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Méthodes de maillages non compatibles et schémas de
couplage pour l’interaction d’un fluide incompressible avec

une structure mince

Résumé : Cet article présente deux nouvelles méthodes numériques avec des maillages non
compatibles pour la simulation de l’interaction d’un fluide incompressible avec une structure
mince. La discrétisation spatiale est basée sur des variantes de la méthode de Nitsche avec des
éléments coupés. Le caractère semi-implicite ou explicite du couplage en temps est donnée par
l’ordre dans lequel les discrétisations spatiale et temporelle sont effectuées. Pour les schémas
semi-implicites, nous établissons des estimations d’énergie et d’erreur a priori qui garantissent la
stabilité inconditionnelle et la précision optimale d’une des méthodes. Des estimations d’énergie
et d’erreur a priori sont galement établies pour l’un des schémas explicites. Le comportement
des différentes méthodes proposées est illustré par des expériences numériques.

Mots-clés : interaction fluide–structure, fluide incompressible, structure mince, maillages non
compatibles, méthode de domaines fictifs, méthode de Nitsche, schéma de couplage.
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1 Introduction

The numerical simulation of multi-physic systems involving the interaction of an incompressible
fluid with a deformable thin-walled solid is of great importance in many engineering fields: from
aeroelasticity to bio-mechanics (see, e.g., [44, 53, 22, 48, 50, 36]). A major difficulty that has to
be faced when solving this kind of coupled problems is the stiffness of the kinematic-dynamic
interface coupling, which is known to lead to severe numerical issues (see, e.g., [42, 16, 31, 54]).
For instance, the stability of naive fluid-solid splitting schemes is driven by the amount of added–
mass in the system, rather than by the discretization parameters. A natural way of bypassing
these difficulties is to consider strong coupling (i.e., a fully implicit treatment of the interface
coupling). This guarantees stability and accuracy, but at the price of solving a computationally
demanding heterogeneous system at each time-step.

Over the last decade, significant advances have been achieved on the development and the
analysis of splitting schemes that avoid strong coupling without compromising stability and
accuracy. In most of these studies, the discretization in space is based on fitted fluid and solid
meshes (see, e.g., [27, 51, 4, 12, 33, 11, 45, 26, 30, 5, 25, 29, 40]). Such a fitted mesh framework is
very appealing in practice because it enables a simple and accurate prescription of the interface
conditions. However, it rapidly becomes cumbersome or unfeasible in the presence of large
interface deflections and of topological changes (e.g., due to contacting or fracturing solids). The
alternative in this case is to consider an unfitted mesh formulation, in which the fluid-structure
interface is independent of the background fluid mesh (see, e.g., [49, 43, 55, 32, 52, 18, 2, 7, 13,
39, 8]).

Within the unfitted mesh framework, splitting schemes which avoid strong coupling are rare
in the literature. In fact, we are only aware of the schemes reported and analyzed in [7], using the
finite element immersed boundary method, and in [13], for an unfitted Nitsche method with cut
elements. The fundamental drawback of these two approaches is that either stability or accuracy
demands severe time-step restrictions (e.g., parabolic-CFL) and/or correction iterations.

In this paper, we introduce and analyze two new classes of numerical methods which simul-
taneously overcome strong coupling and the above mentioned stability/accuracy issues. To this
purpose, a representative linearized model problem (static interface) is considered. The meth-
ods proposed generalize, for the first time, the Robin-Neumann splitting paradigm introduced
in [26, 30] to the case of unfitted meshes. For the spatial discretization we consider the robust
Nitsche’s method reported in [13] and a new variant which builds on arguments from [15, 38]. A
salient difference with respect to the fitted mesh framework is that the semi-implicit or explicit
nature of the splitting is driven by the order in which the spatial and time discretizations are
performed. In [26, 30], both approaches commute and lead to the same explicit scheme.

Robust a priori energy and error estimates are derived for all the semi-implicit schemes
and for the simplest explicit scheme (without extrapolation). The analysis shows, in particular,
that the semi-implicit scheme with first-order extrapolation delivers unconditional stability and
optimal (first-order) accuracy in the energy-norm. Previous studies devoted to the numerical
analysis of linear incompressible fluid-structure interaction problems can be found in [41, 20,
3, 26, 30, 13, 24, 9]. To the best of our knowledge, this is the first time that the convergence
analysis addresses the case of unfitted meshes without strong coupling.

The theoretical findings and the performance of the methods proposed are illustrated through
numerical experiments in a well-known benchmark. Some preliminary results of the present work
have been announced, without proof, in [28].

The rest of the paper is organized as follows. In Section 2 we present the linear continuous
setting. Section 3 is devoted to the case in which the space discretization is performed in the first
place. The resulting semi-implicit schemes are introduced in Section 3.2, and their stability and

RR n° 8908



4 M.A. Fernández & M. Landajuela

convergence analysis is reported in Section 3.3. The alternative approach which consists in first
performing the discretization in time is addressed in Section 4. The resulting explicit schemes
are presented in Section 4.2. The simplest variant is analyzed in Section 4.3. The numerical
experiments are reported and discussed in Section 5. Finally, a summary of the conclusions is
given in Section 6.

2 Linear model problem

Let Ω be a polyhedral bounded domain in Rd (d = 2, 3) with boundary partitioned as ∂Ω = Γ∪Σ.
The outward unit normal to ∂Ω is denoted by n. We consider a fluid-structure interaction
problem in which the fluid is described by the Stokes equations in Ω and the structure by a
linear thin membrane or shell with mid-surface given by Σ. The coupled linear problem reads:
find the fluid velocity u : Ω×R+ → Rd, the fluid pressure p : Ω×R+ → R, the solid displacement
d : Σ× R+ → Rd and the solid velocity

.
d : Σ× R+ → Rd such that

ρf∂tu− divσ(u, p) = 0 in Ω× R+,

divu = 0 in Ω× R+,

u = 0 on Γ× R+,

(1)


u =

.
d on Σ× R+,

ρsε∂t
.
d+Ld = −σ(u, p)n in Σ× R+,

.
d = ∂td in Σ× R+,

d = 0 on ∂Σ× R+,

(2)

complemented with the initial conditions u(0) = u0, d(0) = d0 and
.
d(0) =

.
d0. Here, ρf and ρs

denote the fluid and solid densities and ε the solid thickness. The strain rate and Cauchy-stress
tensors are defined by

ε(u)
def
=

1

2

(
∇u+ ∇uT

)
, σ(u, p)

def
= −pI + 2µε(u),

where µ denotes the fluid dynamic viscosity and I is the identity matrix in Rd×d. The abstract
differential surface operator L describes the solid elastic effects. Equations (2)1,2 enforce the
so-called kinematic and dynamic coupling conditions. Note that, due to the thin-walled nature
of the structure, the latter also represents the momentum equilibrium in the solid.

In the following, we consider the usual Sobolev spaces Hm(ω) (m ≥ 0), with norm ‖ · ‖m,ω
and semi-norm | · |m,ω. The closed subspace consisting of functions in H1(ω) with zero trace on
γ ⊂ ∂ω is denoted by H1

γ(ω). The L2-scalar product on ω is denoted by (·, ·)ω and its associated
norm by ‖ · ‖0,ω.

We consider V = [H1
Γ(Ω)]d and Q = L2(Ω) as the fluid velocity and pressure functional

spaces, respectively. The standard Stokes bi-linear forms are given by

a(u,v)
def
= 2µ

(
ε(u), ε(v)

)
Ω
, b(q,v)

def
= −(q,divv)Ω, af

(
(u, p), (v, q)

) def
= a(u,v)+b(p,v)−b(q,u).

We assume that the unbounded linear operator surface operator L : D ⊂ [L2(Σ)]d → [L2(Σ)]d is
densely defined and self-adjoint. Associated to this operator, we define the elastic bilinear form

as(d,w)
def
= (Ld,w)Σ

Inria



Unfitted mesh formulations and splitting schemes for FSI 5

for all d ∈ D and w ∈W , where W ⊂ [H1
∂Σ(Σ)]d is the space of admissible displacements. We

further assume that as and ‖ · ‖s
def
= as(·, ·) 1

2 are, respectively, an inner-product and a norm into
W . The following continuity estimate is also assumed,

‖w‖2s ≤ βs‖w‖21,Σ (3)

for all w ∈W , with βs > 0.
Theoretical results on the well-posedness of (1)–(2) can be found in [41] (see also [19]).

Sections 3–4 below are devoted to the numerical approximation of (1)–(2), using unfitted meshes
in space and splitting schemes in time.

3 First discretize in space and then in time: semi-implicit
schemes

The first class of methods is derived by applying the time splitting of [26, 30] to the unfitted
mesh spatial approximation of (1)–(2) introduced in [13]. In this section, we present the method
and address its stability and convergence analysis. In particular, optimal first-order accuracy is
shown for some of the variants considered.

3.1 Unfitted mesh spatial semi-discretization

Standard finite element approximations of (1)–(2) are often constructed with fitted fluid and
solid meshes (see Figure 1(a)). In this work, we assume that they are not necessarily fitted
(see Figure 1(b)). To this purpose, we consider two families of quasi-uniform fluid and solid
triangulations {T f

h}0<h≤1 and {T s
h }0<h≤1, respectively, such that:

• Σ =
⋃
K∈T s

h
for every T s

h ;

• Ω (
⋃
K∈T f

h
for every T f

h , but for every simplex K ∈ T f
h it holds K ∩ Ω 6= ∅;

• Every T f
h is fitted to Γ but, in general, not to Σ.

The subscript h ∈ (0, 1] in the above triangulations refers to the level of refinement, which is

defined, for a generic fluid or solid triangulation Th, by h
def
= maxK∈Th hK , with hK the diameter

of a simplex K ∈ Th.

(a) Fitted meshes. (b) Unfitted meshes.

Figure 1: Examples of fluid and solid meshes.

We denote by Ωh the domain covered by T f
h (i.e., the fluid computational domain), by Gh the

set of elements in T f
h that are intersected by Σ and by FGh the set of edges or faces of elements

in Gh that do not belong to ∂Ωh, that is,

Ωh
def
= int

(
∪K∈T f

h
K
)
, Gh

def
=
{
K ∈ T f

h

/
K ∩ Σ 6= ∅

}
, FGh

def
=
{
F ∈ ∂K

/
K ∈ Gh, F ∩ ∂Ωh 6= F

}
.
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6 M.A. Fernández & M. Landajuela

The standard spaces of continuous piecewise affine functions associated to T s
h and T f

h are given,
respectively, by

X f
h

def
=
{
vh ∈ C0(Ωh)

/
vh|K ∈ P1(K) ∀K ∈ T f

h

}
, Xs

h
def
=
{
wh ∈ C0(Σ)

/
wh|K ∈ P1(K) ∀K ∈ T s

h

}
.

(4)
For the approximation of the fluid and solid unknowns, we consider the following spaces

V h
def
=
{
vh ∈ [X f

h]d
/
vh|Γ = 0

}
, Qh

def
= X f

h, W h
def
=
{
wh ∈ [Xs

h]d
/
wh|∂Σ = 0

}
.

In a standard conforming discretization of problem (1)–(2) based on fitted meshes (see Fig-
ure 1(a)), the kinematic condition (2)1 is strongly enforced. In the unfitted mesh setting described
above, the strong imposition of (2)1 is no longer possible. In this section, we adopt the unfitted
mesh method proposed in [13], where the interface fluid-solid coupling is treated in a consistent
fashion via Nitsche’s method. Thus, problem (1)–(2) is approximated in space as follows: for

t > 0, find
(
uh(t), ph(t),

.
dh(t),dh(t)

)
∈ V h ×Qh ×W h ×W h, such that

.
dh = ∂tdh and ρf

(
∂tuh,vh

)
Ω

+ af
h

(
(uh, ph), (vh, qh)

)
+ ρsε

(
∂t

.
dh,wh

)
Σ

+ as(dh,wh)

−
(
σ(uh, ph)n,vh −wh

)
Σ
−
(
uh −

.
dh,σ(vh,−qh)n

)
Σ

+
γµ

h

(
uh −

.
dh,vh −wh

)
Σ

= 0
(5)

for all (vh, qh,wh) ∈ V h ×Qh ×W h. Here, γ > 0 denotes the Nitsche’s penalty parameter and
the discrete bilinear form af

h is given by

af
h

(
(uh, ph), (vh, qh)

) def
= af

(
(uh, ph), (vh, qh)

)
+ Sh

(
(uh, ph), (vh, qh)

)
,

where the definition of the stabilization operator Sh is detailed in Section 3.1.1 below. The
unfitted space semi-discrete formulation (5) is stable and delivers optimal first-order accuracy in
the energy-norm (see [13]).

Remark 3.1. Note that the fluid’s bulk terms in (5) are integrated only over the physical domain
Ω. This guarantees consistency but, from the implementation standpoint, it requires non-standard
quadrature techniques for the evaluation of the integrals over the cut elements (see, e.g., [46, 1]).

