A biophysical model of brain deformation to simulate and analyze longitudinal MRIs of patients with Alzheimer's disease

Abstract : We propose a framework for developing a comprehensive biophysical model that could predict and simulate realistic longitudinal MRIs of patients with Alzheimer's Disease (AD). The framework includes three major building blocks: i) Atrophy generation ii) Brain deformation iii) Realistic MRI generation. Within this framework, this paper focuses on a detailed implementation of the brain deformation block with a carefully designed biomechanics-based tissue loss model. For a given baseline brain MRI, the model yields a deformation field imposing the desired atrophy at each voxel of the brain parenchyma while allowing the CSF to expand as required to globally compensate for the locally prescribed volume loss. Our approach is inspired by biomechanical principles and involves a system of equations similar to Stokes equations in fluid mechanics but with the presence of a non-zero mass source term. We use this model to simulate longitudinal MRIs by prescribing complex patterns of atrophy. We present experiments that provide an insight into the role of different biomechan-ical parameters in the model. The model allows simulating images with exactly the same tissue atrophy but with different underlying deformation fields in the image. We explore the influence of different spatial distributions of atrophy on the image appearance and on the measurements of atrophy reported by various global and local atrophy estimation algorithms. We also present a pipeline that allows evaluating atrophy estimation algorithms by simulating longitudinal MRIs from large number of real subject MRIs with complex subject-specific atrophy patterns. The proposed framework could help understand the implications of different model assumptions, regularization choices and spatial priors for the detection and measurement of brain atrophy from longitudinal brain MRIs.
Type de document :
Article dans une revue
NeuroImage, Elsevier, 2016, 134, pp.35-52. 〈10.1016/j.neuroimage.2016.03.061〉
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01305755
Contributeur : Bishesh Khanal <>
Soumis le : jeudi 21 avril 2016 - 17:06:56
Dernière modification le : vendredi 12 janvier 2018 - 11:02:36
Document(s) archivé(s) le : mardi 15 novembre 2016 - 09:11:01

Fichier

Khanal_2016_NeuroImage_accepte...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Bishesh Khanal, Marco Lorenzi, Nicholas Ayache, Xavier Pennec. A biophysical model of brain deformation to simulate and analyze longitudinal MRIs of patients with Alzheimer's disease. NeuroImage, Elsevier, 2016, 134, pp.35-52. 〈10.1016/j.neuroimage.2016.03.061〉. 〈hal-01305755〉

Partager

Métriques

Consultations de la notice

241

Téléchargements de fichiers

175