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Methodes de maillages non compatibles et sclemas de
couplage pour l'interaction d'un uide incompressible avec
une structure mince

Resune : Cet article pesente deux nouvelles nethodes nuneriques avec des maillages non
compatibles pour la simulation de l'interaction d'un uide incompressible avec une structure
mince. La discetisation spatiale est base sur des variantes de la methode de Nitsche avec des
ebments coupes. Le caracere semi-implicite ou explicite du couplage en temps est donree par
I'ordre dans lequel les discetisations spatiale et temporelle sont e ectiees. Pour les sclemas
semi-implicites, nousetablissons des estimations denergie et d'erreur a priori qui garantissent la
stabilie inconditionnelle et la pecision optimale d'une des nethodes. Des estimations denergie
et d'erreur a priori sont galementetablies pour I'un des sctemas explicites. Le comportement
des dierentes nmethodes proposes est illuste par des expgeriences numneriques.

Mots-cks : interaction uide{structure, uide incompressible, structure mince, maillages non
compatibles, nmethode de domaines ctifs, methode de Nitsche, sclema de couplage.
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1 Introduction

The numerical simulation of multi-physic systems involving the interaction of an incompressible
uid with a deformable thin-walled solid is of great importance in many engineering elds: from
aeroelasticity to bio-mechanics (see, e.g.[ 44, 58,122,148,150, 36]). A major di culty that has to
be faced when solving this kind of coupled problems is theti ness of the kinematic-dynamic
interface coupling, which is known to lead to severe numerical issues (see, e.q.,1[42] 116, (31, 54]).
For instance, the stability of naive uid-solid splitting schemes is driven by the amount of added{
mass in the system, rather than by the discretization parameters. A natural way of bypassing
these di culties is to consider strong coupling (i.e., a fully implicit treatment of the interface
coupling). This guarantees stability and accuracy, but at the price of solving a computationally
demanding heterogeneous system at each time-step.

Over the last decade, signi cant advances have been achieved on the development and the
analysis of splitting schemes that avoid strong coupling without compromising stability and
accuracy. In most of these studies, the discretization in space is based on tted uid and solid
meshes (see, e.gl, |2/, b1, 4,112 33] 11] 45,(286,[30, 52529, 40]). Such a tted mesh framework is
very appealing in practice because it enables a simple and accurate prescription of the interface
conditions. However, it rapidly becomes cumbersome or unfeasible in the presence of large
interface de ections and of topological changes (e.g., due to contacting or fracturing solids). The
alternative in this case is to consider an un tted mesh formulation, in which the uid-structure
interface is independent of the background uid mesh (see, e.g.. 149, 43, 55,132,152 18[2[7] 13,
39,[8)).

Within the un tted mesh framework, splitting schemes which avoid strong coupling are rare
in the literature. In fact, we are only aware of the schemes reported and analyzed in[7], using the
nite element immersed boundary method, and in [13], for an un tted Nitsche method with cut
elements. The fundamental drawback of these two approaches is that either stability or accuracy
demands severe time-step restrictions (e.g., parabolic-CFL) and/or correction iterations.

In this paper, we introduce and analyze two new classes of numerical methods which simul-
taneously overcome strong coupling and the above mentioned stability/accuracy issues. To this
purpose, a representative linearized model problem (static interface) is considered. The meth-
ods proposed generalize, for the rst time, the Robin-Neumann splitting paradigm introduced
in [26, [30] to the case of un tted meshes. For the spatial discretization we consider the robust
Nitsche's method reported in [13] and a new variant which builds on arguments from[[15,°38]. A
salient di erence with respect to the tted mesh framework is that the semi-implicit or explicit
nature of the splitting is driven by the order in which the spatial and time discretizations are
performed. In [26,[30], both approaches commute and lead to the same explicit scheme.

Robust a priori energy and error estimates are derived for all the semi-implicit schemes
and for the simplest explicit scheme (without extrapolation). The analysis shows, in particular,
that the semi-implicit scheme with rst-order extrapolation delivers unconditional stability and
optimal ( rst-order) accuracy in the energy-norm. Previous studies devoted to the numerical
analysis of linear incompressible uid-structure interaction problems can be found in [[41/°20,
3, 26,130,138/ 24[0]. To the best of our knowledge, this is the rst time that the convergence
analysis addresses the case of un tted meshes without strong coupling.

The theoretical ndings and the performance of the methods proposed are illustrated through
numerical experiments in a well-known benchmark. Some preliminary results of the present work
have been announced, without proof, in[[Z28].

The rest of the paper is organized as follows. In Sectiop]2 we present the linear continuous
setting. Section[3 is devoted to the case in which the space discretization is performed in the rst
place. The resulting semi-implicit schemes are introduced in Sectiop 3|2, and their stability and
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4 M.A. Ferrandez & M. Landajuela

convergence analysis is reported in Sectidn 3.3. The alternative approach which consists in rst
performing the discretization in time is addressed in Sectiorf B. The resulting explicit schemes
are presented in Sectior 4]2. The simplest variant is analyzed in Section 4.3. The numerical

experiments are reported and discussed in Sectidn 5. Finally, a summary of the conclusions is
given in Section[.

2 Linear model problem

Let be a polyhedral bounded domain in RY (d = 2; 3) with boundary partitioned as @= [ .

The outward unit normal to @ is denoted by n. We consider a uid-structure interaction
problem in which the uid is described by the Stokes equations in and the structure by a
linear thin membrane or shell with mid-surface given by . The coupled linear problem reads:

nd the uid velocity u : R* I RY, the uid pressure p: R* ! R, the solid displacement
d: R* I RY and the solid velocity d : R* I RY such that
8
> '@ div (u;p)=0 in R*;
S divu =0 in R*; 1)
' u=0 on R*;
8 .
% u=d on R*;
S@d+Ld = (u:p)n in R*: )
2 d=@d in R*;

d=0 on @ R*';

complemented with the initial conditions u(0) = ug, d(0) = do and d(0) = do. Here, f and $
denote the uid and solid densities and the solid thickness. The strain rate and Cauchy-stress
tensors are de ned by

"(U)dgf% ru+ru’ ; (up € pl+2 T(u);

where denotes the uid dynamic viscosity and | is the identity matrix in RY 9. The abstract
di erential surface operator L describes the solid elastic e ects. Equations[(R). enforce the
so-called kinematic and dynamic coupling conditions. Note that, due to the thin-walled nature
of the structure, the latter also represents the momentum equilibrium in the solid.

In the following, we consider the usual Sobolev spaceld™ (! ) (m  0), with norm k Kkp;
and semi-normj jm: . The closed subspace consisting of functions ikl (! ) with zero trace on

@!is denoted byH (! ). The L2-scalar product on! is denoted by (; ); and its associated
norm by k ko, .

We considerV = [H()] ¢ and Q = L?() as the uid velocity and pressure functional
spaces, respectively. The standard Stokes bi-linear forms are given by

a(uiv) 2 ")) ;o Hav) E (aidive) ;A (usp)i(via) ' a(uiv)+Hpiv) bg;u):

We assume that the unbounded linear operator surface operatok : D [L2()] 9! [L?()] %is
densely de ned and self-adjoint. Associated to this operator, we de ne the elastic bilinear form

a’(d;w) déef(Ld TW)

Inria



Un tted mesh formulations and splitting schemes for FSI 5

foralld2 D andw 2 W, where W [Hé) ()] ¢ is the space of admissible displacements. We

further assume that a® and k kg % as(; )% are, respectively, an inner-product and a norm into

W . The following continuity estimate is also assumed,
kwk2  Skwke. 3)

forall w2 W, with $> 0.

Theoretical results on the well-posedness of[{l)) can be found in[]41] (see also [19]).
Sectiong 34 below are devoted to the numerical approximation of[([L)}{[(2), using un tted meshes
in space and splitting schemes in time.

3 First discretize in space and then in time: semi-implicit
schemes

The rst class of methods is derived by applying the time splitting of [26, [30] to the un tted
mesh spatial approximation of @){(@ introduced in [L3]. In this section, we present the method
and address its stability and convergence analysis. In particular, optimal rst-order accuracy is
shown for some of the variants considered.

3.1 Untted mesh spatial semi-discretization

Standard nite element approximations of @{( are often constructed with tted uid and
solid meshes (see Figur)). In this work, we assume that they are not necessarily tted
(see Figure[1(b)). To this purpose, we consider two families of quasi-uniform uid and solid
triangulations fThf Oo<h 1 and fT >go<n 1, respectively, such that:

= korp forevery T2

S
" kery forevery T/, but for every simplex K 2 T,/ it holds K\ 6 ?;

" Every T, is tted to but, in general, not to .

The subscript h 2 (0; 1] in the above triangulations refers to the level of re nement, which is

de ned, for a generic uid or solid triangulation T, by h def maxk 27, hk , with hx the diameter
of a simplexK 2 Ty,.

|

AN S % NV
S B

(a) Fitted meshes. (b) Un tted meshes.

Figure 1: Examples of uid and solid meshes.

We denote by  the domain covered byT,’ (i.e., the uid computational domain), by G, the
set of elements inT,’ that are intersected by and by Fg, the set of edges or faces of elements
in G, that do not belong to @ , that is,

n Elint [kor K T K2T! K\ 6?2 ; Fo ¥ F2@K K2G,F\ @n6F

h
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6 M.A. Ferrandez & M. Landajuela

The standard spaces of continuous piecewise a ne functions associated t§,° and T,/ are given,

respectively, by

XEE v 2Co%T) Wk 2Pu(K) 8K 2T i X3 wh2C%) whk 2Pi(K) 8K 2T? :
(4)

For the approximation of the uid and solid unknowns, we consider the following spaces

Vi & vh2 X[ vej =0 Qe Exl o wp &

—-

W 2 [er]]d Whj@ =0 :

In a standard conforming discretization of problem @){(@ based on tted meshes (see Fig-
ure, the kinematic condition (@ 1 is strongly enforced. In the un tted mesh setting described
above, the strong imposition of Q)l is no longer possible. In this section, we adopt the un tted
mesh method proposed in[[13], where the interface uid-solid coupling is treated in a consistent
fashion via Nitsche's method. Thus, problem [1){(2) is approximated in space as follows: for
t> 0, nd up(t);pn(t);dn(t);dn(t) 2Vh Qn Wy Wy suchthat dp = @dy and

< T@upvn  +a (Un;pn);(vhiah) + S @dniwn  + a%(dh;wh)

(Un;pn)N;Vh W up dn; (Vh; )N * 4 Un dp;vh wp =0

(®)

forall (vh;oh;wn)2Vy Qn Wy, Here, > 0 denotes the Nitsche's penalty parameter and
the discrete bilinear form &, is given by

al (Unipn)i(Vnih) E'a" (Unipn)i(VhiGh) + Sh (UniP)i(VhiGh) ;

where the de nition of the stabilization operator Sy, is detailed in Section[3.1.]1 below. The
un tted space semi-discrete formulation @) is stable and delivers optimal rst-order accuracy in
the energy-norm (seel[13]).