3.1.1 The stabilization operator Sh

Two sources of stabilization are included in the operator Sh, which is defined as

Sh
(
(uh, ph), (vh, qh)

) def
= sh(ph, qh) + gh(uh,vh). (6)

The term sh : Qh ×Qh → R in (6) represents a pressure stabilization operator. It is introduced
to cure the instabilities related to the inf-sup incompatible choice of the velocity and pressure
discrete spaces. We assume that the following lower and upper bounds hold

C1µ
−1h2|qh|21,Ωh

≤ sh(qh, qh) ≤ C2µ
−1h2|qh|21,Ωh

(7)

with C1, C2 > 0, for all qh ∈ Qh. Note that in (7) the H1−seminorm is taken over the whole
computation domain Ωh. As an example of such an operator, we may consider the classical
Brezzi-Pitkäranta stabilisation (see [10]):

sh(ph, qh)
def
=

γph
2

µ
(∇ph,∇qh)Ωh

, (8)

Inria



Unfitted mesh formulations and splitting schemes for FSI 7

with γp > 0.
The term gh : V h × V h → R in (6) represents the so-called ghost-penalty stabilization (see

[14]). This operator is assumed to bring additional control over the velocity ghost values so that
the following strengthened stability holds

c̃g
(
µ‖ε(vh)‖20,Ωh

+ gh(vh,vh)
)
≤ µ‖ε(vh)‖20,Ω + gh(vh,vh), (9)

with c̃g > 0, for all vh ∈ V h. It guarantees the robustness of the methods irrespectively of the
way Σ intersects the fluid mesh (see Section 3.3 below). As an example of such an operator, we
have (see [14]):

gh(uh,vh)
def
= γgµh

∑
F∈FGh

(
J∇uhKF , J∇vhKF

)
F
, (10)

where the symbol J·KF denotes the jump of a given quantity across the edge or face F .
Finally, associated to the overall stabilization operator Sh we define the semi-norm

|(uh, ph)|S
def
= Sh

(
(uh, ph), (vh, qh)

) 1
2 .

Remark 3.2. The assumption that all the elements of the computational domain Ωh intersect
the physical domain Ω can be relaxed in practice (see Section 5). It suffices, for instance, to
extend the ghost-penalty operator (10) to all the internal edges or faces of T f

h , i.e.,

gh(uh,vh)
def
= γgµh

∑
F∈Fh

(
J∇uhKF , J∇vhKF

)
F
, (11)

with Fh
def
=
{
F ∈ ∂K

/
K ∈ T f

h , F ∩ ∂Ωh 6= F
}
. This guarantees the invertibility of the stiffness

matrix associated to the discrete bilinear form af
h(·, ·). Moreover, since the relation (9) holds

true with Ω̃h
def
= int

(
∪K∈T f

h , K∩Ω6=∅ K
)

instead of Ωh, the stability and convergence results of
Sections 3.3 and 4.3 below remain valid.

3.2 Fully discrete formulation: semi-implicit coupling scheme with un-
fitted meshes

In the following, τ > 0 denotes the time-step length, tn
def
= nτ for n ∈ N, and ∂τx

n def
=

1
τ

(
xn−xn−1

)
stands for the first-order backward difference. The superscript n,? denotes the r-th

order explicit extrapolations to xn, namely,

xn,?
def
=


0 if r = 0,

xn−1 if r = 1,

2xn−1 − xn−2 if r = 2.

(12)

As mentioned above, a natural approach to guarantee stability in the simulation of the stiff
problem (1)–(2) is to resort to a fully implicit time discretization. For problem (5), this approach
leads to Algorithm 1. As a matter of fact, this method is unconditionally stable and delivers
optimal first-order accuracy in the energy norm (see Remark 3.6 and Corollary 3.2 below).
This is however achieved at the price of solving system (13) at each time-step, which can be
computationally demanding. Besides, general thin-walled solid models are known to yield ill-
conditioned stiffness matrices, requiring specific solvers.

In a fitted mesh framework (see Figure 1(a)), an alternative to avoid implicit coupling without
compromising stability an optimal accuracy is given by the Robin-Neumann coupling schemes

RR n° 8908



8 M.A. Fernández & M. Landajuela

Algorithm 1 Implicit coupling scheme.

For n ≥ 1, find
(
unh, p

n
h,

.
dnh,d

n
h

)
∈ V h ×Qh ×W h ×W h, such that

.
dh = ∂τd

n
h and ρf

(
∂τu

n
h,vh

)
Ω

+ af
h

(
(unh, p

n
h), (vh, qh)

)
+ ρsε

(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh)

−
(
σ(unh, p

n
h)n,vh −wh

)
Σ
−
(
unh −

.
dnh,σ(vh,−qh)n

)
Σ

+
γµ

h

(
unh −

.
dnh,vh −wh

)
Σ

= 0

(13)

for all (vh, qh,wh) ∈ V h ×Qh ×W h.

introduced in [26, 30]. These schemes are based on a specific fractional-step time-marching of the
solid subproblem. Applied to (5), this approach leads to the following incremental displacement-
correction scheme, for n > 0 if r = 0, 1 or for n > 1 if r = 2:

1. Fluid with solid inertia substep: find
(
unh, p

n
h,

.
d
n− 1

2

h

)
∈ V h ×Qh ×W h such that

ρf
(
∂τu

n
h,vh

)
Ω

+ af
h

(
(unh, p

n
h), (vh, qh)

)
+
ρsε

τ

( .
d
n− 1

2

h −
.
dn−1
h ,wh

)
Σ

+ as(dn,?h ,wh)

−
(
σ(unh, p

n
h)n,vh −wh

)
Σ
−
(
unh −

.
d
n− 1

2

h ,σ(vh,−qh)n
)

Σ
+
γµ

h

(
unh −

.
d
n− 1

2

h ,vh −wh

)
Σ

= 0

(14)
for all (vh, qh,wh) ∈ V h ×Qh ×W h.

2. Solid substep: find
( .
dnh,d

n
h

)
∈W h ×W h such that

.
dnh = ∂τd

n
h and

ρsε

τ

( .
dnh −

.
d
n− 1

2

h ,wh

)
Σ

+ as(dnh − d
n,?
h ,wh) = 0 (15)

for all wh ∈W h.

Steps (14)-(15) give a partially segregated solution of problem (5). Note that in (14), the

intermediate solid velocity
.
d
n− 1

2

h is implicitly coupled to the fluid through the solid inertial
term. The remaining solid elastic contributions are treated explicitly (or ignored) in (14) via
extrapolation. This level of fluid-solid coupling is enough to guarantee (added-mass free) stability
(see Section 3.3.1 below), while enabling a significant degree of fluid-solid splitting (i.e., with

respect to the strong coupling of Algorithm 1). The end-of-step solid velocity
.
dnh is retrieved by

solving the solid correction step (15).

Remark 3.3. It should be noted that the intermediate solid-velocity
.
d
n− 1

2

h cannot be eliminated
in (14) and, hence, the coupling scheme is not explicit. This is a major difference with respect
to the case of fitted meshes and conformal discretizations considered in [26, 30]. In that case, we

can take
.
d
n− 1

2

h = unh|Σ and wh = vh|Σ in (14), which yields a standard fluid problem with an
explicit Robin condition on the interface Σ.

In practice, it is convenient to reformulate the solid correction step (15) as a traction problem,

by eliminating the quantities
.
d
n− 1

2

h and dn,?h in (15). To this purpose, we observe that testing
(14) with vh = 0 and qh = 0 yields

ρsε

τ

( .
d
n− 1

2

h −
.
dn−1
h ,wh

)
Σ

+ as(dn,?h ,wh) = −
(
σ(unh, p

n
h)n,wh

)
Σ

+
γµ

h

(
unh −

.
d
n− 1

2

h ,wh

)
Σ

Inria



Unfitted mesh formulations and splitting schemes for FSI 9

for all wh ∈W h. Hence, by adding this expression to (15) we get the standard solid problem

ρsε
(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh) = −
(
σ(unh, p

n
h)n,wh

)
Σ

+
γµ

h

(
unh −

.
d
n− 1

2

h ,wh

)
Σ

for all wh ∈W h. On the other hand, for n > r, it follows that

as(dn,?h ,wh) = −ρsε
(
∂τ

.
dn,?h ,wh

)
Σ
−
(
σ(un,?h , pn,?h )n,wh

)
Σ

+
γµ

h

(
un,?h −

.
d
n− 1

2 ,?

h ,wh

)
Σ

for allwh ∈W h. This relation gives an (intrinsic) expression of the elastic extrapolations in (14),
exclusively in terms of interface fluid quantities and solid velocities. Owing to these observations,
the numerical method (14)–(15) is reformulated as given in Algorithm 2.

Algorithm 2 Semi-implicit coupling schemes.

For n > r:

1. Fluid with solid inertia substep: find
(
unh, p

n
h,

.
d
n− 1

2

h

)
∈ V h ×Qh ×W h such that

ρf
(
∂τu

n
h,vh

)
Ω

+ af
h

(
(unh, p

n
h), (vh, qh)

)
+
ρsε

τ

( .
d
n− 1

2

h ,wh

)
Σ

−
(
σ(unh, p

n
h)n,vh −wh

)
Σ
−
(
unh −

.
d
n− 1

2

h ,σ(vh,−qh)n
)

Σ
+
γµ

h

(
unh −

.
d
n− 1

2

h ,vh −wh

)
Σ

=
ρsε

τ

( .
dn−1
h + τ∂τ

.
dn,?h ,wh

)
Σ

+
(
σ(un,?h , pn,?h )n,wh

)
Σ
− γµ

h

(
un,?h −

.
d
n− 1

2 ,?

h ,wh

)
Σ

(16)
for all (vh, qh,wh) ∈ V h ×Qh ×W h.

2. Solid substep: find
( .
dnh,d

n
h

)
∈W h ×W h such that

.
dnh = ∂τd

n
h and

ρsε

τ

(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh) = −
(
σ(unh, p

n
h)n,wh

)
Σ

+
γµ

h

(
unh −

.
d
n− 1

2

h ,wh

)
Σ

for all wh ∈W h.

Remark 3.4. It should be noted that for r = 1, 2 additional data is needed to start the time-
marching in Algorithm 2. In practice, this data can be obtained by performing one step of the
scheme with r = 0, this yields (u1

h, p
1
h,

.
d1
h), and then one step of the scheme with r = 1, which

gives (u2
h, p

2
h,

.
d2
h).

The semi-implicit coupling scheme provided by Algorithm 2 has a reduced computational
complexity with respect to Algorithm 1. Indeed, the solid contribution to (16) reduces to a
simple interface mass-matrix, which does not degrade the conditioning of the system matrix.
This reduction in the coupling complexity is particularly important when considering general
shell models (see, e.g., [17]), whose elastic contributions incorporate additional unknowns (e.g.,
rotations).

In the following sections, we show that Algorithm 2 preserves the stability and accuracy
properties of the explicit coupling schemes introduced in [26, 30] with fitted meshes. In particular,
it overcomes the severe stability restrictions observed in [7] for the traditional time-marching
schemes of the immersed boundary method. It is worth noting that these stability conditions
have been recently overcome in [8] by resorting to a full implicit treatment of the kinematic-
dynamic coupling (in the spirit of Algorithm 1), which yields a solution procedure much more
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10 M.A. Fernández & M. Landajuela

computationally demanding than Algorithm 2. On the other hand, Algorithm 2 with r = 1
delivers optimal first-order accuracy. This is also significant progress with respect to the stabilized
explicit scheme of [13], whose accuracy is non-uniform in h.

Remark 3.5. Algorithm 2 has been extended in [1] to address the case in which the solid is
immersed within the fluid. In this framework, fluid (weak and strong) discontinuities across the
interface are captured using a XFEM local enrichment. The following analysis can be straight-
forwardly adapted to this further involved situation.

3.2.1 Kinematic perturbation of implicit coupling.

We conclude this section by pointing out a fundamental property of Algorithm 2. To this
purpose, we will make use of the discrete reconstruction Lh : W → W h of the elastic solid
operator, defined by the relation

(Lhw,wh)Σ = as(w,wh) (17)

for all (w,wh) ∈W ×W h. Owing to (17) and (15), we get that

.
d
n− 1

2

h =
.
dnh +

τ

ρsε
Lh(dnh − d

n,?
h ) (18)

for n > r. On the other hand, adding (14) and (15) yields ρf
(
∂τu

n
h,vh

)
Ω

+ af
h

(
(unh, p

n
h), (vh, qh)

)
+ ρsε

(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh)

−
(
σ(unh, p

n
h)n,vh −wh

)
Σ
−
(
unh −

.
d
n− 1

2

h ,σ(vh,−qh)n
)

Σ
+
γµ

h

(
unh −

.
d
n− 1

2

h ,vh −wh

)
Σ

= 0

(19)
for all (vh, qh,wh) ∈ V h × Qh ×W h and n > r. Thus, Algorithm 2 can be regarded as a
kinematic perturbation of the fully implicit time discretization given by Algorithm 1. As a
matter of fact, Algorithm 1 formally enforces (through Nitsche’s method) the interface condition

unh '
.
dnh, whereas (18)-(19) imposes

unh '
.
dnh +

τ

ρsε
Lh(dnh − d

n,?
h ).

Note that the size of the perturbation depends on the extrapolation order r. The basic idea in the
forthcoming analysis is to investigate how the kinematic perturbation (18) affects the stability
and convergence of the underlying implicit coupling scheme (Algorithm 1).

