symta/s approach,”
IEE Proceedings-Computers and Digital Techniques, vol. 152, no. 2,
pp. 148–166, 2005.

[14] K. Lampka, S. Perathoner, and L. Thiele, “Analytic real-time analysis
and timed automata: a hybrid method for analyzing embedded real-time
systems,” in Proceedings of the seventh ACM international conference
on Embedded software. ACM, 2009, pp. 107–116.

[15] “ChronSIM,” http://www.inchron.com/tool-suite/chronsim.html.
[16] S. Quinton, T. T. Bone, J. Hennig, M. Neukirchner, M. Negrean,

and R. Ernst, “Typical worst case response-time analysis and
its use in automotive network design,” in Proceedings of the
51st Annual Design Automation Conference, ser. DAC ’14. New
York, NY, USA: ACM, 2014, pp. 44:1–44:6. [Online]. Available:
http://doi.acm.org/10.1145/2593069.2602977

62

Response-Time Analysis for Task Chains in
Communicating Threads with pyCPA

Johannes Schlatow, Jonas Peeck and Rolf Ernst
Institute of Computer and Network Engineering, TU Braunschweig

{schlatow,jonasp,ernst}@ida.ing.tu-bs.de

Abstract—When modelling software components for timing
analysis, we typically encounter functional chains of tasks that
lead to precedence relations. As these task chains represent
a functionally-dependent sequence of operations, in real-time
systems, there is usually a requirement for their end-to-end
latency. When mapped to software components, functional chains
often result in communicating threads. Since threads are sched-
uled rather than tasks, specific task chain properties arise that
can be exploited for response-time analysis by extending the
busy-window analysis for such task chains in static-priority
preemptive systems. We implemented this analysis by means of an
analysis extension for pyCPA, a research-grade implementation
of compositional performance analysis (CPA).

The major scope of this demo is to show how CPA can be
reasonably performed for realistic component-based systems. It
also demonstrates how research on and with CPA is conducted
using the pyCPA analysis framework. In the course of this demo,
we show two approaches for the extraction of an appropriate tim-
ing model: 1) the derivation from a contract-based specification
of the software components and 2) a tracing-based approach
suitable for black-box components. We also demonstrate how
this timing model is fed into the analysis extension in order
to obtain response-time results for the task chains of interest.
Finally, we present how the developed analysis extension speeds
up the CPA and therefore enables an automated design-space
exploration and optimisation of the threads’ priority assignments
in order to satisfy the pre-defined latency requirements.

I. INTRODUCTION

Larger embedded systems are often implemented as a
collection of functions, each described as a task graph. To
derive end-to-end response times in such task graphs, we
are interested in the response times between the respective
tasks. In this paper, we are interested in task chains which are
derived from communicating software threads leading to spe-
cific task chain properties that can be exploited for response-
time analysis covering both synchronous and asynchronous
communication. Such communicating threads have become the
standard implementation vehicle, e.g. in modern automotive
software components [1] or in microkernel-based systems [2],
[3].

When we try to perform a timing analysis for these systems,
we first encounter a mismatch between the programming
model and the timing analysis model: On the one hand,
the programmer implements a thread that communicates at
arbitrary points in its execution using the available primitives
such as synchronous IPC or asynchronous notifications
which are prominent in microkernel-based systems. On the
other hand, the timing architect models the system by tasks

that are only allowed to communicate at the end of their
execution, implicitly assuming asynchronous communication
semantics.

Figure 1 shows a thread (Thread 1) that (synchronously)
calls another thread (Thread 2) at some point in its execution.
Thread 1 can only continue after the latter completed and
returned. The right side of the figure illustrates how this
scenario is reflected in the timing model by a chain of tasks
that represent the segments of the threads (1a, 2 and 1b) along
with their precedence relations.

Thread 1 Thread 2

1a

2

1b

call()

return

τ1a

τ2

τ1b

Figure 1. Communicating threads (implementation) naturally split up into a
chain of tasks (timing model).

Although this is a straightforward transformation, it already
obfuscates important information that should be respected by
the timing analysis: The task timing model does not reflect
the blocking behaviour of the synchronous call, i.e. it does
not reflect that τ1a cannot execute again before τ2 returned.
It neither represents the execution dependencies between the
thread segments, i.e. that τ1a cannot execute before τ1b fin-
ished.

In [4], we presented an extension of the busy-window
response-time analysis which exploits the particular semantics
in task chains resulting from communicating threads in static-
priority preemptive (SPP) systems. This approach is able to
cope with varying priorities along the chain and even reduces
the computational effort and overestimation in comparison to
conventional CPA.

We implemented this by means of an extension of the
pyCPA analysis framework [5], [6], which is specifically
tailored for easy and modular extensibility. This implemen-
tation augments the task graph model provided by the pyCPA
analysis kernel with additional information about the task
chains and their activation semantics: In this extended model,

63

we differentiate between the activation semantics, i.e. we
distinguish synchronous (i.e. blocking) from asynchronous
(i.e. non-blocking) edges in the task graph. As our response-
time analysis approach [4] considers entire task chains as
opposed to single tasks, we introduce a preprocessing step
in which the superordinate task chains are defined. Note that
this preprocessing can either be done manually by the designer
or timing architect, or automatically by tool support.

II. DEMO

In the scope of this demo, we will present the design
flow that can be applied for the timing verification during
the integration of component-based systems. We assume that
the implementation of the software components is already
completed and that some of the software components may
be provided by a third party, i.e. their source code is either
not available or not fully understood. Furthermore, we already
obtained a valid composition of the components either by a
manual designer-driven process or an autonomous approach
[7]. The remaining task is thus to extract a timing model for
the system in order to evaluate and explore possible scheduling
parameters. As we use SPP scheduling, the only scheduling
parameter is the priority of a thread. Our demo splits up into
a model-extraction and analysis part that we illustrate on an
exemplary but realistic application. The software components
and run-time environment used for our demonstrator are based
on the Genode OS Framework [8].