Remark 3.1. Note that the uid's bulk terms in @) are integrated only over the physical domain

. This guarantees consistency but, from the implementation standpoint, it requires non-standard
guadrature techniques for the evaluation of the integrals over the cut elements (see, e.g.,|[46, 1]).
3.1.1 The stabilization operator Sh

Two sources of stabilization are included in the operatorS;,, which is de ned as

Sh (Un:Pn)i (Vaith) = sn(Prith) + Gn(Un;Va): (6)

The term sy, : Qn  Qn ! Rin (B) represents a pressure stabilization operator. It is introduced
to cure the instabilities related to the inf-sup incompatible choice of the velocity and pressure
discrete spaces. We assume that the following lower and upper bounds hold

Ci 'h*jaii , sn(ohian) Co ‘h3anif, | (@)

with C1;C, > 0, for all o, 2 Qn. Note that in (f) the H' seminorm is taken over the whole
computation domain . As an example of such an operator, we may consider the classical
Brezzi-Pitkaranta stabilisation (see [10]):

phz

Sn(PnGh) € 2 pait ) L ®)

Inria



Un tted mesh formulations and splitting schemes for FSI 7

with , > 0.

Theterm gy :Vy Vh! Rin (@ represents the so-called ghost-penalty stabilization (see
[14]). This operator is assumed to bring additional control over the velocity ghost values so that
the following strengthened stability holds

& K'(VhKE .+ on(vhivh)  K'(VR)KE + Gn(Vh;Vh); 9)

with €5 > O, for all v, 2 V. It guarantees the robustness of the methods irrespectively of the
way intersects the uid mesh (see Section below). As an example of such an operator, we
have (seel[14]): X
def
Gh(un;vn)  gh JIounke I vk g (10)
F2F g,

where the symbolJ K= denotes the jump of a given quantity across the edge or facE.
Finally, associated to the overall stabilization operator S, we de ne the semi-norm

J(Un; pn)is €' Sh (Unipn)i (Vhich) 2

Remark 3.2. The assumption that all the elements of the computational domain y, intersect
the physical domain can be relaxed in practice (see SectioE]S). It su ces, for instance, to
extend the ghost-penalty operato@ to all the internal edges or faces off,, i.e.,

X
gh(un;ve) & gh I ounkedr vike (11)
F2F

with F, € Eo @K K 2 Thf; F\ @ 6 F :This guarantees the invertibility of the sti ness

matrix associated to the discrete bilinear formaf (; ). Moreover, since the relation ®) holds

true with €y %" int [korfik\ e2 K instead of , the stability and convergence results of
Sections[3.3 and 4.B below remain valid.

3.2 Fully discrete formulation: semi-implicit coupling scheme with un-
tted meshes

In the following, > 0 denotes the time-step length,t, € oforn 2 N, and @x

1 xn x" 1 stands for the rst-order backward di erence. The superscript ™’ denotes ther-th
order explicit extrapolations to x", namely,

n d:ef

8
20 if r=0;
:"f>x" 1 if r=1; (12)
2" 1 ox" 2 if r=2:

Q.

xn;?

As mentioned above, a natural approach to guarantee stability in the simulation of the sti
problem (I){(R] is to resort to a fully implicit time discretization. For problem (5],|this approach
leads to Algorithm fI] As a matter of fact, this method is unconditionally stable and delivers
optimal rst-order accuracy in the energy norm (see Remark and Corollary below).
This is however achieved at the price of solving system3) at each time-step, which can be
computationally demanding. Besides, general thin-walled solid models are known to yield ill-
conditioned sti ness matrices, requiring speci ¢ solvers.

In a tted mesh framework (see Figure[1(a]), an alternative to avoid implicit coupling without
compromising stability an optimal accuracy is given by the Robin-Neumann coupling schemes
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8 M.A. Ferrandez & M. Landajuela

Algorithm 1 Implicit coupling scheme.
Forn 1, nd ul;ph;dn;df 2Vh Qn Wph Wy, suchthat dy, = @dj and

8 .
< T @uiiva  +a (URipR)i(vaith) + 5 @dpswn  + a(dyiwh)
(up;pin;ve - wp up  di; (Ve Gh)n * U hivh whp =0
(13)

forall (vp;0h;whr)2Vy Qn Wi

introduced in [26],[30]. These schemes are based on a speci ¢ fractional-step time-marching of the
solid subproblem. Applied to (5), this approach leads to the following incremental displacement-
correction scheme, fom> 0ifr =0;1orforn> 1ifr =2:

1. Fluid with solid inertia substep: nd uﬂ;pﬂ;dﬂ z 2Vy Qn Wi such that
8 S .nr . o
2 T@uiive  +a) (ulip)i(veion) + —dp P odp fiwn + a(dp”iwn)

> -n L -n L
: (up;pr)n; vy wp up  dy % (Vh; ow)n +ruﬂ d, %;vh wp =

forall (vh;th;wn)2Vh Qn Wh.

2. Solid substep: nd dj;di 2W, W such thatd] = @dj and

S

o ognoan 3. s(qn qm?- - 15
dp dy Z;wn  +a%dy  dptiwp)=0 (15)

for all w, 2 W .

Steps [14)-[13) give a partlally segregated solution of problem[(5). Note that in [(1#4), the

intermediate solid velocity d : is implicitly coupled to the uid through the solid inertial
term. The remaining solid elastic contributions are treated explicitly (or ignored) in ( via
extrapolation. This level of uid-solid coupling is enough to guarantee (added-mass free) stability
(see Secuorﬂl below), while enabling a signi cant degree of uid-solid splitting (i.e., with
respect to the strong coupling of Algorithm @) The end-of-step solid velocityd], is retrieved by
solving the solid correction step .)

.n 1 -
Remark 3.3. It should be noted that the intermediate solid-velocityd, 2 cannot be eliminated
in and, hence, the coupling scheme is not explicit. This is a major di erence with respect
to the case of tted meshes and conformal discretizations considered i [26,30]. In that case, we

. 1
can taked;, 2 = ulj andwp = vpj in (14), which yields a standard uid problem with an
explicit Robin condition on the interface
In practice, it is convenient to reformulate the solid correction step ) as a traction problem,
. 1 .
by eliminating the quantities dﬂ 2 and dﬂ’? in (L5). To this purpose, we observe that testing
with vy, = 0 and g, = 0 yields

S .n i . .
—dp 7 odh Bwh o+ adyTiwh) = (ulipniws +

(N

4N
Y up d, 2;wp

Inria



Un tted mesh formulations and splitting schemes for FSI 9

for all wi, 2 W . Hence, by adding this expression to[(15) we get the standard solid problem

. . 1
*@dyiwn  +a(diiwn) = (URipnwn + - uf dy Tiwy,
for all w, 2 W . On the other hand, for n > r , it follows that
a(dy”iwn)= 5 @dy7 wh R Imiwn + Ul dp

forall wy, 2 W . This relation gives an (intrinsic) expression of the elastic extrapolations in [14),
exclusively in terms of interface uid quantities and solid velocities. Owing to these observations,
the numerical method (14){(fL5) is reformulated as given in Algorithm 2,

Algorithm 2 Semi-implicit coupling schemes.
Forn>r:

. 1
1. Fluid with solid inertia substep: nd uﬂ;pﬂ;dﬂ 2 2V, Qn Wy such that

8 S

% @upive  +al (upiph)i(vi) + — dp %;wh

: (Up; BN vV Wi ul Al % (v a)n +
S

Tz —dpt+y @dpTwe + 0 (upspn?)n;wh — up? dp 5wy

(16)

for all (Vh;C}];Wh)ZVh Qh Wh.
2. Solid substep: nd dj;di 2W, W such thatd] = @d} and

)
— @dp;wp + a%(dp;wp) = (UR;pPR)N;Wh +ruﬂ dy

for all wh 2 W .

Remark 3.4. It should be noted that forr = 1;2 additional data is needed to start the time-
marching in Algorithm P] In practice, this data can be obtained by performing one step of the
scheme withr = 0, this yields (u}; pﬁ;dﬁ), and then one step of the scheme with = 1, which

gives (u?; p?;d3).

The semi-implicit coupling scheme provided by Algorithm [J has a reduced computational
complexity with respect to Algorithm E] Indeed, the solid contribution to ( reduces to a
simple interface mass-matrix, which does not degrade the conditioning of the system matrix.
This reduction in the coupling complexity is particularly important when considering general
shell models (see, e.g.[ [17]), whose elastic contributions incorporate additional unknowns (e.g.,
rotations).

In the following sections, we show that Algorithm [Z preserves the stability and accuracy
properties of the explicit coupling schemes introduced in[26,"30] with tted meshes. In particular,
it overcomes the severe stability restrictions observed in[[7] for the traditional time-marching
schemes of the immersed boundary method. It is worth noting that these stability conditions
have been recently overcome in[8] by resorting to a full implicit treatment of the kinematic-
dynamic coupling (in the spirit of Algorithm which yields a solution procedure much more
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10 M.A. Ferrandez & M. Landajuela

computationally demanding than Algorithm 2] On the other hand, Algorithm Zjwith r =1
delivers optimal rst-order accuracy. This is also signi cant progress with respect to the stabilized
explicit scheme of [18], whose accuracy is non-uniform ih.