3.3 Stability and convergence analysis

We consider the following mesh-dependent semi-norms for functions f defined on the interface
Σ,

‖f‖21
2 ,h,Σ

=
∑
K∈Gh

h−1
K ‖f‖

2
0,ΣK

, ‖f‖2− 1
2 ,h,Σ

=
∑
K∈Gh

hK‖f‖20,ΣK
,

Inria



Unfitted mesh formulations and splitting schemes for FSI 11

where ΣK denotes the part of the interface intersecting the simplex K, i.e, ΣK
def
= Σ ∩K. The

following estimates involving the solid elastic operator will be used,

‖Lhd‖0,Σ ≤‖Ld‖0,Σ, (20)

‖wh‖2s ≤
βsC2

I

h2
‖wh‖20,Σ, (21)

‖Lhwh‖s ≤
βsC2

I

h2
‖wh‖s, (22)

‖Lhwh‖0,Σ ≤
(βs)

1
2CI

h
‖wh‖s (23)

for all d ∈D and wh ∈W h and with CI > 0 the constant of a discrete inverse inequality. Esti-
mates (20)-(23) follow readily from application of the Cauchy-Schwarz inequality, the definition
(17) and the continuity estimate (3) (see [26, Appendix A] for the details). We will also make
use of the discrete Gronwall lemma (see, e.g., [37]), which we collect here without a proof.

Lemma 3.1. Let τ , B and am, bm, cm, ηm (for integers m ≥ 1) be nonnegative numbers such
that

an + τ

n∑
m=1

bm ≤ τ
n∑

m=1

ηmam + τ

n∑
m=1

cm +B

for n ≥ 1. Suppose that τηm < 1 for all m ≥ 1. Then, there holds

an + τ

n∑
m=1

bm ≤ exp

(
τ

n∑
m=1

ηm
1− τηm

)(
τ

n∑
m=1

cm +B

)
for n ≥ 1.

For the purpose of the analysis, we will assume that Σ is well resolved by T f
h (see, e.g., [14]),

so that the following trace inequality holds for functions in H1(K), for all K ∈ T f
h : there exists

a constant CT > 0, depending only on Σ, such that

‖v‖0,Σ∩K ≤ CT

(
h
− 1

2

K ‖v‖0,K + h
1
2

K‖∇v‖0,K
)

(24)

for all v ∈ H1(K). The proof for this result follows from [34, Lemma 3]. In particular, using
(24) with a discrete inverse inequality, it follows

h‖ε(vh)n‖20,Σ ≤ CTI‖ε(vh)‖20,Ωh
(25)

for all vh ∈ V h. Note that (25) holds irrespectively of the interface position because the norm
on the right-hand side is taken over the whole computational domain Ωh. However, this control
on the interfacial viscous flux can not be bounded by the natural viscous dissipation of the fluid,
which is only available in the physical domain Ω ⊂ Ωh. The strengthened stability (9) provided
by the ghost-penalty operator, allows to extend to Ωh the coercivity of the spatial discrete Stokes-
Nitsche operator. This is stated in the following lemma from [13], whose proof is presented here
for completeness.

Lemma 3.2. For γ > 0 sufficiently large, there exists a constant cg > 0 such that

cg

(
µ‖∇vh‖20,Ωh

+ γµ‖vh −wh‖21
2 ,h,Σ

+ |(vh, qh)|2S
)
≤

af
h

(
(vh, qh), (vh, qh)

)
−
(
σ(vh, qh)n,vh −wh

)
Σ

−
(
vh −wh,σ(vh,−qh)n

)
Σ

+
γµ

h

(
vh −wh,vh −wh

)
Σ

for all (vh, qh) ∈ V h ×Qh and wh ∈W h.
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12 M.A. Fernández & M. Landajuela

Proof. First, we have

af
h

(
(vh, qh), (vh, qh)

)
−
(
σ(vh, qh)n,vh −wh

)
Σ

−
(
vh −wh,σ(vh,−qh)n

)
Σ

+
γµ

h

(
vh −wh,vh −wh

)
Σ

+ |(vh, qh)|2S
= 2µ‖ε(vh)‖20,Ω − 2

(
σ(vh, 0)n,vh −wh

)
Σ

+ γµ‖vh −wh‖21
2 ,h,Σ

+ |(vh, qh)|2S .

Combining the Cauchy-Schwarz inequality with (25), we have(
2σ(vh, 0)n,vh −wh

)
Σ
≤ 2
(hµ
γ

) 1
2 ‖ε(vh)n‖0,Σ

(γµ
h

) 1
2 ‖vh −wh‖0,Σ

≤ 8CTI

γ
µ‖ε(vh)‖20,Ωh

+
1

2
γµ‖vh −wh‖21

2 ,h,Σ
.

We conclude by using (9), taking

γ >
8CTI

c̃g
(26)

and using Korn’s inequality.

3.3.1 Stability analysis

At time-step tn, we define the total discrete energy by

Enh
def
= ρf‖unh‖20,Ω + ρsε‖

.
dnh‖20,Σ + ‖dnh‖2s , (27)

and the dissipation as

Dn
h

def
=
ρf

τ
‖unh − un−1

h ‖20,Ω +
ρsε

τ
‖

.
dnh −

.
dn−1
h ‖20,Σ +

1

τ
‖dnh − d

n−1
h ‖2s

+ cg

(
µ‖∇unh‖20,Ωh

+ γµ‖unh −
.
d
n− 1

2

h ‖21
2 ,h,Σ

+ |(unh, pnh)|2S
)
.

The following result states the energy stability of the semi-implicit schemes reported in Algo-
rithm 2. In the succeeding text, the symbol . indicates an inequality up to a multiplicative
constant (independent of the physical and discretization parameters and of the fluid-interface
intersection).

Theorem 3.1. Let {(unh, pnh,
.
d
n− 1

2

h ,dnh,
.
dnh)}n>r be the sequence given by Algorithm 2, with the

initialization procedure of Remark 3.4 for r = 1, 2. Assume that γ > 0 is given by Lemma 3.2.
Then, we have the following a priori energy estimates:

• For r = 0, 1 and n > r, there holds

Enh + τ

n∑
m=r+1

Dm
h . E0

h, (28)

irrespectively of the discretization parameters.

• For r = 2 and n > 2, there holds

Enh + τ

n∑
m=3

Dm
h . exp

(
tnζ

1− τζ

)
E0
h, (29)

Inria



Unfitted mesh formulations and splitting schemes for FSI 13

provided the following conditions hold

τ(ωs)
6
5 ≤ ζh 6

5 , τζ < 1, ζ > 0, (30)

with ωs def
= CI

√
βs/(ρsε).

Proof. The proof follows by combining arguments from [13, 26]. We first test (19) with

(vh, qh,wh) = τ(unh, p
n
h,

.
d
n− 1

2

h )

for n > r. This yields the following discrete energy equation,

ρf

2

(
τ∂τ‖unh‖20,Ω + ‖unh − un−1

h ‖20,Ω
)

+ 2µτ‖ε(unh)‖20,Ω + τ |(unh, pnh)|2S

+ρsετ
(
∂τ

.
dnh,

.
d
n− 1

2

h

)
Σ

+τas(dnh,
.
d
n− 1

2

h )+2τ
(
σ(unh, 0)n,unh−

.
d
n− 1

2

h

)
Σ

+γµτ‖unh−
.
d
n− 1

2

h ‖21
2 ,h,Σ

= 0

for n > r. Hence, from Lemma 3.2, we have that

ρf

2

(
τ∂τ‖unh‖20,Ω + ‖unh − un−1

h ‖20,Ω
)
+cgτ

(
µ‖∇unh‖20,Ωh

+ γµ‖unh −
.
d
n− 1

2

h ‖21
2 ,h,Σ

+ |(unh, pnh)|2S
)

+ ρsετ
(
∂τ

.
dnh,

.
d
n− 1

2

h

)
Σ

+ τas(dnh,
.
d
n− 1

2

h ) ≤ 0.

Hence, using the perturbed kinematic relation (18), we get the following fundamental energy
inequality

ρf

2

(
τ∂τ‖unh‖20,Ω + ‖unh − un−1

h ‖20,Ω
)
+cgτ

(
µ‖∇unh‖20,Ωh

+ γµ‖unh −
.
d
n− 1

2

h ‖21
2 ,h,Σ

+ |(unh, pnh)|2S
)

+
ρsε

2

(
τ∂τ‖

.
dnh‖20,Σ + ‖

.
dnh −

.
dn−1
h ‖20,Σ

)
+

1

2

(
τ∂τ‖dnh‖2s + ‖dnh − d

n−1
h ‖2s

)
+ τ2

(
∂τ

.
dnh,Lh(dnh − d

n,?
h )
)

Σ︸ ︷︷ ︸
T1

+
τ2

ρsε

(
Lhd

n
h,Lh(dnh − d

n,?
h )
)

Σ︸ ︷︷ ︸
T2

. 0 (31)

for n > r. The terms T1 and T2, introduced by (18), can be controlled as in [26, Theorem 1]
for each extrapolation order r = 0, 1, 2. For the sake of completeness, the different estimates are
briefly recalled below.
Algorithm 2 with r = 0. In this case, using Young’s inequality, we have

T1 + T2 ≥ −
ρsε

3
‖

.
dnh −

.
dn−1
h ‖20,Σ +

τ2

4ρsε
‖Lhdnh‖20,Σ (32)

for n > 0. Hence, the estimate (28) follows by inserting this expression into (31) and summing
over m = 1, . . . , n.
Algorithm 2 with r = 1. In this case we have

T1 =
τ2

2

(
τ∂τ
∥∥ .
dnh
∥∥2

s
+
∥∥ .
dnh −

.
dn−1
h

∥∥2

s

)
(33)

and

T2 =
τ2

2ρsε

(
τ∂τ
∥∥Lhdnh∥∥2

0,Σ
+
∥∥Lh(dnh − d

n−1
h )

∥∥2

0,Σ

)
(34)
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14 M.A. Fernández & M. Landajuela

for n > 1. Hence, by inserting this expression into (31) and summing over m = 2, . . . , n we get
the estimate

Enh + τ

n∑
m=2

Dm
h . E1

h +
τ2

2
‖

.
d1
h

∥∥2

s
+

τ2

2ρsε

∥∥Lhd1
h

∥∥2

0,Σ
.

The last two terms, related to the initialization of the scheme (see Remark 3.4), can be bounded
using (28) with r = 0, n = 1 and the additional control given by (32). This yields the estimate
(28) in the case r = 1.
Algorithm 2 with r = 2. In this case, the term T1 in (31) reduces simply to

T1 = τ
( .
dnh −

.
dn−1
h ,Le(dnh − 2dn−1

h + dn−2
h )

)
Σ

= τ2
∥∥ .
dnh −

.
dn−1
h

∥∥2

s
. (35)

The term T2, which reads as

T2 =
τ3

ρsε

(
Lhd

n
h,Lh(

.
dnh −

.
dn−1
h )

)
Σ
, (36)

is treated as in [26, Page 38] using (21) and (22), which yields

T2 ≥− τ6 (ωs)6

h6
‖dnh‖2s −

ρsε

4
‖

.
dnh −

.
dn−1
h ‖20,Σ. (37)

We now proceed by inserting (35) and (37) into (31) and summing over m = 3, . . . , n. The last
term of (37) is controlled by the numerical dissipation provided by (31), while the first is handled
via Lemma 3.1 under condition (30). This yields the bound

Enh +

n∑
m=3

Dm
h . exp

(
tnζ

1− τζ

)
E2
h.

The estimate (29) for r = 2 then follows by using the energy estimate (28) with r = 1 and n = 2,
the additional control provided by (33) and (34), and the stability condition (30).

Remark 3.6. Note that testing (13) with (vh, qh,wh) = τ(unh, p
n
h,

.
dnh) for n > 0, equation (31)

holds with
.
d
n− 1

2

h =
.
dnh and T1 = T2 = 0. Thus, for Algorithm 1, the following energy estimate

holds,

Enh + τ

n∑
m=1

Dm
h . E0

h

for n > 0 and γ > 0 given by Lemma 3.2, irrespectively of the discretization parameters.

3.3.2 Convergence analysis

In the following, we use the notation fn
def
= f(tn) for a given time dependent function f . We

may then consider ∂τf
n and fn,?, involving the quantities fn, fn−1 and fn−2. In the following,

a slight abuse of notation will be committed by using ∂tf
n to denote (∂tf)n.

For the the convergence analysis we assume that the interface Σ is flat. We also assume
that the elements of T s

h can be grouped into disjoint (d− 1)-dimensional macropatches Pi, with
meas(Pi) = O(hd−1). Each macropatch is assumed to contain at least one interior node and its
union is assumed to cover Σ, i.e., ∪iPi = Σ.