A. Model extraction

We demonstrate two methods for extracting the timing
model for a particular application in a system. On the one
hand, we apply a contract-based approach that requires a
formal description of a component, its threads and their
interaction with other components via the specified interfaces.
On the other hand, we show a tracing-based approach in which
the components’ behaviour is extracted by acquiring tracing
information of one or multiple test runs.

1) Contract-based: The contract-based model extraction
is based on an abstract formal specification of the compo-
nents implementation. In order to extract a timing model,
a component’s contract must specify an abstract task graph,
which dissects the threads into sequential parts (i.e. tasks) and
communication directives (i.e. synchronous or asynchronous
communication to another thread or another component). Each
task is annotated with an upper and lower bound on its execu-
tion time. As the communication partner is not necessarily
known during component development, the communication
directives must be (automatically) resolved after a valid com-
position is chosen in order to link the abstract task graphs of
all components. In this part, we demonstrate how our tools
automatically derive this composite timing model from the
contracts of our example application.

2) Tracing-based: For the tracing-based model extraction,
we execute the software components (i.e. their composition)
on the target platform and record their execution times and
communication pattern. For this purpose, we leverage the

existing tracing infrastructure of the Genode OS Framework
in order to record the corresponding timestamps. We further
developed a set of tools that process these traces as well as
extract and visualise Gantt charts, similar to the sequence
diagram in Figure 1, that assist the manual derivation of a
timing model. Note that these tools can also be used for a
validation of an existing timing model. It should furthermore
be mentioned, that this approach is not solely suitable for the
timing verification of critical application as, in general, the
traces do not capture the entire range of timing behaviour.

B. Analysis, evaluation and exploration

Once we acquired a timing model of our application, we can
run the response-time analysis for all paths of interest using
pyCPA and the analysis extension presented in [4]. By this, we
can explore the performance of different scheduling param-
eters and investigate their feasibility w.r.t. the applications’
latency constraints specified by contracts. We demonstrate
this by conducting an automated design-space exploration
and by visually inspecting the analysis results in relation to
the solution space defined by the contracts. This eventually
allows as to optimise the scheduling parameters and validate
the expected results by executing our example application on
our demonstrator in order to record, extract and visualise the
corresponding traces.

ACKNOWLEDGEMENTS

This work was supported by the DFG Research Unit
Controlling Concurrent Change (CCC), funding number FOR
1800. We thank the members of CCC for their support.

REFERENCES

[1] AUTOSAR website. [Online]. Available: http://www.autosar.org/
[2] PikeOS Hypervisor. [Online]. Available: https://www.sysgo.com/

products/pikeos-rtos-and-virtualization-concept/
[3] seL4 Microkernel. [Online]. Available: https://sel4.systems/
[4] J. Schlatow and R. Ernst, “Response-time analysis for task chains in

communicating threads,” in 22nd Real-Time Embedded Technology and
Applications Symposium (RTAS 2016), Vienna, Austria, April 2016.

[5] pyCPA website. [Online]. Available: https://bitbucket.org/pycpa/pycpa
[6] J. Diemer, P. Axer, and R. Ernst, “Compositional Performance Analysis

in Python with pyCPA,” in 3rd International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS), Jul.
2012.

[7] J. Schlatow, M. Moestl, and R. Ernst, “An extensible autonomous recon-
figuration framework for complex component-based embedded systems,”
in 12th International Conference on Autonomic Computing (ICAC 2015),
Grenoble, France, July 2015, pp. 239–242.

[8] Genode OS Framework. [Online]. Available: http://genode.org/

64

Run-Time Monitoring Environments for Real-Time
and Safety Critical Systems

Geoffrey Nelissen, Humberto Carvalho, David Pereira, Eduardo Tovar
CISTER/INESC TEC, ISEP

Polytechnic Institute of Porto
Porto, Portugal

Email: {grrpn, hjesc, dmrpe, emt}@isep.ipp.pt

Abstract—In this work, we present four different implementa-
tions of a run-time monitoring framework suited to real-time
and safety critical systems. Two implementations are written
in Ada and follow the Ravenscar profile, which make them
particularly suited to the development of high integrity systems.
The first version is available as a standalone library for Ada
programs while the second has been integrated in the GNAT
run-time environment and instruments the ORK+ micro-kernel.
Information on the task scheduling events, directly originating
from the kernel, can thus be used by the monitors to check if
the system follows all its requirements. The third implementation
is a standalone library written in C++ that can be used in
any POSIX compliant run-time environment. It is therefore
compatible with the vast majority of operating systems used
in embedded systems. The last implementation is a loadable
kernel module for Linux. It has for main advantage to be able
to enforce complete space partitioning between the monitors and
the monitored applications. It is therefore impossible for memory
faults to propagate and corrupt the state of the monitors.

I. INTRODUCTION

As a part of the development process of embedded systems,
there is a need to verify that the functional and timing
requirements defined in the system specifications will always
be respected after the system deployment. This is even more
important for safety critical systems, which must go through
a thorough certification process. However, with the increasing
complexity of embedded systems, it becomes always more
complicated and sometimes impossible to statically verify
offline that all the requirements will be respected at run-time.
Specifically, with the advent of multicore processors, several
new challenges arose: (i) the manufacturers sacrificed the de-
terminism of their computing platforms to improve the average
case performances, (ii) the number of applications running
concurrently on the same processor and hence competing for
the shared resources, is increased, (iii) the applications are
becoming more complex and make use of intra-task paral-
lelism to take advantage of the processing power offered by
the several cores. Additionally, the integration of applications
developed by different companies or development teams, the
utilisation of legacy code and/or the lack of access to the
source code of some of the executed functionalities, render
the verification process even more complex.