Remark 3.5. Algorithm P|has been extended in[]1] to address the case in which the solid is
immersed within the uid. In this framework, uid (weak and strong) discontinuities across the
interface are captured using a XFEM local enrichment. The following analysis can be straight-
forwardly adapted to this further involved situation.

3.2.1 Kinematic perturbation of implicit coupling.

We conclude this section by pointing out a fundamental property of Algorithm Pl To this
purpose, we will make use of the discrete reconstructioL, : W ! W of the elastic solid
operator, de ned by the relation

(Lhw;wp) = a(w;wn) (17)
for all (w;wp) 2 W W ,. Owing to (L7) and (15), we get that
A = dn+ —La(dp dp?) (18)
for n>r . On the other hand, adding (14) and (13) yields

< T @uiiva  +a (URipR)i(vaioh) + 5 @dpswn  + a(dy;wh)

o n
up dy

[N

Vi wy =0
19)
for all (vh;h;wp) 2 Vyh Qn Wy and n >r. Thus, Algorithm E]can be regarded as a
kinematic perturbation of the fully implicit time discretization given by Algorithm 1[]As a
matter of fact, Algorithm  formally enforces (through Nitsche's method) the interface condition

ul ' dp; whereas [I8){19) imposes

(upsphn;vi - wp up A4l % (Ve gon +

up dQ+TLh(dﬂ dn?y:

Note that the size of the perturbation depends on the extrapolation orderr. The basic idea in the
forthcoming analysis is to investigate how the kinematic perturbation (18) a ects the stability
and convergence of the underlying implicit coupling scheme (Algorithn] [L).

3.3 Stability and convergence analysis

We consider the following mesh-dependent semi-norms for functions de ned on the interface

2 — X 1 2 . 2 — X 2 .
I3, = hOKKE o Kk, = hekfkd
: K 2Gh : K 2Gh

Inria



Un tted mesh formulations and splitting schemes for FSI 11

def

where g denotes the part of the interface intersecting the simplexK , i.e, « = \ K. The
following estimates involving the solid elastic operator will be used,
kL dko. k Ldkg. ; (20)
2 SCI2 2

kwn kg 2 KwhKg. (21)

Sc2
kL hths Tzlkwhks; (22)

s 1
KL pwiko )hzc' kw ks (23)

forall d 2 D andwy 2 W and with C, > 0O the constant of a discrete inverse inequality. Esti-
mates )-) follow readily from application of the Cauchy-Schwarz inequality, the de nition

and the continuity estimate (B) (see [26, Appendix A] for the details). We will also make
use of the discrete Gronwall lemma (see, e.gl, [37]), which we collect here without a proof.

Lemma 3.1. Let , B andam, bn, ¢m, m (for integers m 1) be nonnegative humbers such
that

X X X
a, + b mam + Cn + B
m=1 m=1 m=1
for n 1. Suppose that ., < 1forall m 1. Then, th'ere holds |
X X m ' X '
an + bn exp 1 Cn+ B
m=1 m=1 m m=1

forn 1
For the purpose of the analysis, we will assume that is well resolved byT,! (see, e.g.,[[14]),
so that the following trace inequality holds for functions in H(K), for all K 2 T,!: there exists
a constant Ct+ > 0, depending only on , such that
kvko: vk Cr hy “kvkox + hg kr vKkox (24)
for all v 2 HY(K). The proof for this result follows from [34, Lemma 3]. In particular, using
([@4) with a discrete inverse inequality, it follows
hk"(va)nkj,  Crk"(va)K, , (25)

for all v, 2 V. Note that ( holds irrespectively of the interface position because the norm
on the right-hand side is taken over the whole computational domain . However, this control
on the interfacial viscous ux can not be bounded by the natural viscous dissipation of the uid,
which is only available in the physical domain h. The strengthened stability (B) provided
by the ghost-penalty operator, allows to extend to 1, the coercivity of the spatial discrete Stokes-
Nitsche operator. This is stated in the following lemma from [13], whose proof is presented here
for completeness.

Lemma 3.2. For > O suciently large, there exists a constant ¢y > 0 such that
cg  kr vhkd |+ kvy thz%;h; +j(Vn; th)i3

al, (Vhith); (Vn; th) (Vh;Gh)N;Vh Wi

Vh  Whp; (Vh; Gh)N +?vh Wh:Vh Wh

forall (vh;h)2Vh Qnandwp 2 Wy,.
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12 M.A. Ferrandez & M. Landajuela

Proof. First, we have

all (Vhith); (Vni th) (Vh;G)N; Vi Wi
Ve Whi (Ve GhN 4= Ve WhiVho Wi +j(Vh: Gh)i3
=2 kK"(va)k3. 2 (vh:O)n;vh wh  + kv thz%;h; +j(Vh; th)j3:

Combining the Cauchy-Schwarz inequality with ), we have

1 1
2 2

2 (vp;0)n; vy wy Zh—

k" (vh)n ko; r kvh  wp ko;
LTI ek, 5 ke waky,
We conclude by using [9), taking
. &mn (26)
€
and using Korn's inequality. O
3.3.1 Stability analysis
At time-step t,, we de ne the total discrete energy by
EP = Tkufkd + S kdlkZ + kdDkZ; (27)

and the dissipation as

f s . . 1
DR E —kul ul B+ —kdh d) K3+ “kdh  dD tK2

Q.

1
2

+cg kroufkd + kul dp k;h; + j(up:ph)ig

The following result states the energy stability of the semi-implicit schemes reported in Algo-
rithm B] In the succeeding text, the symbol . indicates an inequality up to a multiplicative
constant (independent of the physical and discretization parameters and of the uid-interface
intersection).

Theorem 3.1. Let f(up;pP;d; %;dﬂ;dﬂ)gn» be the sequence given by AIgorithrH 2, with the
initialization procedure of Remark 3.4 for r = 1;2. Assume that > 0 is given by Lemma&[3.2.
Then, we have the following a priori energy estimates:

Forr =0;1 and n>r , there holds
X
ED + DM . EQ; (28)
m=r+1

irrespectively of the discretization parameters.

" For r =2 and n > 2, there holds

Ef + DM . exp EQ; (29)

Inria



Un tted mesh formulations and splitting schemes for FSI 13

provided the following conditions hold

oo

(9%  hs; <1 >0 (30)

p

with 1 s %7 ¢,” Ts=(s).

Proof. The proof follows by combining arguments from [13/26]. We rst test ) with

1
2

)

(Vh;Gh;wh) = (uf;ph;dp

for n>r . This yields the following discrete energy equation,

f
5 @kulig +kul up NG 2 KTUDKE + i(uRipi
s z

+ @dp;d, 3 + as(dP;dy, #)+2  (ul;0)n;uf dp oy kul dp

for n>r . Hence, from Lemma 3.2, we have that

f .
@kufky, +kub up kg oy kroufkg  + kuf oy TKE, +j(uRipR)i3

£ 5 @Andl 7 o+ asdh:dl %) o

Hence, using the perturbed kinematic relation [18), we get the following fundamental energy
inequality

f

5 @kufkg +kup Ul kg +og  kr upkd o+ kuf o dy TR+ j(uRipRig

S

5 @kdpk3. + kdp dp ‘K3 o+

NI

@kdPk2 + kdf  df K2
2

+ 2 @dp;La(dy  di?)  + — LadiiLa(dy  di?) . 0 (31)
| {z o {z }
Tl T2

for n >r. The terms T, and T,, introduced by , can be controlled as in [[26, Theorem 1]
for each extrapolation orderr = 0;1;2. For the sake of completeness, the di erent estimates are
brie y recalled below.

Algorithm P]with r = 0. In this case, using Young's inequality, we have

s . 2
T+ T ?kdﬂ dp 1k(2); + 47SkLhdﬂk(2); (32)
for n > 0. Hence, the estimate ) follows by inserting this expression intol) and summing

Algorithm P]with r = 1. In this case we have

2
. 2 . .
Ti=— @ dy o+ dy df?

2
s

(33)

and
2

23

T, = @ Lndh o + Lp(dp di H 2 (34)

0;

RR n° 8908



14 M.A. Ferrandez & M. Landajuela

for n > 1. Hence, by inserting this expression into ) and summing ovem = 2;:::;n we get
the estimate
n X m 1 2 11 2 12
Eh+ Dh . Eh+?kdhs+275Lhdh 0: .
m=2

The last two terms, related to the initialization of the scheme (see Remari 3.4), can be bounded

using ) with r =0, n =1 and the additional control given by (. This yields the estimate
in the caser = 1.

Algorithm P]with r = 2. In this case, the term Ty in ( reduces simply to

2,

Ty=  dy dp SLe(dy 2dp t+dp?) = 2dy dp (35)
The term T,, which reads as
3 . . 1
To= — Ladp;La(dy dy ) (36)
is treated as in [26, Page 38] using] (31) and (22), which yields
6(!3)6 n2 s qn an 1,2 . 37
T2 hG kdh kS deh dh ko; . ( )

term of (B7) is controlled by the numerical dissipation provided by (31), while the rst is handled
via Lemma|3.] under condition ). This yields the bound

n X m th
En + D, . exp 1

The estimate (29) for r = 2 then follows by using the energy estimate [28) withr =1 and n = 2,
the additional control provided by (83) and (B4), and the stability condition (30)}
O

Remark 3.6. Note that testing with (Vh; ch;wn) = (ul;pR;dp) for n> 0, equation (31)

holds with dﬂ = df and Ty = T, = 0. Thus, for Algorithm D the following energy estimate
holds,

m=1

forn> 0and > 0 given by Lemmg 3.2, irrespectively of the discretization parameters.

3.3.2 Convergence analysis

In the following, we use the notation f " def f (t,) for a given time dependent functionf. We

may then consider@f " and f ™7, involving the quantities f", f" Yandf" 2. In the following,
a slight abuse of notation will be committed by using @f " to denote (@f )".

For the the convergence analysis we assume that the interface is at. We also assume
that the elements of T,® can be grouped into disjoint (d 1)-dimensional macropatchesP;, with
measP;) = O(h? 1). Each macropatch is assumed to contain at least one interior node and its
union is assumed to cover ,i.e., [P = .