Inria



Unfitted mesh formulations and splitting schemes for FSI 15

Interpolation operators. Basically, the discrete interpolation operators are those used in [13,
Section 3.3] for the error analysis of the space semi-discrete formulation (5). For the solid
displacement, we consider the elastic Ritz-projection operator πs

h : W → W h defined by the
relation

as(w − πs
hw,wh) = 0

for all wh ∈W h, and for which there holds

‖w − πs
hw‖0,Σ + h‖∇(w − πs

hw)‖0,Σ . h2|w|2,Σ (38)

for all w ∈ [H2(Σ)]d ∩W . Note also that owing to definition (17), we have

(Lhπ
s
hw,wh)Σ = as(πs

hw,wh) = as(w,wh) = (Lhw,wh)Σ,

and thus
Lhπ

s
h = Lh. (39)

For the solid velocity, we consider the operator Ih : W →W h defined by the relation

Ihw
def
= πs

hw +
∑
i

αiϕi,

with αi ∈ R. The ϕi are functions with support in the macropatches Pi, such that

0 ≤ ϕi ≤ 1, ‖ϕi‖0,Pi . h
d−1
2

and take the value 1, component-wise, in the interior nodes of the associated patch Pi. The
scalars αi are chosen so that the following orthogonality condition holds∫

Pi

(w − Ihw) · n = 0. (40)

We refer to [13, 6] for the detailed construction of such an operator. It can be shown (see [13,
Lemma 3.3]) that

‖w − Ihw‖0,Σ + h‖∇(w − Ihw)‖0,Σ . h2|w|2,Σ (41)

for all w ∈ [H2(Σ)]d ∩W .
Since the fluid physical solution is defined in Ω and the discrete one in Ωh, with Ω ⊂ Ωh,

we consider two linear continuous lifting operators E2 : H2(Ω) → H2(Rd) and E1 : H1(Ω) →
H1(Rd), satisfying the bounds ‖E1v‖H1(Rd) . ‖v‖H1(Ω) and ‖E2v‖H2(Rd) . ‖v‖H2(Ω) (see, e.g,
[23]). To interpolate the resulting extended fluid solution we consider the Scott-Zhang operator
isz (see, e.g., [21]). Then it holds (see [13, Lemma 3.3]),

‖v − iszE2v‖0,Ω + h‖∇(v − iszE2v)‖0,Ω . h2|v|2,Ω,
‖q − iszE1q‖0,Ω + h‖∇(q − iszE1q)‖0,Ω . h|q|1,Ω,
‖σ(v − iszE2v, q − iszE1q)n‖− 1

2 ,h,Σ
. h (‖v‖2,Ω + ‖q‖1,Ω)

(42)

for all v ∈ [H2(Ω)]d and q ∈ H1(Ω).
On the other hand, we assume that the stabilization operator (6) satisfies the following weak

consistency relation ∣∣(iszE2v, iszE1q
)∣∣
S
.h
(
µ

1
2 |v|2,Ω + µ−

1
2 |q|1,Ω

)
(43)
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16 M.A. Fernández & M. Landajuela

for all v ∈ [H2(Ω)]d and q ∈ H1(Ω). The pressure estimate follows readily from (7), the H1-
stability of the Scott-Zhang interpolant and the stability of the extension operator (see [13]). For
the estimate regarding the ghost-penalty operator (10) we refer to [14].

Finally, owing to (24),(42)1 and (41), the following result involving both the fluid and solid
velocity projections holds

‖v − iszE2v‖ 1
2 ,h,Σ

. h‖v‖2,Ω, ‖w − Ihw‖ 1
2 ,h,Σ

. h
3
2 ‖w‖2,Σ (44)

for all v ∈ [H2(Ω)]d and w ∈ [H2(Σ)]d ∩W (see [13, Lemma 3.3]).

A priori error estimates. We assume that the exact solution of problem (1)-(2) has the following
regularity, for a given final time T ≥ τ :

u ∈
[
H1
(
0, T ;H2(Ω)

)]d
, u|Σ ∈

[
H1
(
0, T ;H2(Σ)

)]d
,

∂ttu ∈
[
L2
(
0, T ;L2(Ω)

)]d
, ∂ttu|Σ ∈

[
L2
(
0, T ;L2(Σ)

)]d
,

p ∈ C0
(
[0, T ];H1(Ω)

) (45)

and

Led ∈

{[
C0
(
[0, T ];L2(Σ)

)]d
if r = 0,[

Hr
(
0, T ;L2(Σ)

)]d
if r = 1, 2.

(46)

For the derivation of the error estimate, let us write the approximation errors for the fluid as,

E2u
n − unh =E2u

n − iszE2u
n︸ ︷︷ ︸

def
= θnπ

+ iszE2u
n − unh︸ ︷︷ ︸

def
= θnh

in Ωh,

E1p
n − pnh =E1p

n − iszE1p
n︸ ︷︷ ︸

def
= ynπ

+ iszE1p
n − pnh︸ ︷︷ ︸

def
= ynh

in Ωh.
(47)

Similarly, for the solid we have

dn − dnh =dn − πs
hd

n︸ ︷︷ ︸
def
= ξnπ

+πs
hd

n − dnh︸ ︷︷ ︸
def
= ξnh

in Σ,

.
dn −

.
dnh =

.
dn − Ih

.
dn︸ ︷︷ ︸

def
=

.
ξnπ

+Ih
.
dn −

.
dnh︸ ︷︷ ︸

def
=

.
ξnh

in Σ.
(48)

Finally, the error in the intermediate solid velocity is split as

.
dn −

.
d
n− 1

2

h =
.
dn − Ih

.
dn︸ ︷︷ ︸

def
=

.
ξnπ

+Ih
.
dn −

.
d
n− 1

2

h︸ ︷︷ ︸
def
= χnh

in Σ.
(49)

In the sequel, the following equation, relating
.
ξnh and ∂τξ

n
h, will be used

.
ξnh = ∂τξ

n
h + Ih

.
dn − πs

h∂τd
n︸ ︷︷ ︸

def
= znh

. (50)
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Unfitted mesh formulations and splitting schemes for FSI 17

Similarly, the discrete error counterpart of (18) reads as

χnh = Ih
.
dn −

.
d
n− 1

2

h = Ih
.
dn −

.
dnh −

τ

ρsε
Lh(dnh − d

?
h) =

.
ξnh +

τ

ρsε
Lh(ξnh − ξ

n,?
h )− τ

ρsε
Lh(dn − dn,?)

(51)
for n > r, where we have used (39).

We first provide an a priori estimate for the discrete errors (θnh, y
n
h , ξ

n
h,

.
ξnh,χ

n
h). We define

the energy-norm of the discrete error at time step tn, as

Enh
def
= (ρf)

1
2 ‖θnh‖0,Ω + (ρsε)

1
2 ‖

.
ξnh‖0,Σ + ‖ξnh‖s +

(
n∑

m=r+1

cgτµ‖∇θnh‖20,Ω

) 1
2

+

(
n∑

m=r+1

cgτ |(θnh, ynh)|2S

) 1
2

+

(
n∑

m=r+1

cgτγµ‖θnh − χnh‖21
2 ,h,Σ

) 1
2

for n > r.

Theorem 3.2. Let (u, p,d,
.
d) be the solution of the coupled problem (1)-(2) and {(unh, pnh,

.
d
n− 1

2

h ,dnh,
.
dnh)}n>r

be the approximation given by Algorithm 2 with initial data
(
u0
h,d

0
h,

.
d0
h

)
=
(
iszE2u

0,πs
hd

0, Ih
.
d0
)
.

The initialization procedure of Remark 3.4 is considered for the schemes with r = 1, 2. Suppose
that the exact solution has the regularity (45)-(46). Assume that γ > 0 is given by Lemma 3.2.
For the scheme with r = 2 we assume, in addition, that the stability condition (30) holds. Then,
we have the following error estimates, for n > r and nτ < T :

Enh . c1h+ c2τ + c3τ
2r−1

. (52)

Here, the symbols {ci}3i=1 denote positive constants independent of h and τ , but which depend on

the physical parameters and on the regularity of (u, p,d,
.
d).

Proof. The proof combines some of the arguments reported in [13, 26], with the following addi-
tional difficulties:

• Only the spatial semi-discrete case is considered in [13];

• The intermediate solid velocity
.
d
n− 1

2

h cannot be eliminated in terms of unh, as in [26], which
requires the control of an extrapolation dependent term T2,r.

The spatial semi-discrete formulation (5) is weakly consistent with the coupled problem (1)-(2).
In fact, if we multiply (1)1 by vh ∈ V h, (1)2 by qh ∈ Qh and (2)1 by wh ∈ W h, integrate by
parts and add the resulting equations, we get

ρf
(
∂tu,vh

)
Ω

+ af
(
(u, p), (vh, qh)

)
+ ρsε

(
∂t

.
d,wh

)
Σ

+ as(d,wh)

−
(
σ(u, p)n,vh −wh

)
Σ
−
(
u−

.
d,σ(vh,−qh)n

)
Σ

+
γµ

h

(
u−

.
d,vh −wh

)
Σ

= 0 (53)

for all vh, qh,wh ∈ V h ×Qh ×W h. Taking the difference between the continuous problem (53)

at time t = tn and the expression (19), we obtain, after adding and subtracting ∂τu
n and ∂τ

.
dn,

the following modified Galerkin orthogonality:

ρf (∂τ (un − unh),vh)Ω + af
(
(un − unh, pn − pnh), (vh, qh)

)
+ ρsε

(
∂τ (

.
dn −

.
dnh),wh

)
Σ

+ as
(
dn − dnh,wh

)
−
(
σ(un − unh, pn − pnh)n,vh −wh

)
Σ

−
(
(un − unh)− (

.
dn −

.
d
n− 1

2

h ),σ(vh,−qh)n
)

Σ
+
γµ

h

(
(un − unh)− (

.
dn −

.
d
n− 1

2

h ),vh −wh

)
Σ

= −ρf
(
(∂t − ∂τ )un,vh

)
Ω
− ρsε

(
(∂t − ∂τ )

.
dn,wh

)
Σ

+ Sh
(
(unh, p

n
h), (vh, qh)

)
(54)
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for all (vh, qh,wh) ∈ V h ×Qh ×W h. Hence, from (47)-(49), we infer the following equation for

the discrete errors θnh, ynh , ξnh,
.
ξnh and χnh:

ρf
(
∂τθ

n
h,vh

)
Ω

+ af
(
(θnh, y

n
h), (vh, qh)

)
+ Sh

(
(θnh, y

n
h), (vh, qh)

)
+ ρsε

(
∂τ

.
ξnh,wh

)
Σ

+ as
(
ξnh,wh

)
−
(
σ(θnh, y

n
h)n,vh −wh

)
Σ
−
(
θnh − χnh,σ(vh,−qh)n

)
Σ

+
γµ

h

(
θnh − χnh,vh −wh

)
Σ

= −ρf
(
(∂t − ∂τ )un,vh

)
Ω
− ρf (∂τθ

n
π,vh)Ω

− ρsε
(
(∂t − ∂τ )

.
dn,wh

)
Σ
− ρsε

(
∂τ

.
ξnπ,wh

)
Σ
− as

(
ξnπ,wh

)
+ Sh

(
(iszE2u

n, iszE1p
n), (vh, qh)

)
− γµ

h

(
θnπ −

.
ξnπ,vh −wh

)
Σ

− af
(
(θnπ, y

n
π), (vh, qh)

)
+
(
σ(θnπ, y

n
π)n,vh −wh

)
Σ

+
(
θnπ −

.
ξnπ,σ(vh,−qh)n

)
Σ

(55)

for all (vh, qh,wh) ∈ V h×Qh×W h and n > r. Note that as
(
ξnπ,wh

)
= 0 due to the definition of

the solid projection operator πs
h. Taking (vh, qh,wh) = τ(θnh, y

n
h ,χ

n
h) in (55), using Lemma 3.2,

(50) and (51), yields the following energy inequality for the discrete errors:

ρf

2

(
τ∂τ‖θnh‖20,Ω + τ2‖∂τθnh‖20,Ω

)
+
ρsε

2

(
τ∂τ‖

.
ξnh‖20,Σ + τ2‖∂τ

.
ξnh‖20,Σ

)
+ cgτ

(
µ‖∇θnh‖20,Ωh

+ γµ‖θnh − χnh‖21
2 ,h,Σ

+ |(θnh, ynh)|2S
)

+
1

2

(
τ∂τ‖ξnh‖2s + τ2‖∂τξnh‖2s

)
. −ρfτ

(
(∂t − ∂τ )un,θnh

)
Ω
− ρfτ (∂τθ

n
π,θ

n
h)Ω︸ ︷︷ ︸

T1

−ρsετ
(
(∂t − ∂τ )

.
dn,χnh)

)
Σ
− ρsετ

(
∂τ

.
ξnπ,χ

n
h)
)

Σ︸ ︷︷ ︸
T2

−τas(ξnh, z
n
h)︸ ︷︷ ︸

T3

+τSh
(
(iszE2u

n, iszE1p
n), (θnh, y

n
h)
)︸ ︷︷ ︸

T4

−τ γµ
h

(
θnπ −

.
ξnπ,θ

n
h − χnh

)
Σ︸ ︷︷ ︸

T5

+τ
(
σ(θnπ, y

n
π)n,θnh − χnh

)
Σ︸ ︷︷ ︸

T6

−τaf
(
(θnπ, y

n
π), (θnh, y

n
h)
)

+ τ
(
θnπ −

.
ξnπ,σ(θnh,−ynh)n

)
Σ︸ ︷︷ ︸

T7

−τ2
(
∂τ

.
ξnh,Lh(ξnh − ξ

n,?
h )
)

Σ
− τ2

ρsε

(
Lhξ

n
h,Lh(ξnh − ξ

n,?
h )
)

Σ︸ ︷︷ ︸
T8

+τ2
(
∂τ

.
ξnh,Lh(dn − dn,?)

)
Σ︸ ︷︷ ︸

T9

+
τ2

ρsε
(Lhξ

n
h,Lh(dn − dn,?))Σ︸ ︷︷ ︸
T10

(56)

for n > r. The terms T1−T4 stem from the time-stepping and stabilization methods. The terms
T5−T7 come from Nitsche’s method. Finally, terms T8−T10 are due to the kinematic perturbation
and depend on the extrapolation order. We proceed by treating each term separately.