Under such conditions, it becomes unrealistic to formally
verify that all the system requirements will be respected under
any possible execution scenario. The worst-case analyses that

are usually performed before the system deployment are also
based on a set of assumptions (e.g., minimum activation
period, worst-case execution time, maximum release jitter)
that may not always be respected at run-time. For all those
reasons, run-time monitoring and run-time verification become
an interesting alternative to the traditional offline verification.
Run-time verification is based on the instrumentation of the
target applications. Monitors are then added to the system to
verify at run-time that the system requirements are respected
during the execution. If a misbehaviour is detected, an alarm
can be raised so as to trigger appropriate counter-measures
(e.g., execution mode change, reset or deactivation of some of
the functionalities).

Run-time monitoring and verification can be used during the
system development phase to test and debug the applications.
However, the monitors can also be left in the system after its
deployment, in which case they play the role of a safety net,
preventing the system to enter in an unexpected or dangerous
state.

Safety related standards recommend the use of run-time
monitoring and verification solutions in safety critical systems
[1]–[3]. However, their use is not limited to safety critical
applications. They can be very useful for the development of
mission critical and business critical applications, or simply to
improve the reliability of any embedded system.

II. REFERENCE ARCHITECTURE

In [4], a reference architecture for a safe and reliable run-
time monitoring framework was proposed. This architecture is
depicted on Figure 1. It is based on four main components: (i)
event buffers in which events (i.e., a timestamp associated to a
data) can be pushed by the instrumented application, (ii) event
writers used by the monitored application to push events in the
buffers, (iii) event readers that may be used by the monitors
to access the events that are saved in the buffers, and (iv)
monitors, implemented as periodic tasks, that read events and
check that the application respect its specifications.

As shown on Figure 1, there can be only one writer per
buffer. This avoids parallel accesses to the same buffer, which
may have lead to unwanted blocking times. Thanks to this
restriction, the writing operation in a buffer is wait free. There
can however be more than one reader connected to the same

65

Run-Time Environment

Event Buffer 1

Event Buffer 2

Event Buffer 3

Event Buffer n

Task t

Task 1

Running
on

Monitor
m

Monitor
1

Running
on

Pushes
Events Pops

Events

Handler

Handler

Triggers

Triggers

Acts upon

Acts
upon

...

Event writer

Event reader

...

...

Fig. 1. Run-time monitoring reference architecture [4].

buffer, which allows several monitors to use the same events
in parallel.

III. IMPLEMENTATIONS FOR DIFFERENT EXECUTION
ENVIRONMENTS

Four different implementations of the reference architecture
proposed in [4] have been developed and should be presented
during the demo session.

A. Ravenscar Compliant Ada Library

The first implementation is written in Ada, a programming
language particularly suited to the development of critical
applications. The library respects all the restrictions associated
with the Ada Ravenscar profile [5]. The Ravenscar profile
was defined to ensure timing predictability and hence ease
the timing analysis of critical applications, by enforcing strict
coding rules.

The developed library can be used in any application written
in Ada (Ravenscar compliant or not). It provides all the needed
facilities to instantiate monitors, buffers, buffer readers and
writers discussed above.

B. Integration in the ORK+ Micro-Kernel

ORK+ is a Ravenscar compliant micro-kernel [6] imple-
mented in Ada and integrated in the GNAT GPL 2011 compi-
lation system developed by AdaCore. The kernel is packaged
together with the compiler and the other libraries proposed
by the GNAT runtime environment. ORK+ is currently one
of the reference run-time environments in the ESA EagleEye
reference mission [7] used for testing new technologies for
future space applications.

The Ada library mentioned in the previous section was
added to the GNAT runtime environment and has been used to
instrument the ORK+ micro-kernel. This means that monitors
can now have access to task scheduling related events extracted
directly at the kernel level. Those events are saved in a set
of predefined buffers that can be accessed by user-defined
monitors.

C. POSIX Compliant C++ Library

The third implementation is written C++ and assumes a
POSIX execution environment. It can thus be used in a vast

majority of real-time operating systems available for embed-
ded applications (e.g., Linux, RTEMS, ...). Similarly to the
Ada library, the C++ version offers all the facilities required
for the implementation of an efficient run-time verification
framework compliant with the reference architecture described
in Section II. Each monitor is encapsulated in a POSIX thread
which is periodically executed.

D. Integration in Linux as a Kernel Module

In addition to the POSIX implementation, a loadable kernel
module has been implemented for Linux. The major advan-
tage of this Linux implementation is that it achieves total
space partitioning. Indeed, the monitors can be instantiated
in different processes than the monitored application. As each
process runs within its own virtual sandbox, it is impossible
for a monitor or a monitored application generating memory
errors to corrupt monitors instantiated in other processes.
Additionally, the buffers are living at the kernel level while
the monitors and monitored applications are instantiated at
the user level. Given that the event buffers are allocated in
kernel memory, they cannot be corrupted, and will persist
even if the monitored application crashes, thereby allowing
the monitors to continue extracting critical information even
when the system malfunctions. Finally, kernel land allows for
finer-grained control over the hardware. The preemptions can
thus be disabled during critical sections, guaranteeing wait-
free read and write operations in the buffers.

IV. DEMONSTRATION

During the demo session, we will (i) show how applications
running in the different execution environments described in
the previous section can easily be instrumented, (ii) show how
monitors can be implemented either for logging, for runtime
verification purposes or for providing adaptive capabilities to
the instrumented application, (iii) provide indications on the
impact of the framework on the application performances.