Inria



Un tted mesh formulations and splitting schemes for FSI 15

Interpolation operators. Basically, the discrete interpolation operators are those used in[[13,
Section 3.3] for the error analysis of the space semi-discrete formulatiorﬂ(S). For the solid
displacement, we consider the elastic Ritz-projection operator § : W | W de ned by the
relation

a’(w pw;i;wp) =0
for all w, 2 W ,, and for which there holds
kw  Swko + hkr (w  Sw)ko. . h%jwjy (38)

forall w 2 [H2()] 9\ W . Note also that owing to de nition ({7), we have

(Lh hw;wp) =@ jw;wp) = a*(w;wn) = (Law;wh) ;
and thus
Lh E = LhZ (39)
For the solid velocity, we consider the operatorl , : W ! W, de ned by the relation
X
Ihwdéef W+ i

i
with ; 2 R. The ' ; are functions with support in the macropatchesP;, such that

0 'y L K kop . h'z
and take the value 1, component-wise, in the interior nodes of the associated patcR;. The
scalars ; are chosen so that the following orthogonality condition holds
z

(W 1hw) n=0: (40)
Pi

We refer to [13,[6] for the detailed construction of such an operator. It can be shown (see 13,
Lemma 3.3]) that

kw | pwko, + hkr (w 1 hw)ko. . h%jwjs. (41)
forall w 2 [H2()] 9\ W.
Since the uid physical solution is de ned in and the discrete one in 1, with h,
we consider two linear continuous lifting operatorsE, : H2() ! H?(RY) and E; : H1() !

H1(RY), satisfying the bounds KE1VKy1(rey - Kvkyiy and KEavky2rey . kvkyz() (see, e.g,
[23]). To interpolate the resulting extended uid solution we consider the Scott-Zhang operator
isz (see, e.g.,[I21]). Then it holds (se€[13, Lemma 3.3]),

kv is;Eavko. + hkr (v isEav)ko, . hZjvjs.
kq iszElko; + hkr (q iszE1Q)kO: . thjl; , (42)
k (v igE2v;q igEiqnk Lo - h(kvky. + kgkg. )

forall v2 [H2()] 9andq2 H().
On the other hand, we assume that the stabilization operator [) satis es the following weak
consistency relation

iz + gy (43)

1
2

iszE2V;iszE1Q s- h

RR n° 8908



16 M.A. Ferrandez & M. Landajuela

forall v 2 [H?()] ¢ and g 2 H(). The pressure estimate follows readily from (), the H?*-
stability of the Scott-Zhang interpolant and the stability of the extension operator (see [13]). For
the estimate regarding the ghost-penalty operator ) we refer to[[14].

Finally, owing to (24),(#2) 1 and (41)), the following result involving both the uid and solid

velocity projections holds
kv iSZEzvk%;h; . hkvka. ; kw1 hwk%;h; . h%kwkz; (44)
forallv2 [H?()] “andw 2 [H?()] 9\ W (see[I3, Lemma 3.3]).

A priori error estimates. We assume that the exact solution of problem )) has the following
regularity, for a given nal time T

u2 HY O T;H?() d. uj 2 HY 0:T;H?() d.
@u2 L2oT;L2) % @uj 2 L2oTiLy) 4 (45)
p2 CO [0, T HY()
and (
co [o;TL:L2() ¢ if r=o0;
Led 2 . (46)
H" 0;T;L%() if r=1;2

For the derivation of the error estimate, let us write the approximation errors for the uid as,

Eou"™  up = qu |SZE2u + |SZE2L{ uE in hi
:e def

n
; o 47)
Ph = Flp {7|szElp} + |szEl?7 P|} In h-

def n
=Yy

n

Eip

n

def
< Y

Similarly, for the solid we have

0y 0, 6

def def h
. . (48)
d" d" boin
F_{z“_} | d 3
def dff '

h

Finally, the error in the intermediate solid velocity is split as
E
2 in

} : (49)

F_{| hdn l hdn (z dE

def n
- h

In the sequel, the following equation, relating [ and @ [, will be used

'R:@R+|hdn {zﬁ@d;: (50)

zj

o
le,

Inria



Un tted mesh formulations and splitting schemes for FSI 17

Similarly, the discrete error counterpart of reads as
p=lad? dp =1ad" Ay Ladh di)= R+ o La(h 7T La(d® d™)
(51)
for n>r , where we have used[(39).

We rst provide an a priori estimate for the discrete errors ( 1;yR; 1 R R). We dene
the energy-norm of the discrete error at time stept,, as

n def, §\1, n syl n N X o
B =( )Zk pko; +( >)2zk pko; + k pks+ Cg kr kg,
m=r+1
by I
X ConLoav2 X n N2 ’
+ C i( hiyndis  + g ki hk%;h;
m=r+l m=r+1

forn>r.

Theorem 3.2. Let (u;p;d;d) be the solution of the coupled problerfl)-@) and f (up; pf; dp %:dﬂ ;A ) Onor
be the approximation given by Algorithm 2 with initial data u®;dp;d? = is,Eou® 3d%1,d° :
The initialization procedure of Remark is considered for the schemes with = 1;2. Suppose
that the exact solution has the regularity(@#5)-(#6). Assume that > 0 is given by Lemma[ 3.2.
For the scheme withr =2 we assume, in addition, that the stability condition holds. Then,
we have the following error estimates, fon>r andn <T :
E'. h+c +c3? g (52)
Here, the symbolsf ¢ig®; denote positive constants independent dfi and , but which depend on
the physical parameters and on the regularity ofu;p;d;d).

Proof. The proof combines some of the arguments reported ir_[183, 26], with the following addi-
tional di culties:

" Only the spatial semi-discrete case is considered in [13];
. 1
” The intermediate solid velocity dE Z cannot be eliminated in terms ofuy, as in [26], which
requires the control of an extrapolation dependent termTy, .

The spatial semi-discrete formulation @) is weakly consistent with the coupled problem )).
In fact, if we multiply (f)]1 by va 2 Vi, @)2 by on 2 Qn and (2)1 by wn 2 W y,, integrate by
parts and add the resulting equations, we get

f@uivh +a (Uipi(veith) + S @dwhy +a(diwh)
(U;pIN;vh  Wp u di (vai )N +—u dive whn =0 (58)
forall vh;oh;wn 2 Vy  Qn W, Taking the di erence between the continuous problem )

attime t = t, and the expression [(IP), we obtain, after adding and subtracting@u" and @d",
the following modi ed Galerkin orthogonality:

(@ up)ve) +a@ U™ ufip" PR (vhith)
+ S @@d" dp);w, +ad" dpwy u" ul:p” phn;vh  wp
(U up @ dp D e an - U @ dy ive wa

= (@ @u";vy S (@ @d™;wn  + Sy (upiph)i(Vhia)  (54)
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18 M.A. Ferrandez & M. Landajuela

forall (Vh;gh;wh)2 Ve Qn Wy Hence, from )-), we infer the following equation for

the discrete errors 1, yR, n; pand D:

P@ five +a (RYR)ivnit) £ S (RiR)i(Vaiah) + @ fiwn

+a® [iwh ( hiymniva  wh hoohs (Vas Gwn
to b mve o wa = T (@ @uivy (@ ";vn)
S (@ @)d";wp S @ "wyn @ "wy
* S (isEau™igEap") (Vi) o " Mive o wp

a ("iy")iveig) + 0 (MiyMnive o we + " " (v an (55)

forall (vph;oh;Wh)2Vh Qn Wphandn>r. Notethat a ";wy =0 due to the de nition of
the solid projection operator §. Taking (vn;ch;wn) = ( n;¥h; R)in (p5), using Lemma[3.2,
(60) and (51)), yields the following energy inequality for the discrete errors:

f S

@k Ek(z); + 2k@ Rk(z); +7 @k.ﬂk%; + 2k@.ﬂkg;

+c  kropkg o, t ko RkE, +iCRivRS
1
t5 @kpki+ k@ ks | " (@ @u" {27 @ E)}
T1
S qn. n S ‘n. n s/ N.on
@ @)d’; @ "; a Z
| ( ) h{)7 h) Y <{Zh h?
T2 T3
+ Sp (is2E2u";isEap");(C iy, — ™ ™opoon
| {2 . z } (56)
T, T,
+ (”:y”gn: A R G 4 I G375 B GRS VA 1)
| z }H {z }
Ts T7
2
2@ mLta(n M) — LnmLaCh P
| {z }
Te
2
+ 2 @ piLn@d" d")  +—(Ln piLn@" d™))
| {z H {z }
T9 T]_o

forn>r . Theterms T; T4 stem from the time-stepping and stabilization methods. The terms
Ts T7; come from Nitsche's method. Finally, termsTg Ty are due to the kinematic perturbation
and depend on the extrapolation order. We proceed by treating each term separately.