Term T1 can be bounded using a Taylor expansion, (42) and the Poincaré inequality with
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constant CP. This yields

T1 ≤ ρfτ (‖∂tun − ∂τun‖0,Ω + ‖∂τθnπ‖0,Ω) ‖θnh‖0,Ω

≤ ρfτ
(
τ

1
2 ‖∂ttu‖L2(tn−1,tn;L2(Ω)) + τ−

1
2 ‖∂tθπ‖L2(tn−1,tn;L2(Ω))

)
‖θnh‖0,Ω

≤ (ρfCP)2

2ε1µ

(
τ2‖∂ttu‖2L2(tn−1,tn;L2(Ω)) + ‖∂tθπ‖2L2(tn−1,tn;L2(Ω))

)
+ ε1τµ‖∇θnh‖20,Ωh

.
(ρfCP)2

2ε1µ
τ2‖∂ttu‖2L2(tn−1,tn;L2(Ω)) +

(ρfCP)2

2ε1µ
h2‖∂tu‖2L2(tn−1,tn;H2(Ω))

+ ε1τµ‖∇θnh‖20,Ωh
,

(57)

with ε1 > 0. Note that, by choosing ε1 small enough, the last term of (57) can be absorbed by
the left-hand side of (56).

For term T2, using again a Taylor expansion we have

T2 ≤ ρsετ
(
‖(∂t − ∂τ )

.
dn‖0,Σ + ‖∂τ

.
ξnπ‖0,Σ

)
‖χnh‖0,Σ

≤ ρsετ
(
τ1/2‖∂ttu‖L2(tn−1,tn;L2(Σ)) + τ−1/2‖∂t

.
ξπ‖L2(tn−1,tn;L2(Σ))

)
‖χnh‖0,Σ

.
ρsεT

2ε2

(
τ2‖∂ttu‖2L2(tn−1,tn;L2(Σ)) + h2‖∂tu‖2L2(tn−1,tn;H2(Σ))

)
+ ε2τ

ρsε

T
‖χnh‖20,Σ︸ ︷︷ ︸
T2,r

.
(58)

For the last term, using (51) and a triangular inequality, and since τ ≤ T , we have

T2,r ≤ ε2τ
ρsε

T
‖
.
ξnh‖20,Σ + ε2

τ3

ρsεT
‖Lh(ξnh − ξ

n,?
h )‖20,Σ + ε2

τ3

ρsεT
‖Lh(dn − dn,?)‖20,Σ

≤ ε2τ
ρsε

T
‖
.
ξnh‖20,Σ + ε2

τ2

ρsε
‖Lh(ξnh − ξ

n,?
h )‖20,Σ + ε2

τ2

ρsε
‖Lh(dn − dn,?)‖20,Σ.

(59)

The first term will be treated via Lemma 3.1 in (56). The remaining two terms will, respectively,
be controlled bellow via the numerical dissipation provided by the fluid-solid splitting and a
Taylor expansion. Since the bound depends on the extrapolation order, we postpone the analysis
of T2,r to treat it together with the extrapolation-dependent terms T8 − T10.

For term T3 using (39), (3), a triangular inequality, a Taylor expansion and approximation,
we have

T3 =− τas
(
ξnh,Ih

.
dn − ∂τdn

)
≤ τ‖ξnh‖s‖Ih

.
dn − ∂τdn‖s

≤τT
(
‖Ih

.
dn −

.
dn‖2s + ‖

.
dn − ∂τdn‖2s

)
+

τ

2T
‖ξnh‖2s

.τh2βsT‖un‖22,Σ + τ2βsT‖∂tu‖2L2(tn−1,tn;H1(Σ)) +
τ

2T
‖ξnh‖2s ,

(60)

where the last term can be controlled via Lemma 3.1 in (56).

For term T4, using the weak consistency of the stabilization operator (43), we observe that

T4 ≤ τ
1

2ε4
|(iszE2u

n, iszE1p
n)|2S+τ

ε4

2
|(θnh, ynh)|2S . τh2 1

ε4µ

(
µ‖un‖22,Ω+µ−1‖pn‖21,Ω

)
+τ

ε4

2
|(θnh, ynh)|2S

(61)
where the third term in the right hand side is absorbed in the left-hand side of (56), for ε4 > 0
sufficiently small.
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The boundary penalty term T5 is handled using Cauchy-Schwarz inequality followed by (44),

T5 ≤ τ
1

2ε5
γµ‖θnπ−

.
ξnπ‖21

2 ,h,Σ
+τ

ε5

2
γµ‖θnh−χnh‖21

2 ,h,Σ
. τh2 γµ

ε5
(‖un‖22,Ω+h‖

.
dn‖22,Σ)+τ

ε5

2
γµ‖θnh−χnh‖21

2 ,h,Σ
.

(62)
Note that the second term can be absorbed in the left-hand side of (56), for ε5 > 0 small enough.

Similarly, for the consistency term T6, using (42)3, we have

T6 ≤τ
1

2ε6γµ
‖σ(θnπ, y

n
π)n‖2− 1

2 ,h,Σ
+ τ

ε6

2
γµ‖θnh − χnh‖21

2 ,h,Σ

.τh2 1

ε6γµ

(
‖un‖22,Ω + ‖pn‖21,Ω

)
+ τ

ε6

2
γµ‖θnh − χnh‖21

2 ,h,Σ
.

(63)

Note that the first term has the right convergence order and the second term can be absorbed
in the left hand side of (56), for ε6 > 0 small enough.

To estimate T7, we split it into two parts as in [13]. The velocity-velocity coupling part can
be easily handled by using approximation and the robust trace inequality (25), as follows:

− τa(θnπ,θ
n
h) + τ

(
σ(θnh, 0)n,θnπ −

.
ξnπ
)

Σ

≤ −τa(θnπ,θ
n
h) + τµε7‖ε(θnh)n‖2− 1

2 ,h,Σ
+ τµ

1

ε7
‖θnπ −

.
ξnπ‖21

2 ,h,Σ

. τh2 µ

ε7CTI
‖un‖22,Ω + τµ

2

ε7
h2
(
‖un‖22,Ω + ‖

.
dn‖22,Σ

)
+ 2τε7µCTI‖∇θnh‖20,Ωh

.

(64)

The last term can be, once again, absorbed in the left hand side of (56), for ε7 > 0 sufficiently
small. For the velocity-pressure coupling part we write, using integration by parts in the conti-
nuity equation,

− τb(ynπ ,θ
n
h) + τb(ynh ,θ

n
π) + τ

(
σ(0,−ynh)n,θnπ −

.
ξnπ
)

Σ

= τ(ynπ ,divθnh)Ω − τ(ynh ,divθnπ)Ω + τ
(
σ(0,−ynh)n,θnπ −

.
ξnπ
)

Σ

= τ(ynπ ,divθnh)Ω︸ ︷︷ ︸
T7,1

+τ(∇ynh ,θ
n
π)Ω︸ ︷︷ ︸

T7,2

−τ
(
ynhn,

.
ξnπ
)

Σ︸ ︷︷ ︸
T7,3

.

For the terms T7,1 and T7,2, using the Cauchy-Schwarz inequality, (42) and (43), we have

T7,1 . τh2 1

2ε7,1µ
‖pn‖21,Ω + τ

ε7,1

2
µ‖∇θnh‖20,Ω, T7,2 . τh2 µ

2ε7,2
‖un‖22,Ω + τ

ε7,2

2
|(0, ynh)|2S , (65)

where the last terms of these inequalities can be absorbed in (56), for ε7,1, ε7,2 > 0 small enough.
For the third term T7,3, denoting by yni ∈ R the average of ynh over the interface patch Pi , using
the property (40) of the operator Ih and the standard orthogonal projection inequality

‖ynh − yni ‖0,Pi . h‖∇ynh‖0,Pi ,

together with the trace inequality (24) and (7), we get

T7,3 = −τ
∑
i

(
ynh − yni ,

.
ξnπ · n

)
Pi

.τ
∑
i

h‖∇ynh‖0,Pi
h2‖

.
ξnπ‖2,Pi

.τh3 µ

2ε7,3
‖

.
dn‖22,Σ + τh2 ε7,3

2µ
‖∇ynh‖20,Ωh

,

.τh3 µ

2ε7,3
‖

.
dn‖22,Σ + τ

ε7,3

2
|(0, ynh)|2S

(66)
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the last terms of these inequality can be absorbed in (56), for ε7,3 > 0 small enough. The
above estimations of T7,1, T7,2 and T7,3 provide bounds which involve either terms with the right
convergence order or contributions that can be absorbed by the left-hand side of (56).

We now proceed with the extrapolation-dependent terms T8−T10 and the term T2,r from (58).
We consider each case of extrapolation separately. Basically, the terms T8 − T10 are controlled
as in [26, Theorem 2]. We include these estimates here for the sake of completeness.
Algorithm 2 with r = 0. We have the bound

T8 ≤ −
τ2

ρsε

(
1− 1

2ε8

)
‖Lhξnh‖20,Σ + ε8

ρsε

2
‖
.
ξnh −

.
ξn−1
h ‖20,Σ,

with ε8 > 0. On the other hand, we have

T9 = τ
( .
ξnh−

.
ξn−1
h ,Lhd

n
)

Σ
≤ τ‖

.
ξnh−

.
ξn−1
h ‖0,Σ‖Lhdn‖0,Σ ≤

ε9ρ
sε

2
‖
.
ξnh−

.
ξn−1
h ‖20,Σ+

τ2

2ε9ρsε
‖Ledn‖20,Σ,

with ε9 > 0, where we have used the h-uniform bound (20). For the last term, we have

T10 =
τ2

ρsε

(
Lhξ

n
h,Lhd

n
)

Σ
≤ ε10τ

2

2ρsε
‖Lhξnh‖20,Σ +

τ2

2ε10ρsε
‖Ledn‖20,Σ,

with ε10 > 0. On the other hand, owing to (59), we have that for r = 0 it holds

T2,0 ≤ ε2τ
ρsε

T
‖
.
ξnh‖20,Σ + ε2

τ2

ρsε
‖Lhξnh‖20,Σ + ε2

τ2

ρsε
‖Ledn‖20,Σ.

Thus, we get

T8 + T9 + T10 + T2,0 ≤ ε2τ
ρsε

T
‖
.
ξnh‖20,Σ −

τ2

ρsε

(
1− 1

2ε8
− ε10

2
− ε2

)
‖Lhξnh‖20,Σ

+
τ2

2ρsε

(
1

ε9
+

1

ε10
+ ε2

)
‖Ledn‖20,Σ +

ρsε

2
(ε8 + ε9)‖

.
ξnh −

.
ξn−1
h ‖20,Σ. (67)

Taking ε8 = 3
4 , ε10 = 1

3 and ε2 <
1
6 , we have

1− 1

2ε8
− ε10

2
− ε2 > 0

and the second term on the right-hand side of (67) is negative. The last term of (67) can be
absorbed into the left-hand side of (56), for ε9 > 0 small enough. In summary, the estimate (52)
follows by inserting the above estimates into (56), summing over m = 1, . . . , n, and applying
Lemma 3.1 with

am =
ρf

2
‖θmh ‖20,Ω +

ρsε

2
‖
.
ξmh ‖20,Σ +

1

2
‖ξmh ‖2s , ηm =

1

T
.

Note that, owing to the selection of the initial data, we have

θ0
h = 0,

.
ξ0
h = ξ0

h = 0. (68)

Algorithm 2 with r = 1. For the term T8, using (39), we have

T8 =− τ2

2

(
‖
.
ξnh‖2s − ‖

.
ξn−1
h ‖2s + ‖

.
ξnh −

.
ξn−1
h ‖2s

)
+τ2

( .
ξnh −

.
ξn−1
h ,Lh(Ih

.
dn − ∂τdn)

)
Σ︸ ︷︷ ︸

T8,1

− τ2

2ρsε

(
‖Lhξnh‖20,Σ − ‖Lhξ

n−1
h ‖20,Σ + ‖Lh(ξnh − ξ

n−1
h )‖20,Σ

)
.
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Similarly to (60), we get

T8,1 = τ2as
( .
ξnh−

.
ξn−1
h ,Ih

.
dn−∂τdn

)
.
τ2

4
‖
.
ξnh−

.
ξn−1
h ‖2s +h2βsτ2‖un‖22,Σ+τ3βs‖∂tu‖2L2(tn−1,tn;H1(Σ)),

and, thus,

T8 .− τ2

2

(
‖
.
ξnh‖2s − ‖

.
ξn−1
h ‖2s

)
− τ2

4
‖
.
ξnh −

.
ξn−1
h ‖2s

− τ2

2ρsε

(
‖Lhξnh‖20,Σ − ‖Lhξ

n−1
h ‖20,Σ + ‖Lh(ξnh − ξ

n−1
h )‖20,Σ

)
+ h2βsτ2‖un‖22,Σ + τ3βs‖∂tu‖2L2(tn−1,tn;H1(Σ)).

(69)

For T9, using (20) and a Taylor expansion, we get

T9 =τ
( .
ξnh −

.
ξn−1
h ,Lh(dn − dn−1)

)
Σ
≤ τ‖

.
ξnh −

.
ξn−1
h ‖0,Σ‖Lh(dn − dn−1)‖0,Σ

≤τ ρ
sε

4T

(
‖
.
ξnh‖20,Σ + ‖

.
ξn−1
h ‖20,Σ

)
+
τT

ρsε
‖Le(dn − dn−1)‖20,Σ

≤τ ρ
sε

4T

(
‖
.
ξnh‖20,Σ + ‖

.
ξn−1
h ‖20,Σ

)
+
τ2T

ρsε
‖Le∂td‖2L2(tn−1,tn;L2(Σ)).