Acknowledgments.This work was partially supported by National Funds through
FCT/MEC (Portuguese Foundation for Science and Technology) and co-financed by
ERDF (European Regional Development Fund) under the PT2020 Partnership, within
project UID/CEC/04234/2013 (CISTER); also by FCT/MEC and the EU ARTEMIS
JU within project(s) ARTEMIS/0003/2012 - JU grant nr. 333053 (CONCERTO) and
ARTEMIS/0001/2013 - JU grant nr. 621429 (EMC2).

REFERENCES

[1] DO-178C, Software Considerations in Airborne Systems and Equipment
Certification. RTCA, Inc., 2011.

[2] ISO26262, Road vehicles Functional safety. ISO, 2011.
[3] A. Esper, G. Nelissen, V. Nélis, and E. Tovar, “How realistic is the

mixed-criticality real-time system model?” in Proceedings of the 23rd
International Conference on Real Time and Networks Systems. ACM,
2015, pp. 139–148.

[4] G. Nelissen, D. Pereira, and L. M. Pinho, “A novel run-time monitoring
architecture for safe and efficient inline monitoring,” in Reliable Software
Technologies–Ada-Europe 2015. Springer, 2015, pp. 66–82.

[5] A. Burns, B. Dobbing, and T. Vardanega, “Guide for the use of the ada
ravenscar profile in high integrity systems,” ACM SIGAda Ada Letters,
vol. 24, no. 2, pp. 1–74, 2004.

[6] Universidad Politécnica de Madrid, “ORK+,” 2014. [Online]. Available:
http://www.dit.upm.es/ str/ork/index.html

[7] V. Bos, P. Mendham, P. K. Kauppinen, N. Holst, A. Crespo Lorente,
M. Masmano, J. A. d. l. Puente Alfaro, and J. R. Zamorano Flores, “Time
and space partitioning the eagleeye reference mission,” 2013.

66

Timing Aware Hardware Virtualization on the L4Re
Microkernel System

Adam Lackorzynski†,‡, Alexander Warg†

Kernkonzept GmbH† Technische Universität Dresden‡

Dresden, Germany Operating-Systems Group
Dresden, Germany

Email: adam.lackorzynski@kernkonzept.com, adam.lackorzynski@tu-dresden.de
alexander.warg@kernkonzept.com

Abstract—Hardware virtualization support has found its way
into real-time and embedded systems. It is paramount for an
efficient concurrent execution of multiple systems on a single
platform, including commodity operating-systems and their ap-
plications. Isolation is a key feature for these systems, both
in the spatial and temporal domain, as it allows for secure
combinations of real-time and non real-time applications. For
such requirements, microkernels are a perfect fit as they provide
the foundation for building secure as well as real-time aware sys-
tems. Lately, microkernels learned to support hardware-provided
virtualization features, morphing them into microhypervisors. In
our demo, we show our open-source and commercially supported
L4Re system running Linux and FreeRTOS side by side on a
multi-core ARM platform. While for Linux we use the hardware
features for virtualization, i.e., ARM’s virtualized extension, we
revert to paravirtualization for running the FreeRTOS guest.
Paravirtualization adapts the guest kernel to run as a native
application on the microkernel. For simple guests that do not
use advanced hardware features such as virtual memory and
multiple privilege levels, virtualization is simplified and the state
of a virtual machine is significantly reduced, improving interrupt
delivery and context switching latency. Both guests as well as the
native application drive LEDs to exemplify steering actual devices
as well as to show their liveliness. Taking down the Linux guest
will not disturb the others.

I. INTRODUCTION

Virtualization technology enables many interesting appli-
cation scenarios, which require combining commodity off-the-
shelf applications and real-time tasks in a secure, dependable
and, most importantly, timing preserving manner. For example,
cyber-physical systems such as autonomous cars, UAVs for
wood-fire detection and SCADA systems, which besides many
applications control our power grid, combine latency sensitive
tasks such as model predictive control tasks for engines and
road situations, flight stabilization and grid stability with
maintenance tasks or other, less timing critical tasks that
benefit greatly from the extended execution environments of
commodity operating-systems (OSs).

Consider, for example, an autonomous driving scenario. As
long as a safe exit to the emergency lane can be maintained
at all points in time and in all situations and as long as this
exit route can be executed entirely in the real-time subsystem,
resource intensive tasks such as vision, scenery analysis and
maneuver planning can remain in rich commodity environ-
ments, which speed up development time and reduce costs
but sacrifice stringent timing guarantees. The aforementioned

assumptions allow the real-time system to transition into a fail-
safe mode for those situations where the commodity operating
system ceases to respond in a timely manner.

However, for real-time tasks to operate reliably next to
commodity OSs and their applications, faults in the latter must
be confined and timing guarantees of the former preserved.

NXP TWR-LS1021A

L4Re RT Microkernel & Hypervisor

Virtual Machine
Linux

Virtual Machine
FreeRTOS

L4Re
Management

Console
Mux

Fig. 1. Demo Setup, virtualized Linux and FreeRTOS running on an ARM
platform.1

In this demo, we show how our open-source and commer-
cially supported L4Re microkernel system [1], [2] exploits
ARMv7’s hardware virtualization capabilities to consolidate
Linux and FreeRTOS on a multi-processor platform. The
commodity OS Linux and the real-time kernel FreeRTOS
are run independently of each other in two virtual machines
(VMs), which prevents any malfunctioning of one to affect the
other. While for Linux we use ARM’s hardware virtualization
capabilities, the FreeRTOS guest is paravirtualized.