Term Ty can be bounded using a Taylor expansion,[(42) and the Poincae inequality with

Inria



Un tted mesh formulations and splitting schemes for FSI 19

constant Cp. This yields

Ti " (k@u" @u"ko. + K@ "ko. )k pko;
b k@ukizg, Lz * K@ Kia, saiiz) K ko

( fCp)? "

> KQUKE e, o) Y K@ Kia, gzt kORKG, (57)
("Cp)? ('Cp)?

g KUK, i)t g N K@UKE, )

+" ke [k

with "1 > 0. Note that, by choosing"; small enough, the last term of ) can be absorbed by
the left-hand side of (58).
For term T,, using again a Taylor expansion we have

T, 5 k(@ @)d"ko. + k@ "ko. k Dko:
° 1:2k@UKL2(tn 15tn;L2()) + 1:2k@' kl—z(tn 15tn;L2()) k RkO;

s s (58)
5 K@UKq, Ly FNK@UKE meg) '|‘2 ?{k gké;}:

4

Tor

For the last term, using @) and a triangular inequality, and since T, we have

3 3
? "
s Kbn( hoon K+ ST

S
Tor "2 ?k'ﬂkg; +" KLn(d" d"™?)K3.
(59)

s 2 2
"2 =K ke +"2—KLn( h  PTIKE +"p—kLp(d"  d"7)k3 :

The rst term will be treated via Lemma 3.1jn (36), The remaining two terms will, respectively,
be controlled bellow via the numerical dissipation provided by the uid-solid splitting and a
Taylor expansion. Since the bound depends on the extrapolation order, we postpone the analysis
of T, to treat it together with the extrapolation-dependent terms Tg  Tio.
For term T3 using ), @), a triangular inequality, a Taylor expansion and approximation,
we have . _
Ts= a°® p;lpd" @d" k nkskl pd"  @d"ks
T klpd" d"K2+kd" @d"k2 + >k nk2 (60)
h? sTku"ks, + 2 STk@UkEZ(In vteH1) T ﬁk hks:

where the last term can be controlled via Lemmd 3.]L in[(5).
For term T4, using the weak consistency of the stabilization operator[(4B), we observe that

1. . : “4. . 1 “4. .
To poilisBauisE)iEr SiCRyDIE. hP— kit ¢ keTKE - i RiyR)i
(61)
where the third term in the right hand side is absorbed in the left-hand side of [56), for"s > 0
su ciently small.
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20 M.A. Ferrandez & M. Landajuela

The boundary penalty term Ts is handled using Cauchy-Schwarz inequality followed by),

1 . " . "
Tso oo kTG, -5 ki K h2o(ku"iG; +hkd™iG; )+ - ki Ky
(62)

Note that the second term can be absorbed in the left-hand side 06), fots > 0 small enough.
Similarly, for the consistency term T, using (42)s, we have

1 ) II6
Ts 2" K ( nvyn)nkz Lih; + - k E ﬂkz%;h;
1 ”6 (63)
h2—— ku"k3. +kp"k2 + 2 kpn DKi

6 ’ ’ 2 2
Note that the rst term has the right convergence order and the second term can be absorbed
in the left hand side of ), for "¢ > 0 small enough.

To estimate T, we split it into two parts as in [L3]. The velocity-velocity coupling part can

be easily handled by using approximation and the robust trace inequality [25), as follows:

a( " M+ (pon; "
g 1 :
a( ™ R ke RNk wn *oak " nkzé;;h: (64)

h? ku"k3. + 2 ku"ks. + kd"ks. +2";Cqpkr K3 -
7

"7Cn

The last term can be, once again, absorbed in the left hand side of ($6), fot; > 0 su ciently
small. For the velocity-pressure coupling part we write, using integration by parts in the conti-

nuity equation,
bey"; M)+ blyp; M+ (O ypn; " "
= (yhdivR)  (hidiv ") + (O ypn; " "

- n; iV n + r n; n nn

|(y ?z h)}l ( ¥9 )}| Yh{z

T7.1 T7:2 T7:3

.'n
, .

}

For the terms T7;; and T7;2, using the Cauchy-Schwarz inequality, [42) and [(48), we have

T hPs—ko'kE ¢ 3k RKG s Tre. o k"G OV (69)

where the last terms of these inequalities can be absorbed i6), fdr.1;"7.2 > 0 small enough.
For the third term T3, denoting by y' 2 R the average ofyy over the interface patchP; , using
the property (@ of the operator | , and the standard orthogonal projection inequality

kyn  Vi'kop, - hkr ypkop,;
together with the trace inequality (24) and (), we get

X . X .
T73 = Yooyt on, . hkr yf kop, h?k "kzp,
i i
h3_—kd"k3. + h2-L3kr yNK3 (66)
2 7;3 ' 2 oh
3 qny,2 "7;3- yNYi2
h 2n7;3 kd k2; + 2 ](Olyh )JS Inria
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the last terms of these inequality can be absorbed in[(56), for'7;3 > 0 small enough. The
above estimations ofT7.1, T7.2 and T7.3 provide bounds which involve either terms with the right
convergence order or contributions that can be absorbed by the left-hand side 06).

We now proceed with the extrapolation-dependent termsTg  T;o and the term T, from (58).
We consider each case of extrapolation separately. Basically, the term&g Ti9 are controlled
as in [26, Theorem 2]. We include these estimates here for the sake of completeness.
Algorithm P]with r = 0. We have the bound

2 1 S i i
T8 T 1 2'7'8 kLh ng, + "87kﬂ E lkg; ,
with "g > 0. On the other hand, we have
. . . . " S . . 2
To= 0 0 LiLnd Kh D ko klnd"ke  Sm—kh DK, * s kL°d"K3, ;

with "¢ > 0, where we have used thé-uniform bound (R0). For the last term, we have
2 n n "10 2 n2 2 eqn2
T10: T Lh h;Lhd 2 s kLh hko; + mkl_ d ko; ,

with "10 > 0. On the other hand, owing to ), we have that forr = 0 it holds

s 2 2
T2;0 ) ?k Ek(z)’ + "szLh Ek(z)y + "2Tk|_ednk(2); .

Thus, we get
Tg+ To+ Tio+ To0 "2 K = 1 2 e
’ T h 0, s 2"8 2 2 h h 0,
2 1 1 s . .
+ o+ "y KL®"KZ + —("s+ "ok N N Z i (67)
2s 9 10 ’ 2 ’

Taking "s = 2, "10= 1 and ", < %, we have

1w
2Il8 2
and the second term on the right-hand side of ) is negative. The last term of7) can be
absorbed into the left-hand side of [(56), for"s > 0 small enough. In summary, the estimate [(5p)

1 "2>0

Lemmal[3.1 with

! my2 ° ‘my,2 1 m,2 1
amzzkhk0;+7khko;+§khks; m= T
Note that, owing to the selection of the initial data, we have
h=0, h= p=0 (68)

Algorithm P]with r = 1. For the term Tg, using ), we have

2
Te= — kpks k §Hkg+kp p K ’ 20 1;L{h(l hd”  @d")
z

T8;1
2
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22 M.A. Ferrandez & M. Landajuela

Similarly to (60), we get

2

Tg1 = 258 ﬂ E 1;| hdn @d" . ?kﬂ R 1k§+h2 s 2kunk§; + 3 Sk@UkEZ(tn StaHI()
and, thus,
2 2
T, 5 KRR KD kDR
2
S+ Ko Pk KLn b MG rkLaCh b DK (69)

2 2 2 3 2 .
+ he S kunkz; + Sk@ukl_z(tn LteHI()
For Ty, using (20) and a Taylor expansion, we get

To= 7 h hLa@ d" Y kKD b Yk kLn(d" d" ko

S
. . T
T K nks. +kp 'K+ —kLS(d"  d" HK,

S
4T
The rst term of (70) is controlled by (§6)] via Lemma Similarly, for term Tyo, we obtain

(70)

. . 2T
KRk, +k§ kg + —kLe@dK o, L,z

2 3 T
TlO: T Lh E,Lh(dn dn l) 2T73k|_h ﬂkg’ + 2 s

kL(d" d" MK,
3 (71)

2
T
2T73kLh ﬂké; + ZTkLe@dkEz(tn stail2()

The rst term in the right-hand side of (71)]is controlled by (§9)]and Lemma On the other
hand, from (59), we have
s 2 2
Tz1 "2 ?k ks, +"2—KLn( h p MK§ +"a—kLS(d" d" MK,
s 2 3
"2 K RkG +TakLn( R R DK+ kLt @dkE g, gz

In summary, the estimate (52) follows by inserting the above estimates into[(5p), summing over

f s . 1 2 1
amZEk hmk%‘ +7k hmk%‘ +Ek hmkg"' ZTkLh hmk%Y , mzf
The right-hand side contributions obtained at time t;, can be controlled (due to the initialization
procedure) by using ) withr =0, T= andn=1.
Algorithm P]with r =2. Let us rst consider the term Tg. Using ) followed by a Taylor
expansion, we have

3
To= 2p phL@d d ) o KRG KD G kL@ dn i

4

. . T
= Kaks + kK —kLt@dK e, L,z
(72)
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Un tted mesh formulations and splitting schemes for FSI 23

The rst term in the bound (72)is controlled via Lemma 8.1]and (56). For the term Ty, using
the inverse estimate [28) and the2-CFL condition (80}, we have

3 ) 3 3T )
TlOZT Lh R,Lh(@dn dn 1) 575 kLh ﬂkg’ + 72 S kL(@dn dn l)kg;
3 4T 3(! sCI)Z 4-|-
2T s KLh ﬂkg: + 2 s k@l‘edkﬁz(tn 1itasL2()) 2T h2 k Ek§+ 2's k@LedkEZ(tn 15tn L 2())
33 AT
2T k ng-‘- 2s k@l‘edkﬁz(tn Lt iL2()
(73)
The rst term in the bound (73)]is controlled via Lemma $.1]and (B6). Note that
E;?zﬂl_‘_ -Rl+(ﬁdnl Ihdnl):
Hence, for the term Tg, we get
3 . .
Te= 20 0 hLe(h 7D s Lamba(hn 0D
+ 20 R hLnia@ d" ) @d"+d"*
I {z }
Tsa
3 . . .
* 4 Lnpilalp@ d" 9 @d"+d" *
I {z }
T8;2
Under the 2-CFL condition (80}, we proceed similarly to and (37), and we have
S
Ts ko Rk kR R K+ Sk kS Tan o+ Taa (74)
We consider the termsTg.; and Tg., separetely. Adding and subtracting d" in Tg.1 yields
Tga= 28§ Hla@@ d™ Y (@ d"hH + 2§ f LLad @d")
Owing to (B) and the approximation properties, we have
2
Ton. o k'h n TKE+h? S Akt out
s 4 (75)
n2 no 12 T e 2 .
o Kk ko kg ——kLT@dKCe, )
For the term Tg., we have
3 . . . . 3 .
Teo= —a Ln piln@ d"H (@ d" N +—LppLa@ @d") :  (76)

The second term in the right-hand side of [76) is treated similarly to (73). The estimate for the
rst term follow by the inverse estimates (R2), (R3) and the &-CFL condition (80). We have

5 T S S 535 AT

Tz Srrsyekbn AkE+ kin(@ d" h (@ d" HEH ——k R+ 5ok@LARE, 1,20
28 84 ‘T
Tt o K nK2+h? STku" u" K3+ E K@LdKZ o, 4,020

(77)
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Substitution of (f5) and ([7) into (74}, yields

2 s
Ts . 7kﬂ ﬂ1k§+zkﬂ Rllk(zJ; + AT kﬂkg; +kﬂ1kg:
n2 4T e 2
kK hks+ ——kL"@dK{2¢r, 1,20y

+h? 5T+ ) ku" u" K3 : (78)

The rst term on the right hand side is absorbed into the left-hand side of (56) and, the following
two are treated via Lemmal[3.].
On the other hand, regarding the term T, from (§9), we get

s 2 4
Tao "2 ?k'ﬂkg; +—kLn(h PKE + "—kL%(@d"  d" M)K3,

S
"

2 5
2 =k PG +"a—kln(h RO +akLet@dK o, iz

T
| {z }
To21
Moreover, we have
4 . . 1 1 4 S . . 1 1
To21 "a—Kln(n h D* La(zh  zp DK 2"2hzis k' hkE+kzh o ozp 'K

" L2 n ‘n 112 n n 1,2 .
2'( )® K h h ks+kzh Zp ks-

The rst term can be controlled with the numerical dissipation of (78] and the second term can
be estimated as in the previous estimations. The estimate[(52) then follows by inserting the

10

f 3

_ my2 S myp2 1 mo. _ 1., s +
am—Ekhko; +7khk0; +§khks, m = max ?,2 ; T

W

s 1
3 3

The right-hand side contributions obtained at time t,, can be controlled (due to the initialization
procedure) by using [52) withr =1, T =2 and n = 2. Hence, the proof is complete. O

We de ne the energy-norm of the error at time stept,, as
!