(70)

The first term of (70) is controlled by (56) via Lemma 3.1. Similarly, for term T10, we obtain

T10 =
τ2

ρsε

(
Lhξ

n
h,Lh(dn − dn−1)

)
Σ
≤ τ3

2Tρsε
‖Lhξnh‖20,Σ +

τT

2ρsε
‖L(dn − dn−1)‖20,Σ

≤ τ3

2Tρsε
‖Lhξnh‖20,Σ +

τ2T

2ρsε
‖Le∂td‖2L2(tn−1,tn;L2(Σ)).

(71)

The first term in the right-hand side of (71) is controlled by (69) and Lemma 3.1. On the other
hand, from (59), we have

T2,1 ≤ε2τ
ρsε

T
‖
.
ξnh‖20,Σ + ε2

τ2

ρsε
‖Lh(ξnh − ξ

n−1
h )‖20,Σ + ε2

τ2

ρsε
‖Le(dn − dn−1)‖20,Σ

≤ε2τ
ρsε

T
‖
.
ξnh‖20,Σ + ε2

τ2

ρsε
‖Lh(ξnh − ξ

n−1
h )‖20,Σ + ε2

τ3

ρsε
‖Le∂td‖2L2(tn−1,tn;L2(Σ)).

In summary, the estimate (52) follows by inserting the above estimates into (56), summing over
m = 2, . . . , n, and applying Lemma 3.1 with

am =
ρf

2
‖θmh ‖20,Ω +

ρsε

2
‖
.
ξmh ‖20,Σ +

1

2
‖ξmh ‖2s +

τ2

2ρsε
‖Lhξmh ‖20,Σ, ηm =

1

T
.

The right-hand side contributions obtained at time t1, can be controlled (due to the initialization
procedure) by using (52) with r = 0, T = τ and n = 1.
Algorithm 2 with r = 2. Let us first consider the term T9. Using (20) followed by a Taylor
expansion, we have

T9 = τ2
( .
ξnh −

.
ξn−1
h ,Lh(∂τd

n −
.
dn−1)

)
Σ
≤τ ρ

sε

4T

(
‖
.
ξnh‖20,Σ + ‖

.
ξn−1
h ‖20,Σ

)
+
τ3T

ρsε
‖Le(∂τd

n −
.
dn−1)‖20,Σ

≤τ ρ
sε

4T

(
‖
.
ξnh‖20,Σ + ‖

.
ξn−1
h ‖20,Σ

)
+
τ4T

ρsε
‖Le∂ttd‖2L2(tn−1,tn;L2(Σ)).

(72)
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The first term in the bound (72) is controlled via Lemma 3.1 and (56). For the term T10, using
the inverse estimate (23) and the 6

5 -CFL condition (30), we have

T10 =
τ3

ρsε

(
Lhξ

n
h,Lh(∂τd

n −
.
dn−1)

)
Σ
≤ τ3

2Tρsε
‖Lhξnh‖20,Σ +

τ3T

2ρsε
‖L(∂τd

n −
.
dn−1)‖20,Σ

≤ τ3

2Tρsε
‖Lhξnh‖20,Σ +

τ4T

2ρsε
‖∂ttLed‖2L2(tn−1,tn;L2(Σ)) ≤

τ3(ωsCI)
2

2Th2
‖ξnh‖2s +

τ4T

2ρsε
‖∂ttLed‖2L2(tn−1,tn;L2(Σ))

≤τα
5
3 τ

1
3

2T
‖ξnh‖2s +

τ4T

2ρsε
‖∂ttLed‖2L2(tn−1,tn;L2(Σ)).

(73)
The first term in the bound (73) is controlled via Lemma 3.1 and (56). Note that

ξn,?h = ξn−1
h + τ

.
ξn−1
h + τ(πs

h

.
dn−1 − Ih

.
dn−1).

Hence, for the term T8, we get

T8 =− τ2
( .
ξnh −

.
ξn−1
h ,Lh(

.
ξnh −

.
ξn−1
h )

)
Σ
− τ3

ρsε

(
Lhξ

n
h,Lh(

.
ξnh −

.
ξn−1
h )

)
Σ

+ τ2
( .
ξnh −

.
ξn−1
h ,Lh

(
Ih(

.
dn −

.
dn−1)− ∂τdn +

.
dn−1

))
Σ︸ ︷︷ ︸

T8,1

+
τ3

ρsε

(
Lhξ

n
h,Lh

(
Ih(

.
dn −

.
dn−1)− ∂τdn +

.
dn−1

))
Σ︸ ︷︷ ︸

T8,2

.

Under the 6
5 -CFL condition (30), we proceed similarly to (35) and (37), and we have

T8 ≤ −τ2‖
.
ξnh −

.
ξn−1
h ‖2s +

ρs

4
‖
.
ξnh −

.
ξn−1
h ‖20,Σ + τα5‖ξnh‖2s + T8,1 + T8,2. (74)

We consider the terms T8,1 and T8,2 separetely. Adding and subtracting
.
dn in T8,1 yields

T8,1 =τ2as
( .
ξnh −

.
ξn−1
h ,Ih(

.
dn −

.
dn−1)− (

.
dn −

.
dn−1)

)
+ τ2

( .
ξnh −

.
ξn−1
h ,Lh(

.
dn − ∂τdn)

)
Σ
.

Owing to (3) and the approximation properties, we have

T8,1 .
τ2

2
‖
.
ξnh −

.
ξn−1
h ‖2s + h2βsτ2‖un − un−1‖22,Σ

+ τ
ρsε

4T

(
‖
.
ξnh‖20,Σ + ‖

.
ξn−1
h ‖20,Σ

)
+
τ4T

ρsε
‖Le∂ttd‖2L2(tn−1,tn;L2(Σ)).

(75)

For the term T8,2 we have

T8,2 =
τ3

ρsε
as
(
Lhξ

n
h,Ih(

.
dn −

.
dn−1)− (

.
dn −

.
dn−1)

)
+
τ3

ρsε

(
Lhξ

n
h,Lh(

.
dn − ∂τdn)

)
Σ
. (76)

The second term in the right-hand side of (76) is treated similarly to (73). The estimate for the
first term follow by the inverse estimates (22), (23) and the 6

5 -CFL condition (30). We have

T8,2 ≤
τ5

2T (ρsε)2
‖Lhξnh‖2s +

τT

2
‖Ih(

.
dn −

.
dn−1)− (

.
dn −

.
dn−1)‖2s +

τα
5
3 τ

1
3

2T
‖ξnh‖2s +

τ4T

2ρsε
‖∂ttLed‖2L2(tn−1,tn;L2(Σ))

.

(
τα

10
3 τ

2
3

2T
+
τα

5
3 τ

1
3

2T

)
‖ξnh‖2s + h2βsτT‖un − un−1‖22,Σ +

τ4T

2ρsε
‖∂ttLed‖2L2(tn−1,tn;L2(Σ)).

(77)
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Substitution of (75) and (77) into (74), yields

T8 . −τ
2

2
‖
.
ξnh −

.
ξn−1
h ‖2s +

ρs

4
‖
.
ξnh −

.
ξn−1
h ‖20,Σ + τ

ρsε

4T

(
‖
.
ξnh‖20,Σ + ‖

.
ξn−1
h ‖20,Σ

)
+ τ

(
α5 +

α
10
3 τ

2
3

2T
+
α

5
3 τ

1
3

2T

)
‖ξnh‖2s +

τ4T

ρsε
‖Le∂ttd‖2L2(tn−1,tn;L2(Σ))

+ h2βs(T + τ)τ‖un − un−1‖22,Σ. (78)

The first term on the right hand side is absorbed into the left-hand side of (56) and, the following
two are treated via Lemma 3.1.

On the other hand, regarding the term T2,2 from (59), we get

T2,2 ≤ ε2τ
ρsε

T
‖
.
ξnh‖20,Σ + ε2

τ2

ρsε
‖Lh(ξnh − ξ

n,?
h )‖20,Σ + ε2

τ4

ρsε
‖Le(∂τd

n −
.
dn−1)‖20,Σ

≤ ε2τ
ρsε

T
‖
.
ξnh‖20,Σ +ε2

τ2

ρsε
‖Lh(ξnh − ξ

n,?
h )‖20,Σ︸ ︷︷ ︸

T2,2,1

+ε2
τ5

ρsε
‖Le∂ttd‖2L2(tn−1,tn;L2(Σ)).

Moreover, we have

T2,2,1 ≤ε2
τ4

ρsε
‖Lh(

.
ξnh −

.
ξn−1
h ) +Lh(znh − zn−1

h )‖20,Σ ≤ 2ε2
τ4βs

h2ρsε

(
‖
.
ξnh −

.
ξn−1
h ‖2s + ‖znh − zn−1

h ‖2s
)

≤2ε2(γτ)
1
3 τ2
(
‖
.
ξnh −

.
ξn−1
h ‖2s + ‖znh − zn−1

h ‖2s
)
.

The first term can be controlled with the numerical dissipation of (78) and the second term can
be estimated as in the previous estimations. The estimate (52) then follows by inserting the
above estimates into (56), summing over m = 3, . . . , n, using (68) and applying Lemma 3.1 with

am =
ρf

2
‖θmh ‖20,Ω +

ρsε

2
‖
.
ξmh ‖20,Σ +

1

2
‖ξmh ‖2s , γm = max

{
1

T
, 2α5,

α
10
3 τ

2
3 + α

5
3 τ

1
3

T

}
.

The right-hand side contributions obtained at time t2, can be controlled (due to the initialization
procedure) by using (52) with r = 1, T = 2τ and n = 2. Hence, the proof is complete.

We define the energy-norm of the error at time step tn, as

Znh
def
= (ρf)

1
2 ‖un − unh‖0,Ω + (ρsε)

1
2 ‖

.
dn −

.
dnh‖0,Σ + ‖dn − dnh‖s +

(
n∑

m=r+1

cgτ |(umh , pmh )|2S

) 1
2

+

(
n∑

m=r+1

cgτµ‖∇
(
um − umh

)
‖20,Ω

) 1
2

+

(
n∑

m=r+1

cgτγµ‖umh −
.
d
m− 1

2

h ‖21
2 ,h,Σ

) 1
2

for n > r. As a corollary of Theorem 3.2, we have the following a priori estimate.

Corollary 3.1. Under the assumptions of Theorem 3.2, we have the following error estimate,
for n > r and nτ < T :

Znh . c1h+ c2τ + c3τ
2r−1

.

Here, the symbols {ci}3i=1 denote positive constants independent of h and τ , but which depend on

the physical parameters and on the regularity of (u, p,d,
.
d).
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Proof. The proof follows directly as a consequence of a triangle inequality, Theorem 3.2 and the
optimal approximation properties of the interpolation operators.

We then observe that the scheme displays optimal accuracy for the extrapolated variants
(r = 1, 2) whereas a suboptimal convergence rate is obtained without extrapolation (r = 0).
Thus, we retrieve the same convergence behavior as in the fitted case for the original Robin-
Neumann schemes (see [26, Corollary 1]). From the proofs of Theorem 3.2 and Corollary 3.1, we
can readily obtain the following optimal error estimate for Algorithm 1.

Corollary 3.2. Let (u, p,d,
.
d) be the solution of the coupled problem (1)-(2) and {(unh, pnh,d

n
h,

.
dnh)}n>r

be the approximation given by Algorithm 1 with initial data
(
u0
h,d

0
h,

.
d0
h

)
=
(
iszE2u

0,πs
hd

0, Ih
.
d0
)
.

Suppose that the exact solution has the regularity (45)-(46). Then, we have the following error
estimates, for n > 0 and nτ < T :

Znh . c1h+ c2τ

with c1 and c2 positive constants independent of h and τ , but depending on the physical parameters
and on the regularity of (u, p,d,

.
d).

Proof. Taking (vh, qh,wh) = τ(θnh, y
n
h ,

.
ξnh) in (55), the energy inequality (56) holds with χnh =

.
ξnh

and T8 = T9 = T10 = 0. The terms T5 and T6 are treated similarly to (62) and (63). Note that
the Nitsche’s dissipation on the interface is given in this case by

cgτγµ‖θnh −
.
ξnh‖21

2 ,h,Σ
.

Similarly to (58), for the term T2, we have

T2 .
ρsεT

2ε2

(
τ2‖∂ttu‖2L2(tn−1,tn;L2(Σ)) + h2‖∂tu‖2L2(tn−1,tn;H2(Σ))

)
+ ε2τ

ρsε

T
‖
.
ξnh‖20,Σ.

The last term may be controlled by Lemma 3.1. The remaining terms T1, T3, T4 and T7 are
treated exactly as above. We obtain thus an optimal a priori estimate for the discrete errors.
We conclude as in Corollary 3.1.

4 First discretize in time and then in space: explicit schemes

Step (16) of Algorithm 2 is more computationally demanding than a single fluid problem due to

the presence of the additional unknown
.
d
n− 1

2

h . In this section, a new explicit coupling scheme
is presented which overcomes this issue without compromising stability and accuracy. The main
idea consists in performing the space and time discretization reversely.

4.1 Robin-Neumann explicit coupling schemes

The starting point of the methods is the time semi-discrete explicit coupling schemes introduced
in [26, 30]. Note that these schemes may be derived by applying first the fractional-step splitting
of Section 3.2 to the continuous problem (1)-(2) and then eliminating, contrarily to Algorithm 2,

the intermediate solid velocity
.
dn−

1
2 (see Remark 3.3). Applied to the continuous problem (1)-

(2), these schemes read: for n > r
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1. Fluid substep: find un : Ω× R+ → Rd and pn : Ω× R+ → R such that
ρf∂τu

n − divσ(un, pn) = 0 in Ω,

divun = 0 in Ω,

un = 0 on Γf ,

σ(un, pn)n+ κun = κ
.
dn−1 + gn,? on Σ,

(79)

with the notations:

κ
def
=

ρsε

τ
, gn,?

def
= ρsε∂τd

n,? + σ(un,?, pn,?)n.