II. THE L4RE MICROKERNEL SYSTEM

L4Re is a capability-based third-generation microkernel-
based system [1]. It evolved starting from the DROPS real-time
system [3], later including secure system construction [4] and
a major interface redesign towards a capability-driven security
model [2] while keeping its real-time roots. With L4Re one can
now securely isolate real-time and non real-time applications
in a single system.

1Tux logo copyright by Larry Ewing, Simon Budig, Anja Gerwinski;
FreeRTOS logo from http://www.freertos.org/

1

67

The system consists of the L4Re kernel and the L4Re user-
level infrastructure that provides the necessary framework to
build a wide range of applications, including services. Through
its capability design and thus the inherent local naming
scheme, interposing interfaces has become an essential part
of the system, which allows easily exchanging and enhancing
of the functionality of the system. For example, by interposing
part of the scheduling interface, new core placement policies
can be added and efficiently executed.

III. HARDWARE VS. SOFTWARE VIRTUALIZATION

Classical real-time operating systems, such as FreeRTOS,
run on systems that do not provide hardware features for
isolation, such as virtual memory and multiple privilege levels.
Thus, the virtualization requirements for such guests are much
simpler, allowing them to be virtualized as a native user-level
process of the microkernel. In comparison to a hardware-
virtualized virtual machine, the state of such a task, which
is to be maintained and stored by the kernel during a context
switch, is much smaller. Therefore, unless additional hardware
is added to simultaneously maintain multiple virtual machines,
paravirtualization reduces interrupt latency by requiring the
kernel to capture only the user-level state of paravirtualized
guests.

To further reduce this latency while allowing for fine
grained control and scheduling of VM interrupts, we imple-
mented the scheduling context scheme proposed in [5]. In this
scheme, multiple scheduling contexts (an abstraction of time)
can be attached to threads and VMs be activated upon arrival
of an interrupt. Upon such an arrival, the host kernel sched-
uler compares the interrupt’s and current scheduling context’s
priority to determine whether it can inject this interrupt and
schedule the VM immediately or whether a higher prioritized
task is present.

For commodity operating systems (such as Linux), virtual-
ization is more involved. These systems use multiple privilege
levels and virtual memory, which evades a naive virtualization
using a user-level task. Although, source availability provided,
it is possible to para-virtualize these systems [6], [7], hardware
features for virtualization offer a major benefit as they provide
additional privilege levels and virtual memory capabilities [8],
[9]. However, these additional hardware features come at the
cost of a larger state to be context switched, which translates
to higher latencies and response times.

IV. BEYOND VIRTUALIZING GUEST OSS

While virtualization is a crucial feature to isolate sub-
systems, virtualization by itself is not of much use. Instead,
tasks, which implement a functionality while running inside
the VMs, must also be able to interact with the outside
world through sensors, actuators and other devices. Of course,
guarantees about the timeliness of such device accesses must
be preserved by the virtualization layer, in particular if part of
the system becomes compromised.

To exemplify this requirement in our demo, the virtualized
guest OSs (Linux and FreeRTOS) each steer an LED as
an example of a more complex device and to report their
health status. In addition, a native task of the host system

performs the same operation to resemble scenarios where real-
time functionality is implemented as native L4Re applications.
Figure 1 shows this setup.

In the demo, the Linux guest can be commanded interac-
tively and none of the activities within the Linux, including
crashing the whole VM, shall affect the execution of the
FreeRTOS guest or of the native application. The LEDs of
the application and FreeRTOS task display the situation ac-
cordingly by showing no difference in their blinking behavior
while the LED driven by Linux will eventually stop blinking.
It remains in the state, which corresponds to the last setting
made by Linux.

This elementary demo setup shall illustrate what is possible
on modern microkernel-based systems today and inspire more
sophisticated usage scenarios. We invite everyone interested to
try out the open-source L4Re system, available at [1].

REFERENCES

[1] “L4Re microkernel system,” https://l4re.org/.
[2] A. Lackorzynski and A. Warg, “Taming Subsystems: Capabilities as

Universal Resource Access Control in L4,” in IIES ’09: Proceedings of
the Second Workshop on Isolation and Integration in Embedded Systems.
Nuremberg, Germany: ACM, 2009, pp. 25–30.

[3] H. Härtig, R. Baumgartl, M. Borriss, C.-J. Hamann, M. Hohmuth,
F. Mehnert, L. Reuther, S. Schönberg, and J. Wolter, “DROPS: OS
support for distributed multimedia applications,” in Proceedings of the
Eighth ACM SIGOPS European Workshop, Sintra, Portugal, Sep. 1998.

[4] H. Härtig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzynski,
F. Mehnert, and M. Peter, “The Nizza Secure-System Architecture,” in
In IEEE CollaborateCom 2005. IEEE Press, 2005.

[5] A. Lackorzynski, M. Völp, and A. Warg, “Flat but trustworthy:
Security aspects in flattened hierarchical scheduling,” SIGBED Rev.,
vol. 11, no. 2, pp. 8–12, Sep. 2014. [Online]. Available: http:
//doi.acm.org/10.1145/2668138.2668139

[6] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter, “The
performance of µ-kernel-based systems,” in Proceedings of the 16th ACM
Symposium on Operating System Principles (SOSP), Saint-Malo, France,
Oct. 1997, pp. 66–77.

[7] “L4Linux,” https://l4linux.org/.
[8] ARM Limited, ARM Architecture Reference Manual, ARMv7-A and

ARMv7-R edition, ARM DDI 0406C.c ed., 2014.
[9] Intel Corporation, Intel R© 64 and IA-32 Architectures Software Devel-

oper’s Manual Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B, 3C and 3D,
325462-057US, December 2015 ed., 12 2015.