. .. ) X
zp €Nkt ulke +( °)EFkd"  dnke +kd"  diks+ cg j(ul:pMi2
m=r+1
I |
X g X m 1
+ cg kr u™ ul k3 o+ g kup dy k
m=r+1 m=r+1

1
2

[N

NN

h;

for n>r . As a corollary of Theorem[3.2, we have the following a priori estimate.

Corollary 3.1.  Under the assumptions of Theorenj 32, we have the following error estimate,

forn>r andn <T :
r 1
ZE cth+c +c 2

Here, the symbolsfc,g>; denote positive constants independent df and , but which depend on
the physical parameters and on the regularity ofu;p;d;d).
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Proof. The proof follows directly as a consequence of a triangle inequality, Theorefn 3.2 and the
optimal approximation properties of the interpolation operators. O

We then observe that the scheme displays optimal accuracy for the extrapolated variants
(r = 1;2) whereas a suboptimal convergence rate is obtained without extrapolationr( = 0).
Thus, we retrieve the same convergence behavior as in the tted case for the original Robin-
Neumann schemes (se€ [26, Corollary 1]). From the proofs of Theorgm B.2 and Corolldry B.1, we
can readily obtain the following optimal error estimate for Algorithm L]

Corollary 3.2.  Let (u;p;d;d) be the solution of the coupled problenl)-@) and f (uf}; pf; nidh) Gnsr
be the approximation given by Algorithnﬂl with initial data uQ;dp;df = igEou® $d%14,d° :
Suppose that the exact solution has the regularitfg5)-(@6). Then, we have the following error
estimates, forn> 0Oandn <T :

ZR . ¢h+ o

with ¢; and ¢, positive constants independent oh and , but depending on the physical parameters
and on the regularity of (u;p;d;d).

Proof. Taking (vh;th;wn) = ( fp;yR; ) in (B5), the energy inequality holds with [ = '}
and Tg = Tg = Tyo = 0. The terms Ts and Tg are treated similarly to (62) and (63). Note that
the Nitsche's dissipation on the interface is given in this case by

cg ki nkiy
Similarly to (68}, for the term T, we have

ST

T, .
2 o

S
2 2 2 2 " ) 2 .
K@UkCeqr, yuyizq) + PK@UKLa, Liomegy * "2 KRk

The last term may be controlled by Lemma[3.]. The remaining termsT;;T3; T4 and T; are
treated exactly as above. We obtain thus an optimal a priori estimate for the discrete errors.
We conclude as in Corollary{3.1. O

4  First discretize in time and then in space: explicit schemes

Step (16) of Algorithm PJis more computationally demanding than a single uid problem due to

. 1 . . .. .
the presence of the additional unknowndﬂ 2, In this section, a new explicit coupling scheme
is presented which overcomes this issue without compromising stability and accuracy. The main
idea consists in performing the space and time discretization reversely.

4.1 Robin-Neumann explicit coupling schemes

The starting point of the methods is the time semi-discrete explicit coupling schemes introduced
in [26],[30]. Note that these schemes may be derived by applying rst the fractional-step splitting
of Section[3.2 to the continuous problem|(1){(2) and then eliminating, contrarily to Algorithm 2]
the intermediate solid velocity d" z (see Remar). Applied to the continuous problem [(1)-
@), these schemes read: fon > r
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1. Fluid substep: nd u" : R*1 RYandp": R* ! R such that
8
% f@u"™ div (u";p")=0 in
divu" =0 in ; o
7
3 u"=0 on (79)

(un;pn)n+ un — dn l+ gn;? on :

with the notations:

d:ef . gn;? d:ef S @ dn;? + (U n? . pn;?)n:
2. Solid substep: nd d" : R*! RYandd": R* ! RY such thatd" = @d" and
( .
S n eqn _— n. N .
@d"+ Ld" = u";p")n on
wor | (80)
d'=0 on @:

4.2 Fully discrete formulation: explicit coupling scheme with un tted
meshes

The fundamental idea consists in performing directly an un tted interface treatment @ la
Nitsche) of the time splitting (79)-(80]. This is achieved by extending the arguments introduced
in [I3] and [15,38] to the present Robin-Neumann framework, in such a way that robustness
with respect to the Robin coe cient  is guaranteed. The proposed numerical methods build on
the following consistency result.

Lemma 4.1 (Consistency). Let f(u";p";d";d")gnsr be given by(79)-(80). Then, there holds

n;?;Vh Wh

n dn l.Vh Wh

h ' +hg

(81)

> +

8 .
f@uivn +a (uhp")i(vaig) + ° @dwn + a’(d"wh)
§ (uhp)nive wy o+ Ut d Y (vas a)n

> +

n;?.

h
pn: (e gn + ——— g™ (vai q)n =0

+ h
forall (vh;th;wn)2Vyey Qn Wh.
Proof. Multiplying ( 1 and )2 by vy and ¢, respectively, integrating by parts over and
adding both equations we get
f@uivh  +a (uip")i(vnich) (u";p"n;vy  =0: (82)
On the other hand, multiplying (80) 1 by wy and integrating over we get

*@dmwy +a¥(dhwa)+ (uTpniwy =0 (83)
Adding (B2) and (B3), we obtain
f@uvh +a (uhp")i(vhioh) + ° @dNwy +a(d™wn)  (Uip")nive wy o =0

(84)
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Multiplying the interface condition (79) 4 by Vh  Wp and integrating over , we get

+ h
il d" Lvy wp 4 T Whenive wy —— g"?;vh wp =0:
(85)
Multiplying the interface condition ( 4 by E H (Vh; h)n and integrating over , we
get
h un dn 1. (V . )n (un. n)n. (V . )n
¥ h ’ h:  Ch + h P ’ hs Ch
h n;?. . —-N-
+ + h g ’ (Vh, Ch)n =0: (86)
Finally, by adding (84)-(86) we recover (81), which completes the proof. O
The key feature of ) is the fact that for ! 1  (i.e., whenever ! 0) we formally

retrieve the un tted formulation (5[] Alternatively, if h! 0 we formally retrieve the the weak
formulation of the Robin-Neumann splitting (79)-(80}.

Taking successivelyw, = 0 and (vi; ch) = (0;0) in (BI) we obtain the following partitioned
formulation of (B1):

" Fluid:
8 :
f@uve +a (up")i(vnioh) + ——u" d” By
% 0" v L @hen: (e
+ h 1 h + h 1 1 hl
% Eh (uhpn;ve + ut o d™ (v an)n
T+ h n?. (V . )n =0
+ h g ’ h, q1 -
forall (vh;h) 2V  Qn.
" Solid:
8 .
2 ° @d";wp, +a¥(d";wp)= P (u";p")n;wy
> + = u” dgn 1;Wh h gn;?;Wh

for all wh 2 W y,.

This motivates the fully discrete method reported in Algorithm 8] Note that the resulting
coupling scheme is explicit.

4.3 Stability and convergence analysis for r=0

We present in this section an energy-based stability and a priori error analysis for Algorithm 3
with r = 0. The stability and convergence properties of Algorithm[3 with r = 1; 2 are investigated
in Section[§ via numerical experiments.
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Algorithm 3 Explicit coupling schemes.
Forn>r:

1. Fluid substep: nd up;pp 2 Vi Qn such that

8 .
? f@uiivh  +ah (URPR)i(Vhith) + —— - uf A} vy

. h
el T 5 Whipn: (vai a)n
hooh . i (87)
% T Whpnive +oup di h (e go)n
h .
+ =+ h QE'?; (Vh; p)n =0

forall (vh;h)2Vh  Qn.
2. Solid substep: nd dj;di 2W, Wy such thatd] = @dj and

8
2 S @dP;wy  +as(dp;wp) = T h (up;pR)n;wh
(88)
> . 2.
: + T h Uﬂ dﬂ 1;Wh T+ h gﬂ").Wh

for all wp 2 W y,.

4.3.1 Stability analysis

We consider the discrete energye| given by ) at time-step t,. The dissipation is given in
this case by

f
B € —kul ul WZ +cg kr ufkd .+ ——kul  dlKE + j(ul;ph)j2
h h h Ko, TG hKo; + h Un OhKo; h»Pn)ls
s h . . 1
S R R S e

The following result establishes the unconditional energy stability of Algorithm [3 with r = 0.