2. Solid substep: find dn : Σ× R+ → Rd and
.
dn : Σ× R+ → Rd such that

.
dn = ∂τd

n and{
ρsε∂τ

.
dn +Ledn = −σ(un, pn)n on Σ,

dn = 0 on ∂Σ.
(80)

4.2 Fully discrete formulation: explicit coupling scheme with unfitted
meshes

The fundamental idea consists in performing directly an unfitted interface treatment (à la
Nitsche) of the time splitting (79)-(80). This is achieved by extending the arguments introduced
in [13] and [15, 38] to the present Robin-Neumann framework, in such a way that robustness
with respect to the Robin coefficient κ is guaranteed. The proposed numerical methods build on
the following consistency result.

Lemma 4.1 (Consistency). Let {(un, pn,
.
dn,dn)}n>r be given by (79)-(80). Then, there holds

ρf
(
∂τu

n,vh
)

Ω
+ af

(
(un, pn), (vh, qh)

)
+ ρsε

(
∂τ

.
dn,wh

)
Σ

+ as(dn,wh)

+
γκµ

γµ+ κh

(
un −

.
dn−1,vh −wh

)
Σ
− γµ

γµ+ κh

(
gn,?,vh −wh

)
Σ

− κh

γµ+ κh

[(
σ(un, pn)n,vh −wh

)
Σ

+
(
un −

.
dn−1,σ(vh,−qh)n

)
Σ

]
− h

γµ+ κh

(
σ(un, pn)n,σ(vh,−qh)n

)
Σ

+
h

γµ+ κh

(
gn,?,σ(vh,−qh)n

)
Σ

= 0

(81)

for all (vh, qh,wh) ∈ V h ×Qh ×W h.

Proof. Multiplying (79)1 and (79)2 by vh and qh respectively, integrating by parts over Ω and
adding both equations we get

ρf
(
∂τu

n,vh
)

Ω
+ af

(
(un, pn), (vh, qh)

)
−
(
σ(un, pn)n,vh

)
Σ

= 0. (82)

On the other hand, multiplying (80)1 by wh and integrating over Σ we get

ρsε
(
∂τ

.
dn,wh

)
Σ

+ as(dn,wh) +
(
σ(un, pn)n,wh

)
Σ

= 0. (83)

Adding (82) and (83), we obtain

ρf
(
∂τu

n,vh
)

Ω
+af

(
(un, pn), (vh, qh)

)
+ρsε

(
∂τ

.
dn,wh

)
Σ

+as(dn,wh)−
(
σ(un, pn)n,vh−wh

)
Σ

= 0.

(84)
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Multiplying the interface condition (79)4 by
γµ

γµ+ κh

(
vh −wh

)
and integrating over Σ, we get

γκµ

γµ+ κh

(
un−

.
dn−1,vh−wh

)
Σ

+
γµ

γµ+ κh

(
σ(un, pn)n,vh−wh

)
Σ
− γµ

γµ+ κh

(
gn,?,vh−wh

)
Σ

= 0.

(85)

Multiplying the interface condition (79)4 by − h

γµ+ κh
σ(vh,−qh)n and integrating over Σ, we

get

− κh

γµ+ κh

(
un −

.
dn−1,σ(vh,−qh)n

)
Σ
− h

γµ+ κh

(
σ(un, pn)n,σ(vh,−qh)n

)
Σ

+
h

γµ+ κh

(
gn,?,σ(vh,−qh)n

)
Σ

= 0. (86)

Finally, by adding (84)-(86) we recover (81), which completes the proof.

The key feature of (81) is the fact that for κ → ∞ (i.e., whenever τ → 0) we formally
retrieve the unfitted formulation (5). Alternatively, if h → 0 we formally retrieve the the weak
formulation of the Robin-Neumann splitting (79)-(80).

Taking successively wh = 0 and (vh, qh) = (0, 0) in (81) we obtain the following partitioned
formulation of (81):

• Fluid: 

ρf
(
∂τu

n,vh
)

Ω
+ af

(
(un, pn), (vh, qh)

)
+

γκµ

γµ+ κh

(
un −

.
dn−1,vh

)
Σ

− γµ

γµ+ κh

(
gn,?,vh

)
Σ
− h

γµ+ κh

(
σ(un, pn)n,σ(vh,−qh)n

)
Σ

− κh

γµ+ κh

[(
σ(un, pn)n,vh

)
Σ

+
(
un −

.
dn−1,σ(vh,−qh)n

)
Σ

]
+

h

γµ+ κh

(
gn,?,σ(vh,−qh)n

)
Σ

= 0

for all (vh, qh) ∈ V h ×Qh.

• Solid: 
ρsε
(
∂τ

.
dn,wh

)
Σ

+ as(dn,wh) = − κh

γµ+ κh

(
σ(un, pn)n,wh

)
Σ

+
γκµ

γµ+ κh

(
un −

.
dn−1,wh

)
Σ
− γµ

γµ+ κh

(
gn,?,wh

)
Σ

for all wh ∈W h.

This motivates the fully discrete method reported in Algorithm 3. Note that the resulting
coupling scheme is explicit.

4.3 Stability and convergence analysis for r = 0

We present in this section an energy-based stability and a priori error analysis for Algorithm 3
with r = 0. The stability and convergence properties of Algorithm 3 with r = 1, 2 are investigated
in Section 5 via numerical experiments.
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Algorithm 3 Explicit coupling schemes.

For n > r:

1. Fluid substep: find
(
unh, p

n
h

)
∈ V h ×Qh such that

rρf
(
∂τu

n
h,vh

)
Ω

+ af
h

(
(unh, p

n
h), (vh, qh)

)
+

γκµ

γµ+ κh

(
unh −

.
dn−1
h ,vh

)
Σ

− γµ

γµ+ κh

(
gn,?h ,vh

)
Σ
− h

γµ+ κh

(
σ(unh, p

n
h)n,σ(vh,−qh)n

)
Σ

− κh

γµ+ κh

[(
σ(unh, p

n
h)n,vh

)
Σ

+
(
unh −

.
dn−1
h ,σ(vh,−qh)n

)
Σ

]
+

h

γµ+ κh

(
gn,?h ,σ(vh,−qh)n

)
Σ

= 0

(87)

for all (vh, qh) ∈ V h ×Qh.

2. Solid substep: find
( .
dnh,d

n
h

)
∈W h ×W h such that

.
dnh = ∂τd

n
h and

ρsε
(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh) = − κh

γµ+ κh

(
σ(unh, p

n
h)n,wh

)
Σ

+
γκµ

γµ+ κh

(
unh −

.
dn−1
h ,wh

)
Σ
− γµ

γµ+ κh

(
gn,?h ,wh

)
Σ

(88)

for all wh ∈W h.

4.3.1 Stability analysis

We consider the discrete energy Enh given by (27) at time-step tn. The dissipation is given in
this case by

D̃n
h

def
=
ρf

τ
‖unh − un−1

h ‖20,Ω + cgµ‖∇unh‖20,Ωh
+

γκµ

γµ+ κh
‖unh −

.
dnh‖20,Σ + |(unh, pnh)|2S

+
ρsε

τ

κh

γµ+ κh
‖

.
dnh −

.
dn−1
h ‖20,Σ +

1

τ
‖dnh − d

n−1
h ‖2s +

h

γµ+ κh
‖pnh‖20,Σ.

The following result establishes the unconditional energy stability of Algorithm 3 with r = 0.

Theorem 4.1. Let {(unh, pnh,
.
dnh,d

n
h)}n≥1 be given by Algorithm 3 with r = 0. For γ > 12CTI/c̃g,

we have

Enh + τ

n∑
m=1

D̃m
h . E0

h. (89)

Proof. We first note that in the case r = 0 we have gn,?h = 0. Thus, by taking (vh, qh) = τ(unh, p
n
h)

in (87) and wh = τ
.
dnh in (88), adding the resulting equations and applying (9), we get the

Inria



Unfitted mesh formulations and splitting schemes for FSI 29

following discrete energy inequality

ρf

2

(
τ∂τ‖unh‖20,Ω + ‖unh − un−1

h ‖20,Ω
)

+ c̃gτ
(
µ‖ε(unh)‖20,Ωh

+ gh(unh,u
n
h)
)

+ τsh(pnh, p
n
h) +

1

2

(
τ∂τ‖dnh‖2s + ‖dnh − d

n−1
h ‖2s

)
− κh

γµ+ κh
τ

[(
σ(unh, p

n
h)n,unh −

.
dnh
)

Σ
+
(
unh −

.
dn−1
h ,σ(unh,−pnh)n

)
Σ

]
︸ ︷︷ ︸

T1

+τκ
( .
dnh −

.
dn−1
h ,

.
dnh
)

Σ
+

γκµ

γµ+ κh
τ
(
unh −

.
dn−1
h ,unh −

.
dnh
)

Σ︸ ︷︷ ︸
T2

− h

γµ+ κh
τ
(
σ(unh, p

n
h)n,σ(unh,−pnh)n

)
Σ︸ ︷︷ ︸

T3

≤ 0. (90)

Note that the solid inertia term is included in term T2. We now proceed by estimating separately
the terms T1, T2 and T3. For the first, we have

T1 =− κh

γµ+ κh
2τ
(
σ(unh, 0)n,unh −

.
dnh
)

Σ︸ ︷︷ ︸
T1,1

− κh

γµ+ κh
τ
(
σ(unh, 0)n,

.
dnh −

.
dn−1
h

)
Σ︸ ︷︷ ︸

T1,2

+
κh

γµ+ κh
τ
(
σ(0, pnh)n,

.
dnh −

.
dn−1
h

)
Σ︸ ︷︷ ︸

T1,3

.

By combining the Cauchy-Schwarz and Young inequalities with the robust trace inequality (25),
we obtain the following estimates:

T1,1 ≥ −
κh

γ(γµ+ κh)
4µτ‖ε(unh)‖0,Σ‖unh −

.
dnh‖0,Σ

≥ − 1

2ε1

κh

γ(γµ+ κh)
16µCTIτ‖ε(unh)‖20,Ωh

− ε1

2

γκµτ

γµ+ κh
‖unh −

.
dnh‖20,Σ,

T1,2 ≥ −
κh

γµ+ κh
2µτ‖ε(unh)‖0,Σ‖

.
dnh −

.
dn−1
h ‖0,Σ

≥ − 1

2ε2

µ

γµ+ κh
4µCTIτ‖ε(unh)‖20,Ωh

− ε2

2

κ2hτ

γµ+ κh
‖

.
dnh −

.
dn−1
h ‖20,Σ,

T1,3 ≥ −
κh

γµ+ κh
τ‖pnh‖0,Σ‖

.
dnh −

.
dn−1
h ‖0,Σ

≥ − 1

2ε3

h

γµ+ κh
τ‖pnh‖20,Σ −

ε3

2

κ2hτ

γµ+ κh
‖

.
dnh −

.
dn−1
h ‖20,Σ.
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On the other hand, by adding and subtracting suitable terms, for the second term we have

T2 =τκ
( .
dnh −

.
dn−1
h ,

.
dnh
)

Σ
+

γκµτ

γµ+ κh

(
unh −

.
dn−1
h ,unh −

.
dnh
)

Σ

=τκ
( .
dnh −

.
dn−1
h ,

.
dnh
)

Σ
+

γκµτ

γµ+ κh

(
unh −

.
dnh +

.
dnh −

.
dn−1
h ,unh −

.
dnh
)

Σ

=τκ
( .
dnh −

.
dn−1
h ,

.
dnh
)

Σ
+

γκµτ

γµ+ κh

( .
dnh −

.
dn−1
h ,unh −

.
dnh
)

Σ
+

γκµτ

γµ+ κh

∥∥unh − .
dnh
∥∥2

0,Σ
.

Hence, using the Cauchy-Schwarz inequality, we infer the following fundamental lower bound

T2 ≥
ρsε

2
τ∂τ‖

.
dnh‖20,Σ +

1

2

κ2hτ

γµ+ κh
‖

.
dnh −

.
dn−1
h ‖20,Σ +

1

2

γκµτ

γµ+ κh
‖unh −

.
dnh‖20,Σ.

Finally, for the last term, using once more the Cauchy-Schwarz and Young inequalities, we get

T3 ≥ −
µ

γµ+ κh
4µCTIτ‖ε(unh)‖20,Ωh

+
hτ

γµ+ κh
‖pnh‖20,Σ.

By collecting the above bounds for T1, T2 and T3 and inserting them into (90), we obtain

ρf

2

(
τ∂τ‖unh‖20,Ω + ‖unh − un−1

h ‖20,Ω
)

+ c̃gτgh(unh,u
n
h) + τsh(pnh, p

n
h) +

ρsε

2
τ∂τ‖

.
dnh‖20,Σ

+
1

2

(
τ∂τ‖dnh‖2s + ‖dnh − d

n−1
h ‖2s

)
+ τµ

c̃g − 4CTI

γ

(
1 + 1

2ε2

)
γµ+ 2

ε1
κh

γµ+ κh

 ‖ε(unh)‖20,Ωh

+
1

2

γκµ

γµ+ κh
τ (1− ε1) ‖unh −

.
dnh‖20,Σ +

1

2
κ

κh

γµ+ κh
τ (1− (ε2 + ε3)) ‖

.
dnh −

.
dn−1
h ‖20,Σ

+
h

γµ+ κh
τ

(
1− 1

2ε3

)
‖pnh‖20,Σ ≤ 0.

