D. Acemoglu, M. Mostagir, and A. Ozdaglar, Managing innovation in a crowd, Proceedings of the Sixteenth ACM Conference on Economics and Computation EC '15, ACM, pp.283-283

Y. Amsterdamer, S. B. Davidson, T. Milo, S. Novgorodov, and A. Somech, OASSIS, Proceedings of the 2014 ACM SIGMOD international conference on Management of data, SIGMOD '14, pp.589-600, 2014.
DOI : 10.1145/2588555.2610514

M. A. Bender, M. Farach-colton, G. Pemmasani, S. Skiena, and P. Sumazin, Lowest common ancestors in trees and directed acyclic graphs, Journal of Algorithms, vol.57, issue.2, pp.75-94, 2005.
DOI : 10.1016/j.jalgor.2005.08.001

A. Bozzon, M. Brambilla, S. Ceri, M. Silvestri, and G. Vesci, Choosing the right crowd, Proceedings of the 16th International Conference on Extending Database Technology, EDBT '13, pp.637-648, 2013.
DOI : 10.1145/2452376.2452451

K. Bradley, R. Rafter, and B. Smyth, Case-based user profiling for content personalization, Proceedings of the International Conference on Adaptive Hypermedia and Adaptive Web-based Systems, pp.62-72, 2000.

M. A. Campion, A. A. Fink, B. J. Ruggeberg, L. Carr, G. M. Phillips et al., DOING COMPETENCIES WELL: BEST PRACTICES IN COMPETENCY MODELING, Personnel Psychology, vol.5, issue.1, pp.225-262, 2011.
DOI : 10.1111/j.1744-6570.2010.01207.x

C. C. Cao, J. She, Y. Tong, C. , and L. , Whom to ask?, Proc. VLDB Endow, pp.11-1495, 2012.
DOI : 10.14778/2350229.2350264

M. C. Desmarais and R. S. Baker, A review of recent advances in learner and skill modeling in intelligent learning environments, User Modeling and User-Adapted Interaction, vol.61, issue.4, pp.1-2, 2012.
DOI : 10.1007/s11257-011-9106-8

M. Enrich, M. Braunhofer, and F. Ricci, Cold-Start Management with Cross-Domain Collaborative Filtering and Tags, of Lecture Notes in Business Information Processing, pp.101-112, 2013.
DOI : 10.1007/978-3-642-39878-0_10

J. Fan, G. Li, B. C. Ooi, K. Tan, J. Feng et al., An adaptive crowdsourcing framework, Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data SIGMOD '15, pp.1015-1030, 2015.

D. R. Karger, S. Oh, and D. Shah, Budget-Optimal Task Allocation for Reliable Crowdsourcing Systems, Operations Research, vol.62, issue.1, pp.1-24, 2014.
DOI : 10.1287/opre.2013.1235

H. W. Kuhn, The Hungarian method for the assignment problem, Naval Research Logistics Quarterly, vol.3, issue.1-2, pp.83-97, 1955.
DOI : 10.1002/nav.3800020109

X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu et al., CDAS, Proceedings of the VLDB Endowment, pp.10-1040, 2012.
DOI : 10.14778/2336664.2336676

K. Maarry, W. Balke, H. Cho, S. Hwang, and Y. Baba, Skill Ontology-Based Model for Quality Assurance in Crowdsourcing, Database Systems for Advanced Applications, pp.376-387, 2014.
DOI : 10.1007/978-3-662-43984-5_29

S. E. Middleton, N. R. Shadbolt, D. Roure, and D. C. , Ontological user profiling in recommender systems, ACM Transactions on Information Systems, vol.22, issue.1, pp.54-88, 2004.
DOI : 10.1145/963770.963773

L. Mo, R. Cheng, B. Kao, X. S. Yang, C. Ren et al., Optimizing plurality for human intelligence tasks, Proceedings of the 22nd ACM international conference on Conference on information & knowledge management, CIKM '13, pp.1929-1938, 2013.
DOI : 10.1145/2505515.2505755

H. Rahman, S. Thirumuruganathan, S. B. Roy, S. Amer-yahia, and G. Das, Worker skill estimation in team-based tasks, Proceedings of the VLDB Endowment, vol.8, issue.11, pp.11-1142, 2015.
DOI : 10.14778/2809974.2809977

P. Resnik, Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language, J. Artif. Intell. Res. (JAIR), vol.11, pp.95-130, 1999.

S. B. Roy, I. Lykourentzou, S. Thirumuruganathan, S. Amer-yahia, and G. Das, Task assignment optimization in knowledge-intensive crowdsourcing, VLDB J, vol.24, issue.4, pp.467-491, 2015.

D. Tamir, 500000 worldwide mechanical turk workers, Techlist, 2014.

P. Victor, C. Cornelis, A. M. Teredesai, D. Cock, and M. , Whom should I trust?, Proceedings of the 2008 ACM symposium on Applied computing , SAC '08, pp.2014-2018, 2008.
DOI : 10.1145/1363686.1364174

J. Vuurens and A. De-vries, Obtaining High-Quality Relevance Judgments Using Crowdsourcing, IEEE Internet Computing, vol.16, issue.5, pp.20-27, 2012.
DOI : 10.1109/MIC.2012.71

D. Wang, T. Abdelzaher, L. Kaplan, and C. C. Aggarwal, Recursive Fact-Finding: A Streaming Approach to Truth Estimation in Crowdsourcing Applications, 2013 IEEE 33rd International Conference on Distributed Computing Systems, pp.530-539, 2013.
DOI : 10.1109/ICDCS.2013.54

J. Zhang, J. Tang, L. , and J. , Expert Finding in a Social Network, DASFAA, pp.1066-1069, 2007.
DOI : 10.1007/978-3-540-71703-4_106

W. Zhang, W. , and J. , A Collective Bayesian Poisson Factorization Model for Cold-start Local Event Recommendation, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '15, pp.1455-1464
DOI : 10.1145/2783258.2783336

Z. Zhao, J. Cheng, F. Wei, M. Zhou, W. Ng et al., SocialTransfer, Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, CIKM '14, pp.779-788
DOI : 10.1145/2661829.2661871

Y. Zheng, R. Cheng, S. Maniu, and L. Mo, On optimality of jury selection in crowdsourcing, Proceedings of the 18th International Conference on Extending Database Technology, EDBT 2015, pp.193-204, 2015.