Permuted Orthogonal Block-Diagonal Transformation Matrices for Large Scale Optimization Benchmarking

Ouassim Ait Elhara 1 Anne Auger 1 Nikolaus Hansen 1
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : We propose a general methodology to construct large-scale testbeds for the benchmarking of continuous optimization algorithms. Our approach applies an orthogonal transformation on raw functions that involve only a linear number of operations in order to obtain large scale optimization benchmark problems. The orthogonal transformation is sampled from a parametrized family of transformations that are the product of a permutation matrix times a block-diagonal matrix times a permutation matrix. We investigate the impact of the different parameters of the transformation on its shape and on the difficulty of the problems for separable CMA-ES. We illustrate the use of the above defined transformation in the BBOB-2009 testbed as replacement for the expensive orthogonal (rotation) matrices. We also show the practicability of the approach by studying the computational cost and its applicability in a large scale setting.
Type de document :
Communication dans un congrès
T. Friedrich and F. Neumann. GECCO 2016, Jul 2016, Denver, United States. ACM-Press, pp.189-196, Proceedings GECCO'16. 〈10.1145/2908812.2908937〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01308566
Contributeur : Ouassim Ait Elhara <>
Soumis le : mercredi 11 mai 2016 - 17:20:59
Dernière modification le : vendredi 17 février 2017 - 16:10:47
Document(s) archivé(s) le : mercredi 16 novembre 2016 - 01:51:50

Fichier

permutedBlockDiagonalOrthogona...
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Ouassim Ait Elhara, Anne Auger, Nikolaus Hansen. Permuted Orthogonal Block-Diagonal Transformation Matrices for Large Scale Optimization Benchmarking. T. Friedrich and F. Neumann. GECCO 2016, Jul 2016, Denver, United States. ACM-Press, pp.189-196, Proceedings GECCO'16. 〈10.1145/2908812.2908937〉. 〈hal-01308566v3〉

Partager

Métriques

Consultations de
la notice

387

Téléchargements du document

197