Theorem 4.1. Letf(up;ph;dp;dn)g. 1 be given by Algorithnﬂi withr =0. For > 12Cy =t;
we have

ED + B" . EP: (89)

Proof. We rst note that in the case r = 0 we havegﬂ;? = 0. Thus, by taking (vh; oh) = (up;pp)
in (B7) and wy, = dj in (B8), adding the resulting equations and applying [9), we get the
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following discrete energy inequality

f
- @kupkg, +kup up kG € K'(URKG |+ gh(upiup)

N sh(pﬂ;pﬂ)+% @kdlK2 + kdl  dl 2

Eh (Up;pRn;up di + up o dp o (uRs pR)n
| {z }
T
+odpodp hdpo+ up dy Supdp
¥ h
| {z }
T
h n. N . n. n .
+ h (Upspp)ns (up; pp)n 0: (90)
| {z }
T3

Note that the solid inertia term is included in term T,. We now proceed by estimating separately
the terms T, T, and T3. For the rst, we have

Ti= :] h 2 (up;0)n;up dﬂ E P (Uﬂ;O)n;dﬂ dﬂ 1
| tz ) 2 }
Tia Tig
* 2 = (pnidy dp
| {z }
Ti3

By combining the Cauchy-Schwarz and Young inequalities with the robust trace inequality ),
we obtain the following estimates:

h :
T1a mdf K*(uf)ko; kup diko;
1 LMC K" (uPl)k3 1 kul!  dlk3. :
2y (T e R T T
h L
Ti2 +h 2 K'(upko; kdf df ko,
1 " "2 2h . . 1 i
7, TR ACT KUK, o pkdy dy G
RR n° 8908 . )
Tis T p KPhko kdp di ko,
1 h "s  2h

- ni.2 3 7 dn ano1,2 .
2" T h kph Ko 2 + h kdy dy kg,
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On the other hand, by adding and subtracting suitable terms, for the second term we have

T,= df dp Ldp o+ up dp Lul o odp

+ h
= dp dp hdf £ ————up di+dp dy Bupodp
. . . . . . . 2
= dp dp hdp o+ dy df Bup dy o+ —up dh g
Hence, using the Cauchy-Schwarz inequality, we infer the following fundamental lower bound
s . 1 2p ) ) 1 .
T — @kdpk3. + éﬁkdﬂ dn 'k3. + Eﬁkuﬂ dnk3. :

Finally, for the last term, using once more the Cauchy-Schwarz and Young inequalities, we get

h
T3 4C 7 k"(Uﬂ)kg; . ﬁkpﬂké; :

+ h
By collecting the above bounds forT,, T, and T3 and inserting them into (, we obtain

f s

- @kupkg +kup up 'KG € gn(URiuR)+ sa(PRipR) + - @kdRkg,
2 3
1+,  +2Zh
4 W W
+% @KkdlKk2+ kdl df U2+ dg oM T 7 P L LI
1 N . 1 h v . .
to—n @ okup Ak 45— (1 (2 "a)kdp dy G
h 1 ni2 .
+ T 1 >, Kpp Ko 0:
The estimate ) then follows by choosing
w220 w21, 5 1Cn
1= 31 2= 41 3= 81 eg ’
using Korn's inequality and summing overm = 1;:::;n. This completes the proof. O

4.3.2 Convergence analysis

In the sequel we assume that the interface is at and that the exact solution of problem ([L}-(P}

has the regularity given by ) and ) for a given nal time T . For the derivation of the

error estimate, we also build on the decomposition of the error given by7)8). Let us rst
estimate the discrete errors (1;yf; h; "M). An a priori bound is stated in Theorem below,
with the energy-norm of the discrete error being de ned, at time stept,, as

1 1 . X‘ . z
B €0 ik fko, +( °)Fk nko +k pks G ki kg
I m=t I I
X iron.n -2. % X n n,2 . % X h n2 . %
+ Cg iC nmiyn)is  * h K h hKa + T Kyn Ko.
m=1 m=1 m=1

for n> 0.
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Theorem 4.2. Let (u;p;d;d) be the solution of the coupled probler@-@ andf(uf;ph;dp; dP ) Gnsr
be the approximation given by AIgorithnDB with initial data u®;d2;dp = is,Eou® $d%1,d°
and r = 0. We assume that the exact solution has the regularityd5)-[@6). Assume that > 0

is given by Theoren4.1. Then, we have the following error estimates, far>r andn <T :

E. gh+co +c z: (91)

Here, the symbolsfcig®; denote positive constants independent dfi and , but which depend on
the physical parameters and on the regularity ofu;p;d;d).

Proof. Attime tn, the exact solution (u; p;d;d) of the coupled problem (3)-(2) satis es

f@u" div (w";p")=0 in ;

divu™ =0 in :

u"=0 on

@hpn+ ut= d" ' d" (@ @4d" on

u"=d" on

VW A OO WY AW OO

S@d"+ L%d"= (u";p")n on
d"=@d" on ;
d"=0 on @:

Then, similarly to Lemma we can show that the exact solution, at timet,, of the coupled
problem (1)-(@) satis es

f@uve +a (uhp")i(veion) + 0 @%wh +a%(dwh)

L u d” vy owy 4 P ld"+ (@ @)d";vh whp
+h u"pMn;ve owhp o+ u" d™ L (vhy gu)n
h : h
tholn+ (@ @)d"; (vh; o)n — (u™;p")n; (vh; g)n =0

(92)

for all vi;0h;wn 2 Vi Qn Wy, Subtracting (B7) and to the continuous problem
(©2) we obtain, after adding and subtracting @u" and @d", the following modi ed Galerkin
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orthogonality:

"(@u" uR)iva) +a (U uRip" pR)i(vnich) + ° @(d" dR)iwa +a®d" diiwp

_r:h " ufip® opnive wno+ @t oup) @ P dR D (ve g)n
o1 h
- (U up) @ty Dive wa el CURTH S DU HI (I Ly

= @ @u";v, S (@ @)d";wn  + Sh (Uliph); (Vh h)
s Lld"+ S(@ @)d";vp wp + :‘h Ld"+ S (@ @)d"; (vh; o)n

(93)

forall (vh;oh;wh)2Vy Qn W4 Hence, from )-), we infer the following equation for

the discrete errors p,y?, h and p:

P@five ta (YR)i(vaith) +Sh (RiVR)(Vhith) + ° @ iwa  + @ Riwp
T (RYnive wh o+ TR (v go)n

. h
T oo Live owy T ( psypn; (Vas o)

+

= @ euivi  @"v) G (@ @dmwh @ "w,

S

a ";wh + Sy (is:E2u";iE1p");(visah) @ ( "iy");(veoh)
+ _r:h (Nymnsve wy + " T (v gu)n
. h
T o by w4 T ( “y"Mn; (Vas t)n

S L (@ @dve wn + o L'+ S (@ @)% (vei a)n

+

(94)

forall (vph;oh;Wh)2Vh Qn Wphandn>r. Notethat a2 ";wy =0 due to the de nition of

the solid projection operator §. Taking (Vh;th;wn) = ( f;yR; ) in (P4), using the stability
estimate reported in Theorem[4.] and[(5), yields the following energy inequality for the discrete
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errors.:
f
- @k kg + k@ pki +& ko pkg +i( RiyvRig
1 1
Pl @K K@ R v kR B
1 h n2 s ‘ni2 1 h 2 ‘n2
e h kynkg, + > @k pkg, + 8+ h k@ kg,
(@ @u"; | @
| 2 }
Ty
S dn;'n S 'n;'n as n;zn
| (@ @) h{)z @ h) Y ({Zh h;
Tg T3
i Sn (sE2u(®);iBap();( hivh), - hoh
T, | {z }
Ts
+ :h ("yMns b h
| {z }
Te (95)
h .
al (MyiChivm) o — " T (R ovn
| z }
T7
h .
o (YT (R yRn el
| {z H {z }
Ts To
+ h n ‘n 1. (n. n)n
T h ] h» yh
| {z }
Tio
W @ @ )
| {z }
T11
P dne @ @d (fr yin
+ h
| {z }
T12

with & > 0. The termsT; T4 stem from the time-stepping and the stabilization methods. The
terms Ts  Tg come from the generalized Nitsche's method. Finally, termsTy Ty, are due to
the kinematic perturbation and, hence, are inherent to the uid-solid time-splitting scheme.

Note that terms Ty, T3 and T4 can be bounded exactly as in[(5]7),[(60) and[(61). For term
T, we can proceed in a similar manner to[(5B) to get

ST
2"

The last term will be treated using Lemma([3.].

T, .

S
K@UKEz, yuyizey ¥ PK@AKE 2, sz 2 FRORKG C (96)
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The boundary penalty term Ts can be handled in a similar manner to [62) yielding

Ts. h2.—(ku"kZ + hkd"K3, )+ 55 e k3. ;
5

where we have used that h
+ h
Note that the second term can be absorbed in the left-hand side 05), fots > 0 small enough.
Similarly, for the consistency term Ts, we have, using [(42)

0< < 1

1 "6 :
" ku"ki + kp"ki. + 5ﬁkﬂ "K3.

Te. h?

Note that the rst term has the right convergence order and the second term can be absorbed
in the left hand side of @), for "g > 0 su ciently small.

As in the proof of Theorem[3.2, we splitT7 into two parts. The velocity-velocity coupling
contribution can be easily handled as in ), viz.,

h .
a( " M+t — (mons " °
hz,,7CTI ku"kZ + %hz ku"k3. + kd"k3. +2";Crnkr (K3

The last term can be, once again, absorbed in the left hand side 05), fdr; > 0 su ciently
small. For the velocity-pressure coupling part we write, using integration by parts in the conti-
nuity equation,

h .
b(y"; R)+ blyn: M+ —— (O ypn; " T
. h .
= hdvp) 4ty ") — s Y —— s T
| —{z—1}| {z H {z 3 {z }
T Tr:2 Tzs T74

Terms T7;; and T7;, can be bounded as in[(65). The control forT7,3 follows as in {66). For T7,4,
using (44), we have

1 ny2 "74 N
2"7;4 K k%;h; 2 + h
n . h

h2_—_ku"k2 + 74
n7;4 u 2; 2 + h

T7:4

+

kyh kg;

kyp kcz); ;

the last term can be absorbed in the left hand side of[(9b), fot'7.4 > 0 small enough. The above
estimations of T7.1, T7.2, T7.3 and Tr7.4 provide bounds which involve either terms with the right
convergence order or contributions that can be absorbed by the left-hand side 05).