2

68

Predictable SoC architecture based on COTS
multi-core

Nitin Shivaraman
Nanyang Technological University

Email: nshivaraman@ntu.edu.sg

Sriram Vasudevan
Nanyang Technological University

Email: sriram006@e.ntu.edu.sg

Arvind Easwaran
Nanyang Technological University

Email: arvinde@ntu.edu.sg

Abstract—With the increasing complexity of real-time embed-
ded applications and the availability of Commercial-Off-The-
Shelf (COTS) multi-cores, time-predictable execution on these
platforms has become a necessity. However, there are several
challenges to achieving this predictability, primarily arising
due to hardware resources shared between the cores (memory
controllers, caches and shared interconnect).

In this demo, we present a novel System-on-Chip (SoC) archi-
tecture based on COTS multi-cores that address some of these
challenges. Specifically, we develop an architecture that enables
COTS multi-cores to predictably access external memory. This
SoC is designed using hybrid hardware platforms comprising
a COTS multi-core and closely coupled Field Programmable
Gate Array (FPGA), e.g., Xilinx Zynq ZC706. In our design,
the COTS multi-core (ARM Cortex-A9 dual-core) is integrated
using a high-speed interconnect with an arbiter module and the
Memory Interface Generator (MIG) Xilinx memory controller
on the FPGA. Through experiments we show that the proposed
architecture has a precisely predictable worst-case memory access
latency when compared to a COTS-only design.

I. INTRODUCTION

Embedded systems support time-critical and safety-critical
functionalities such as those applications in automotive, avion-
ics, medical systems, etc. In such Real-Time Systems (RTS),
being able to predict the Worst-Case Execution Time (WCET)
of the application on the underlying hardware platform is an
essential requirement and we refer to this property as time-
predictability. In order to support the increasing hardware
performance demands of such RTS, multi-core processors
seem like a natural choice. One of the primary advantages of
using multi-cores is its Size, Weight and Power (SWaP) char-
acteristics making the die fit into a single package. Execution-
time of an application running on a core depends on how the
application on the other cores uses the shared resources of
the multi-core. Additionally, COTS multi-cores are generally
preferable in safety-critical applications due to a long service
history in a variety of applications. The proposed architecture
illustrates the potential of using COTS multi-cores together
with closely coupled Programmable Logic (PL) for real-time
embedded applications with strict timing requirements. We use
Xilinx Zynq ZC706 platform for this demo to illustrate the
predictability of the architecture.

II. RELATED WORK

Several studies have been done to obtain predictability
in COTS multi-cores. Some of these focused on analytical

techniques to estimate the WCET (e.g., [1] and [2]). These
techniques have limited applicability due to either unrealistic
assumptions or lack of information about the architecture.

There have also been several studies that propose mod-
ifications to the hardware such as arbitration schemes for
interconnect and controllers (e.g., [3], [4], [5], [6] and [7]).
However, they do not address the problem of how COTS
multi-cores can be modified to provide such capabilities.
Our customizable SoC architecture is built to address this
problem. Also, the techniques proposed in the above studies
are orthogonal to our work and can be implemented in the PL
of our architecture.

Another category of research focuses on building the entire
multi-core from scratch on FGPA (e.g., [8]). Considering
the SWaP characteristics and service history of COTS multi-
cores against FPGA-based designs, our architecture offers the
advantage of using as many COTS components as possible
with minimal support from FPGAs.

The work by Sha et.al. proposes single core equivalence
of multi-core processors by combining different software-
level techniques to address predictability challenges of various
shared hardware components [9]. Such software-level mech-
anisms have limitations in terms of the arbitration policies
that can be implemented, and may also have substantial
implementation overheads.

III. PROPOSED ARCHITECTURE

The proposed architecture is shown in Figure 1. In this
design, memory requests from the Processing System (PS)
are re-routed to the FPGA/PL and eventually sent to the DDR
which is connected to the PL. The key idea of this design
is that the components that have been identified to cause
unpredictability in COTS multi-cores (memory controllers,
cache hierarchy and shared interconnect) are disabled and their
functionalities are handled separately on the FPGA. This gives
us the flexibility to provide custom solutions to handle memory
requests in a predictable manner.

In this initial phase of the architecture, we disable caches at
all levels as we focus on the feasibility of predictably routing
memory requests from PS to PL. As seen from Figure 1, the
memory access requests from the cores bypass the Snoop
Control Unit (SCU), the L1 and L2 caches and arrives at
the master interconnect. As the cores are address mapped
to the General Purpose port 1 (GP port physically connects

69

Fig. 1. Predictable SoC architecture

the ARM cores with the FPGA), the request that arrives
at the interconnect pass through this port and are received
by the First In First Out (FIFO) buffers which are present
in the arbiter module of the design. There are two separate
buffers which collect the memory requests based on the core
that generates the request. The arbiter module implements a
round-robin arbitration scheme based on which it selects the
memory request from the buffers and sends them to the Mem-
ory Interface Generator (MIG) memory controller [10]. This
arbiter module manages the scheduling of requests external
to the MIG controller thereby providing memory access in a
predictable fashion. MIG interfaces to a PHY (physical layer)
which in turn connects to the external DDR memory.

IV. DEMO

In this demo, we show the predictability of the proposed
architecture by performing two different experiments and
displaying the output as graphs. The experiment setup would
consist of the Xilinx Zynq ZC706 board connected to a host
for programming and UART display. The first experiment is to
measure the latency for each memory transaction (reads and
writes) and the second is to measure the throughput of the
architecture. The experiment details are presented below:

1) For single core latency experiments, we perform 100
memory transactions of which every 10 transactions are
to a single row. After 10 transactions we switch to a
new row. All transactions are performed to the same
bank. This would demonstrate the predictable nature of
access. We will also be able to observe row switching
and refresh in the DDR memory precisely.