For the term Tg we have

h h
Tg = T ChYns (Ron + ——— (y")niypn
eIk (Mmynk,, 2 k"( p)nk®
s + h ’ zh; 8 "+ h h Lih;
"8 h n2 .
2+ h O
1 "g h Inria
h2. ku"ks. + kp'ki. +2"g=Cykr [k3 .+ —————kynks ;

8 ’ ’ 2 + h
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and the last two terms can be absorbed by the left-hand side of[ (95), fof's > 0 small enough.
The boundary penalty term Tg can be controlled using a Taylor expansion

1 ‘n2 "9 n ‘n2
To 29+ h k@ ko * 3k 0k
1 . n .
2 2 9 2
s 7 h K@ K g oK h o nks
1 " .
- ki Rk

2's 2
h® ®k@ukio, siome) ¥ 55

29
Note that the second term can be absorbed in the left-hand side of (95), fots > 0 small enough.
Similarly, the boundary penalty term Ty is bounded by
h : :
n n l; ytq n

h . .
To= —— " " hH (mon o+ —

1 . . "o h )
2--10h2 *K@AKE 2, L,z *2 "0 Cmke [kG + 5 ﬁkyﬂké; ;
Note that the second term can be absorbed in the left-hand side 05), fot10 > 0 small enough.

Similarly, the boundary penalty term Ti; is bounded by

1 1 "1 .
T o K@Uk, gt kK ke ko
The last term can be absorbed in the left-hand side of), for'11 > 0 su ciently small.
Similarly, the boundary penalty term Ty, is bounded by

1 1 " " h :
s Zk@UkEZ(tn LitniL2() + ZTkLednkg; + " 15Cq kr ﬂké .t 12Thkyﬂkg ;

T . 5
12

The last term can be absorbed in the left-hand side of), fof'1, > 0 small enough.
The estimate @) follows by inserting the above estimates into ), summing ovem =

f m,2 s ‘my,2 1m2 1
am:Ekhko; + —Kk kg +§khks; m:?:

Note in particular that, owing to the selection of the initial data, we have

0 _ N ‘0 - 0 _ .
h—O, h — h—O.

O
We de ne the energy-norm of the error and dissipation error, at time stept,, as
2L NIk ulko +( S)Fkd™  dlko. + kd"  dlke;
0 ! 1 >0 ! 1 >0 | I 1
cg kr u™ uf ko + o j(UpipMiE  + Cy ﬁkuﬂ‘ di' K3,
m=1 m=1 m=1

for n> 0. We have the following a priori estimate as a crllr of Theoren{ 4.P.
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Corollary 4.1.  Under the assumptions of Theorenj 42, we have the following error estimates,
forn>r andn <T :
1
Z'. cth+c +c3 2:

Here, the symbolsfc,g>; denote positive constants independent df and , but which depend on
the physical parameters and on the regularity ofu;p;d;d).

Proof. The proof follows directly as a consequence of a triangle inequality, Theorein 4.2 and the
optimal approximation properties of the interpolation operators. O

The error estimate provided by Corollary predicts a suboptimal O( %) accuracy in time
and an optimal O(h) error contribution in space for Algorithm $jwith r = 0. It is worth noting
that a similar error estimate has been derived in Corollary[3.1 for Algorithm[Z with r = 0. This
indicates that, at least for the caser = 0, the semi-implicit or explicit nature of the splitting
does not a ect the overall accuracy of the methods. Numerical evidence that this also holds for
r =1;2is given in the next section.

5 Numerical experiments

In order to illustrate the stability and the accuracy of the proposed schemes, we consider the
problem of a pressure-wave propagation within a straight elastic tube (see, e.g!, [13]). The solid
is modeled as a 1D string model, hence ir {2) we have

_ 0. _ 0 . e . :
d= P b= 1@ + o YT 20+ )y °T R %)

E def E

Q.
=

In the sequel, all the units are given in the CGS (Centimetre-Gram-Second) system. The uid

domain is given by the rectangle = (0;L) (0;R) and the interface by the segment =

[O;L] f Rgwith L = 6 and R = 0:5. At x = 0 we impose a sinusoidal normal traction

of maximal amplitude 2 10* during 5 10 3 seconds, corresponding to half a period. Zero

traction is enforced at x = 6 and a symmetry condition is applied on the lower wally = 0. The
uid physical parameters are given by f =1:0, =0:035. For the solid we have $ = 1:1 and
=0:1 with Young's modulus E =0:75 10° and Poisson's ratio =0:5.

(a) Un tted meshes. (b) Fitted meshes.
Figure 2: Example of un tted and tted mesh con gurations.

We compare the results obtained with the un tted mesh methods given by Algorithms[1{3
and a rst-order fully implicit scheme with tted meshes. An example of the tted and un tted
mesh con gurations considered in this study is given in Figurg 2. In the un tted case, we have

h=(0;L) (0;R+0:3) so that we are in the framework of Remark3.2. In Algorithms[1{3,
the Nitsche's parameter is set to = 102 and the pressure and ghost-penalty stabilization terms
in (B) are given by (8) and (11) with , =10 3 and 4 =1, respectively. All the computations
have been performed with FreeFem++ [35].
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(a) Fitted-mesh implicit algorithm (b) Implicit un tted (Algorithm 1) []

(c) Algorithm 2[\ith r =1 (d) Algorithm 3[ith r =1

Figure 3: Snapshots of the uid pressure and (exaggerated) solid displacement at time instants
t = 0:005 0:01; 0:015. The discretization parameters are given by =2 10 4 and h=0:01

(a) Algorithm 2[] (b) Algorithm 3[]

Figure 4: Time convergence history of the solid displacement in the relative elastic energy norm
with = O(h).

Figure@ presents the snapshots of the pressure eld and the solid displacement (ampli ed by
a factor 5) at the time instants t = 0:005, Q01 and Q015, obtained with =2 10 “andh=0:1
using the tted-mesh implicit method (Figure Algorithm 1[ (Figure 3{b)),] Algorithm 2 []
with r =1 (Figure and Algorithm 3 with r =1 (Figure B(d)). The schemes reproduce a
stable pressure-wave propagation. Note that this stable behavior was predicted for Algorithmg]2
and[] by Theorem[3.]1 and RemarK 3., respectively.

In order to assess the overall convergence rate of Algorithn{s [if3, we have uniformly re ned
in time and in space according to

(;h)=f2 10 4=2";10 =2'gi,: (97)
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@ i=0. (b) i=1.

©i=2. d) i=3.

Figure 5: Algorithm £] Comparison of the solid displacements att = 0:015 for di erent levels of

(;h)-re nement (97).

Note that = O(h). Figure [ reports the relative elastic energy-norm error of the solid dis-
placement, at time t = 0:015, obtained with all the di erent variants of Algorithm 2 {Alg. 2
in Figure and Algorithm $](Alg. 3 in Figure For comparison purposes, the results
obtained with both the tted-mesh and the un tted-mesh implicit schemes (Algorithm 1[]are
also included in Figures[4(a) and[4(b). The reference solution has been computed using the
tted-mesh implicit method, with a high space-time resolution: h=3:125 10 2 and =10 6.

The results of Figure[4(a) show an overallO( ) optimal accuracy for Algorithm £]with
r = 1;2, while a sub-optimal O( %) is obtained with r = 0. This is in agreement with the
error estimates stated in Corollary [3.3. Very similar results are observed for Algorithm[3 in
Figure an optimal O( ) convergence is obtained withr = 1;2 and a sub-optimal O( %)
convergence is retrieved withr = 0. We recall that the sub-optimality in Algorithm 3[iith r =0
was predicted by Corollary. The rst-order convergence rateO( ) predicted by Corollary
for Algorithm {]is also clearly visible.

Further numerical evidence of the above observations is given in Figurds| b[6, where we have
displayed the displacements att = 0:015 obtained with Algorithms P] and [3, respectively, for
di erent levels of space-time re nement. For illustration purposes, the displacements obtained
with the implicit schemes, both in the tted and un tted frameworks, are also shown in both
gures.

Finally, Figure [/]compares the results obtained with the rst-order extrapolated variants of
Algorithms P]and B] (r = 1) and with the stabilized explicit scheme of [13] (without correction
iterations). These results demonstrate that Algorithms[g and[3 with r = 1 overcome the O( =h)
non-uniformity in space of the splitting error induced by the stabilized explicit scheme (which
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(@) i=0. (b) i=1.

©i=2. d) i=3.

Figure 6: Algorithm B] Comparison of the solid displacements att = 0:015 for di erent levels of

(;h)-re nement (97).

Figure 7: Time convergence history of the solid displacement in the relative elastic energy norm
using Algorithm E](r = 1), Algorithm iﬂ r = 1) and the stabilized explicit scheme of [13] with
= O(h).

clearly prevents convergence under = O(h)).

6 Conclusion

In this paper, we have introduced two new numerical methods for incompressible uid/thin-
walled structure interaction using un tted meshes. Their semi-implicit or explicit nature depends
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on the order in which the space and time discretizations are performed:

" discretizing rst in space using the un tted formulation (and then in time via (1(1
led to the semi-implicit schemes reported in Algorithm|[2;

~ discretizing rst in time using (79)}(§0) and then in space using a variant of Nitsche's
method for Robin boundary conditions led to the explicit schemes reported in Algorithm[3.

For all the semi-implicit schemes ¢ = 0;1;2), a complete numerical analysis has been per-
formed in Section. The analysis retrieves theD( + h+ 2 1) convergence rate obtained
in [26] for tted mesh case. These theoretical ndings have been conrmed by the numerical
evidence of Sectiov[]S which shows, in particular, that the semi-implicit scheme withr = 1: (i) de-
livers superior stability and/or accuracy with respect to explicit methods reported in [[7} [13] and
(ii) avoids the strong coupling of alternative methods (see, e.g.,[147,18]), without compromising
stability and accuracy.

For the explicit scheme with r = 0, the stability and convergence results (Section) are
similar to those obtained for the same variant of the semi-implicit scheme. We retrieve, in
particular, the same O(h + %) sub-optimal convergence rate. The analysis of the explicit
schemes withr = 1;2 is open. Yet, the numerical evidence of Sectiop|5 suggests that, in spite of
their di erent semi-implicit and explicit nature, Algorithms 2[g@nd 3[deliver practically the same
behavior.
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