2) For all dual core experiments, we shall use core 0 as the
observing (measuring) core and core 1 will be the one
which causes interference.

3) For dual core latency experiments, we perform 100
memory transactions from core 0 to a single row and a
single bank. On the other hand, core 1 will continuously
perform memory transactions to the same row and bank
in a loop. This is done to make sure that core 0 memory
transactions suffer sufficient interference from memory
transactions of core 1.

4) For latency experiments, to measure the time for each
memory transaction, we initially measure the overhead
of the timer (global clock of Zynq 706) by starting
and halting the timer without performing any memory
transaction. This overhead is subsequently negated from
the time measured for all memory transactions.

5) The results of the experiments are plotted as a histogram
of latency versus the frequency of occurrence of the
latencies. This would show the evidence of the different
latencies measured, described in steps 1 and 3.

V. WORK IN PROGRESS

The main contribution of this work is to demonstrate an
architecture which uses COTS multi-core extensively and
supported by logic on FPGA to predictably access memory.
This initial design has the MIG memory controller which is
externally supported by an arbiter module which predictably
schedules memory transactions from both the cores. However,
the arbiter has an overhead which reduces the throughput of
the current architecture. The private and shared caches are also
disabled in this architecture.

The next step to this work in progress is to replace the
MIG with our custom memory controller solution. The custom
memory controller solution will integrate the arbiter unit along
with the memory controller which will not only help to
improve the throughput but also help to implement fine grain
arbitration techniques. The inclusion of a predictable caching
architecture is also a part of the future work to make the
architecture robust and practical to be used in RTS.

ACKNOWLEDGMENT

This work was funded in part by MoE Tier-1 grant number
RG21/13.

REFERENCES

[1] M. Lv, W. Yi, N. Guan, and G. Yu, “Combining abstract interpretation
with model checking for timing analysis of multicore software,” in RTSS,
2010 IEEE 31st, Nov 2010, pp. 339–349.

[2] D. Hardy and I. Puaut, “WCET analysis of multi-level set-associative
instruction caches,” CoRR, vol. abs/0807.0993, 2008.

[3] M. Paolieri, E. Quiones, F. Cazorla, and M. Valero, “An analyzable
memory controller for hard real-time cmps,” Embedded Systems Letters,
IEEE, vol. 1, no. 4, pp. 86–90, Dec 2009.

[4] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “Pret dram
controller: Bank privatization for predictability and temporal isolation,”
ser. CODES+ISSS ’11, pp. 99–108.

[5] Y. Krishnapillai, Z. P. Wu, and R. Pellizzoni, “A rank-switching, open-
row dram controller for time-predictable systems,” in Real-Time Systems
(ECRTS), 2014 26th Euromicro Conference on, July 2014, pp. 27–38.

[6] E. Lakis, “FPGA implementation of a time predictable memory con-
troller for a chip-multiprocessor system,” Master’s thesis, Technical
University of Denmark, DTU, 2013.

[7] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: A predictable
sdram memory controller,” ser. CODES+ISSS ’07, 2007, pp. 251–256.

[8] M. Paolieri, J. Mische, S. Metzlaff, M. Gerdes, E. Quiñones, S. Uhrig,
T. Ungerer, and F. J. Cazorla, “A hard real-time capable multi-core smt
processor,” ACM Trans. Embed. Comput. Syst., vol. 12, no. 3, Apr. 2013.

[9] L. Sha, M. Caccamo, R. Mancuso, J.-E. kim, M.-K. Yoon, R. Pelliz-
zoni, H. Yun, R. Kegley, D. Perlman, G. Arundale, and R. Bradbord,
“Single core equivalent virtual machines for hard real-time computing
on multicore processors,” Tech. Rep., 2014.

[10] Zynq-7000 SoC and 7 Series Devices Memory Interface Solutions.
http://www.xilinx.com/products/intellectual-property/mig.html

70

A real-time low datarate protocol for cooperative

mobile robot teams

Gaetano Patti*, Giovanni Muscato*, Nunzio Abbate
#
, Lucia Lo Bello*

* Department of Electrical, Electronics and Computer Engineering, University of Catania, Catania, Italy

{gaetano.patti, lobello}@unict.it, giovanni.muscato@dieei.unict.it

#
 STMicroelectronics, Catania, Italy

nunzio.abbate@st.com

I. INTRODUCTION

Mobile cooperating robot teams are increasingly used in
several applications, for instance, to access and explore
dangerous areas for humans (e.g., nuclear plants, minefields or
volcanoes). As in these applications the mobile robots have to
communicate in order to cooperate and fulfill a common task,
communication plays a key role and has to meet the
requirements imposed by the applications [1], i.e., bounded
end-to-end delays, mobility support, high scalability, and low
costs. Recent works investigate the combination between
cooperating mobile robot applications and Wireless Sensor
Networks (WSNs), e.g., applications in which mobile robots
are considered the mobile sensors of a WSN [2]. This demo
presents RoboMAC, a new MAC protocol for communicating
between mobile cooperating robots. RoboMAC enables the
integration of robots with WSNs, supports real-time
communications and mobility, and provides high scalability.
RoboMAC was implemented on the STMicroelectronics
SPIRIT1 Sub-GHz devices, which operate on less crowded
frequencies than the other Industrial, Scientific and Medical
(ISM) ones and provide a higher radio coverage.

The main contributions of RoboMAC are summarized
below.

 It enables the integration of robots with WSNs, being
specifically devised for low datarate communications.

 It provides support to mobility, combining clustering
with a distributed topology management mechanism
based on Received Signal Strength Indicator (RSSI)
assessments.

 It provides scalable real-time communications thanks
to the combination of a TDMA-based mechanism
with multichannel transmissions and clustering.

II. OVERVIEW ON THE ROBOMAC PROTOCOL

As mentioned in the Introduction, the RoboMAC protocol
aims to provide bounded delays, mobility support, scalability,
and low cost. The way RoboMAC achieves each of these
properties is described in the following.

A. Bounded delays

To provide bounded delays, a TDMA transmission scheme
is implemented, in which the time is divided into superframes,
which are cyclically repeated. Each superframe is, in turn,
divided into slots. A node is assigned one or more slots in
which it is allowed to transmit a single frame. In RoboMAC
each node schedules its messages according to their priority.
Here static priorities are assumed, which derive from and
depend on the application. In Fig. 1. The RoboMAC node
architecture is shown. The MAC layer provides two sublayers,
i.e., the Medium Access and Synchronization sublayer and the
Clustering and Routing one. The upper sublayer communicates
with the lower one through two prioritized queues (i.e., the
IntraCluster and the InterCluster PrioQueue, respectively) for
the frame transmissions, and one FIFO queue for the incoming
frames.

Node synchronization is achieved by taking into account
the transmission time of other nodes. As the start time of a
frame transmission is known to all the network nodes, when a
node receives a frame it calculates the difference between the
expected reception time of the first byte of the frame and the
actual time at which such a byte is received. Such a value is the
time difference between the two nodes. If the frame is received
outside a guard interval, it is not taken into account for the
synchronization. The guard interval is the same for all the

Figure 1 Node architecture

M
A

C
 L

ay
er

Medium Access and Synchronization

Clustering and Routing

Application

SPIRIT1 Transceiver (PHY Layer)

InterCluster

PrioQueue

IntraCluster

PrioQueue
FIFO

Queue

71

network nodes and it depends on the maximum
synchronization skew supported by the application.

B. Scalability

To efficiently support large networks, in RoboMAC the
nodes are organized in clusters, depending on their position in
the network (i.e., the nodes that are close to each other belong
to the same cluster). During the network initialization, the
position of network nodes is estimated by exchanging a matrix
containing the Received Signal Strength Indicators (RSSI),
which holds the link relations between the nodes. In this way
the nodes are aware of the network topology. Two
transmission channels are used, one for intracluster
communications, the other for intercluster ones. Intercluster
communications are allowed between the nodes of two clusters
when the relevant clusters do not have on-going intracluster
communications.

Figure 2 RoboMAC network example.

Looking at the example in Fig. 2, during the slots assigned
to the Cluster 2 nodes (i.e., Nodes 3, 4, and 5), the nodes of
Clusters 0, 1 and 3 can communicate on a different channel
provided that the message destination does not belong to
Cluster 2. Intercluster slots are assigned to the nodes in turn.

C. Mobility support

RoboMAC provides dynamic clusters, so their composition
varies over time. In fact, due to the mobility, the distances
change, and so the RSSI. For this reason RoboMAC provides a
distributed topology management, which is based on the RSSI
that is regularly acquired during the communications. Mobility
issues, like the unpredictability of the network topology, are
solved transmitting either intercluster or intracluster topology
information within the header of each frame.

D. Low cost

The RoboMAC protocol has been implemented on the
STMicroelectronics STEVAL-IKR002V5 [3] board (Fig. 3), a
commercial-off-the-shelf device available at low cost.

III. THE DEMO

The demo presents the RoboMAC protocol implementation
on the STMicroelectronics STEVAL-IKR002V5 board, which
is composed of a motherboard equipped with a STM32L1
family microcontroller (MCU) and the SPIRIT1 transceiver,
which operates at 915MHz and provides a datarate of 250kbps.
The communication between the MCU and the transceiver
goes through the SPI port, which operates at 1Mbps.

The slot duration is configured so as to accommodate the
delays caused from the communication between the transceiver
and the MCU, the channel switching time, and the transmission
delay.

The demo will show the protocol in a scenario made up of 5
nodes. One board is connected to a PC that acts as a graphical
interface to show, online, the network status, the transmitted
frames, and the relevant timings.

Figure 3. STMicroelectronics STEVAL-IKR002V5 boards.

During the interactive session the RoboMAC protocol
configuration will be shown. Several examples of
communications will demonstrate how the protocol works and
how it can offer bounded latencies (in the order of hundreds of
milliseconds) on COTS low datarate devices. Moreover,
several videos of cooperative mobile robot applications will be
shown. In the first application two robots (Fig. 4) cooperate to
search a radio target that periodically transmits beacons, while
in the second application the two robots cooperate in order to
maintain the connectivity during the exploration of an area.

Figure 4. The cooperating robots during an experiment.

Experimental results, in terms of maximum message latencies
and packet loss ratio of the two cooperative mobile robot
applications will be also presented.

REFERENCES

[1] G. Patti, G. Muscato, N. Abbate, and L. Lo Bello, “Towards Low-

datarate Communications for Cooperative Mobile Robots”, IEEE World
Conference on Factory Communication Systems (WFCS), Palma de

Mallorca, Spain, 27-29 May 2015.

[2] A. Koubaa and J.Ramiro Martínez-de Dios, Eds., Cooperative Robots
and Sensor Networks 2015, ser. 604. Springer, 2015.

[3] STMicroelectronics STEVAL-IKR002V5, “SPIRIT1 - low data rate

transceiver - 915 MHz - full kit”, A pr. 2014, online available:
http://www.st.com/st-web-

ui/static/active/en/resource/technical/document/data_brief/DM00093462
.pdf.

72