The estimate (89) then follows by choosing

ε1 =
2

3
, ε2 =

1

4
, ε3 =

5

8
, γ >

12CTI

c̃g
,

using Korn’s inequality and summing over m = 1, . . . , n. This completes the proof.

4.3.2 Convergence analysis

In the sequel we assume that the interface Σ is flat and that the exact solution of problem (1)-(2)
has the regularity given by (45) and (46) for a given final time T ≥ τ . For the derivation of the
error estimate, we also build on the decomposition of the error given by (47)-(48). Let us first

estimate the discrete errors (θnh, y
n
h , ξ

n
h,

.
ξnh). An a priori bound is stated in Theorem 4.2 below,

with the energy-norm of the discrete error being defined, at time step tn, as

Ẽnh
def
= (ρf)

1
2 ‖θnh‖0,Ω + (ρsε)

1
2 ‖

.
ξnh‖0,Σ + ‖ξnh‖s +

(
n∑

m=1

cgτµ‖∇θnh‖20,Ω

) 1
2

+

(
n∑

m=1

cgτ |(θnh, ynh)|2S

) 1
2

+

(
n∑

m=1

γκµ

γµ+ κh
τ‖θnh −

.
ξnh‖20,Σ

) 1
2

+

(
n∑

m=1

h

γµ+ κh
τ‖ynh‖20,Σ

) 1
2

for n > 0.
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Theorem 4.2. Let (u, p,d,
.
d) be the solution of the coupled problem (1)-(2) and {(unh, pnh,d

n
h,

.
dnh)}n>r

be the approximation given by Algorithm 3 with initial data
(
u0
h,d

0
h,

.
d0
h

)
=
(
iszE2u

0,πs
hd

0, Ih
.
d0
)

and r = 0. We assume that the exact solution has the regularity (45)-(46). Assume that γ > 0
is given by Theorem 4.1. Then, we have the following error estimates, for n > r and nτ < T :

Ẽnh . c1h+ c2τ + c3τ
1
2 . (91)

Here, the symbols {ci}3i=1 denote positive constants independent of h and τ , but which depend on

the physical parameters and on the regularity of (u, p,d,
.
d).

Proof. At time tn, the exact solution (u, p,d,
.
d) of the coupled problem (1)-(2) satisfies


ρf∂tu

n − divσ(un, pn) = 0 in Ω,

divun = 0 in Ω,

un = 0 on Γf ,

σ(un, pn)n+ κun = κ
.
dn−1 −Ldn − ρsε(∂t − ∂τ )

.
dn on Σ,

un =
.
dn on Σ,

ρsε∂t
.
dn +Ledn = −σ(un, pn)n on Σ,

.
dn = ∂td

n on Σ,

dn = 0 on ∂Σ.

Then, similarly to Lemma 4.1, we can show that the exact solution, at time tn, of the coupled
problem (1)-(2) satisfies

ρf
(
∂tu

n,vh
)

Ω
+ af

(
(un, pn), (vh, qh)

)
+ ρsε

(
∂t

.
dn,wh

)
Σ

+ as(dn,wh)

+
γκµ

γµ+ κh

(
un −

.
dn−1,vh −wh

)
Σ

+
γµ

γµ+ κh

(
Ldn + ρsε(∂t − ∂τ )

.
dn,vh −wh

)
Σ

− κh

γµ+ κh

[(
σ(un, pn)n,vh −wh

)
Σ

+
(
un −

.
dn−1,σ(vh,−qh)n

)
Σ

]
− h

γµ+ κh

(
Ldn + ρsε(∂t − ∂τ )

.
dn,σ(vh,−qh)n

)
Σ
− h

γµ+ κh

(
σ(un, pn)n,σ(vh,−qh)n

)
Σ

= 0

(92)

for all vh, qh,wh ∈ V h × Qh ×W h. Subtracting (87) and (88) to the continuous problem

(92) we obtain, after adding and subtracting ∂τu
n and ∂τ

.
dn, the following modified Galerkin
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orthogonality:

ρf (∂τ (un − unh),vh)Ω+af
(
(un−unh, pn−pnh), (vh, qh)

)
+ρsε

(
∂τ (

.
dn−

.
dnh),wh

)
Σ

+as
(
dn−dnh,wh

)
− κh

γµ+ κh

[(
σ(un −unh, pn − pnh)n,vh −wh

)
Σ

+
(
(un −unh)− (

.
dn−1 −

.
dn−1
h ),σ(vh,−qh)n

)
Σ

]
+

γκµ

γµ+ κh

(
(un−unh)−(

.
dn−1−

.
dn−1
h ),vh−wh

)
Σ
− h

γµ+ κh

(
σ(un−unh, pn−pnh)n,σ(vh,−qh)n

)
Σ

= −ρf
(
(∂t − ∂τ )un,vh

)
Ω
− ρsε

(
(∂t − ∂τ )

.
dn,wh

)
Σ

+ Sh
(
(unh, p

n
h), (vh, qh)

)
− γµ

γµ+ κh

(
Ldn+ρsε(∂t−∂τ )

.
dn,vh−wh

)
Σ

+
h

γµ+ κh

(
Ldn+ρsε(∂t−∂τ )

.
dn,σ(vh,−qh)n

)
Σ

(93)

for all (vh, qh,wh) ∈ V h ×Qh ×W h. Hence, from (47)-(48), we infer the following equation for

the discrete errors θnh, ynh , ξnh and
.
ξnh:

ρf
(
∂τθ

n
h,vh

)
Ω

+ af
(
(θnh, y

n
h), (vh, qh)

)
+ Sh

(
(θnh, y

n
h), (vh, qh)

)
+ ρsε

(
∂τ

.
ξnh,wh

)
Σ

+ as
(
ξnh,wh

)
− κh

γµ+ κh

[(
σ(θnh, y

n
h)n,vh −wh

)
Σ

+
(
θnh −

.
ξn−1
h ,σ(vh,−qh)n

)
Σ

]
+

γκµ

γµ+ κh

(
θnh −

.
ξn−1
h ,vh −wh

)
Σ
− h

γµ+ κh

(
σ(θnh, y

n
h)n,σ(vh,−qh)n

)
Σ

= − ρf
(
(∂t − ∂τ )un,vh

)
Ω
− ρf (∂τθ

n
π,vh)Ω − ρ

sε
(
(∂t − ∂τ )

.
dn,wh

)
Σ
− ρsε

(
∂τ

.
ξnπ,wh

)
Σ

− as
(
ξnπ,wh

)
+ Sh

(
(iszE2u

n, iszE1p
n), (vh, qh)

)
− af

(
(θnπ, y

n
π), (vh, qh)

)
+

κh

γµ+ κh

[(
σ(θnπ, y

n
π)n,vh −wh

)
Σ

+
(
θnπ −

.
ξn−1
π ,σ(vh,−qh)n

)
Σ

]
− γκµ

γµ+ κh

(
θnπ −

.
ξn−1
π ,vh −wh

)
Σ

+
h

γµ+ κh

(
σ(θnπ, y

n
π)n,σ(vh,−qh)n

)
Σ

− γµ

γµ+ κh

(
Ldn+ρsε(∂t−∂τ )

.
dn,vh−wh

)
Σ

+
h

γµ+ κh

(
Ldn+ρsε(∂t−∂τ )

.
dn,σ(vh,−qh)n

)
Σ

(94)

for all (vh, qh,wh) ∈ V h×Qh×W h and n > r. Note that as
(
ξnπ,wh

)
= 0 due to the definition of

the solid projection operator πs
h. Taking (vh, qh,wh) = τ(θnh, y

n
h ,

.
ξnh) in (94), using the stability

estimate reported in Theorem 4.1 and (50), yields the following energy inequality for the discrete
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errors:

ρf

2

(
τ∂τ‖θnh‖20,Ω + τ2‖∂τθnh‖20,Ω

)
+ ˜̃cgτ

(
µ‖∇θnh‖20,Ωh

+ |(θnh, ynh)|2S
)

+
1

2

(
τ∂τ‖ξnh‖2s + τ2‖∂τξnh‖2s

)
+

1

6

γκµ

γµ+ κh
τ‖θnh −

.
ξnh‖20,Σ

+
1

5

h

γµ+ κh
τ‖ynh‖20,Σ +

ρsε

2

(
τ∂τ‖

.
ξnh‖20,Σ +

1

8

κh

γµ+ κh
τ2‖∂τ

.
ξnh‖20,Σ

)
≤ −ρfτ

(
(∂t − ∂τ )un,θnh

)
Ω
− ρfτ (∂τθ

n
π,θ

n
h)Ω︸ ︷︷ ︸

T1

−ρsετ
(
(∂t − ∂τ )

.
dn,

.
ξnh)
)

Σ
− ρsετ

(
∂τ

.
ξnπ,

.
ξnh)
)

Σ︸ ︷︷ ︸
T2

−τas(ξnh, z
n
h)︸ ︷︷ ︸

T3

+τSh
(
(iszE2u(t), iszE1p(t)), (θ

n
h, y

n
h)
)︸ ︷︷ ︸

T4

−τ γκµ

γµ+ κh

(
θnπ −

.
ξnπ,θ

n
h −

.
ξnh
)

Σ︸ ︷︷ ︸
T5

+τ
κh

γµ+ κh

(
σ(θnπ, y

n
π)n,θnh −

.
ξnh
)

Σ︸ ︷︷ ︸
T6

−τaf
(
(θnπ, y

n
π), (θnh, y

n
h)
)

+ τ
κh

γµ+ κh

(
θnπ −

.
ξnπ,σ(θnh,−ynh)n

)
Σ︸ ︷︷ ︸

T7

+τ
h

γµ+ κh

(
σ(θnπ, y

n
π)n,σ(θnh,−ynh)n

)
Σ︸ ︷︷ ︸

T8

−τ γκµ

γµ+ κh

( .
ξnπ −

.
ξn−1
π ,θnh −

.
ξnh
)

Σ︸ ︷︷ ︸
T9

+τ
κh

γµ+ κh

( .
ξnπ −

.
ξn−1
π ,σ(θnh,−ynh)n

)
Σ︸ ︷︷ ︸

T10

− γµ

γµ+ κh

(
Ldn + ρsε(∂t − ∂τ )

.
dn,θnh −

.
ξnh
)

Σ︸ ︷︷ ︸
T11

+
h

γµ+ κh

(
Ldn + ρsε(∂t − ∂τ )

.
dn,σ(θnh,−ynh)n

)
Σ︸ ︷︷ ︸

T12

(95)

with ˜̃cg > 0. The terms T1−T4 stem from the time-stepping and the stabilization methods. The
terms T5 − T8 come from the generalized Nitsche’s method. Finally, terms T9 − T12 are due to
the kinematic perturbation and, hence, are inherent to the fluid-solid time-splitting scheme.

Note that terms T1, T3 and T4 can be bounded exactly as in (57), (60) and (61). For term
T2 we can proceed in a similar manner to (58) to get

T2 .
ρsεT

2ε2

(
τ2‖∂ttu‖2L2(tn−1,tn;L2(Σ)) + h2‖∂t

.
d‖2L2(tn−1,tn;H2(Σ))

)
+ ε2τ

ρsε

T
‖
.
ξnh‖20,Σ. (96)

The last term will be treated using Lemma 3.1.
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The boundary penalty term T5 can be handled in a similar manner to (62) yielding

T5 . τh2 γµ

ε5
(‖un‖22,Ω + h‖

.
dn‖22,Σ) + τ

ε5

2

γκµ

γµ+ κh
‖θnh −

.
ξnπ‖20,Σ,

where we have used that

0 <
κh

γµ+ κh
< 1.

Note that the second term can be absorbed in the left-hand side of (95), for ε5 > 0 small enough.
Similarly, for the consistency term T6, we have, using (42)

T6 .τh2 1

ε6γµ

(
‖un‖22,Ω + ‖pn‖21,Ω

)
+ τ

ε6

2

γκµ

γµ+ κh
‖θnh −

.
ξnπ‖20,Σ.

Note that the first term has the right convergence order and the second term can be absorbed
in the left hand side of (95), for ε6 > 0 sufficiently small.

As in the proof of Theorem 3.2, we split T7 into two parts. The velocity-velocity coupling
contribution can be easily handled as in (64), viz.,

− τa(θnπ,θ
n
h) + τ

κh

γµ+ κh

(
σ(θnh, 0)n,θnπ −

.
ξnπ
)

Σ

. τh2 µ

ε7CTI
‖un‖22,Ω + τµ

2

ε7
h2
(
‖un‖22,Ω + ‖

.
dn‖22,Σ

)
+ 2τε7µCTI‖∇θnh‖20,Ωh

.

The last term can be, once again, absorbed in the left hand side of (95), for ε7 > 0 sufficiently
small. For the velocity-pressure coupling part we write, using integration by parts in the conti-
nuity equation,

− τb(ynπ ,θ
n
h) + τb(ynh ,θ

n
π) + τ

κh

γµ+ κh

(
σ(0,−ynh)n,θnπ −

.
ξnπ
)

Σ

= τ(ynπ ,divθnh)Ω︸ ︷︷ ︸
T7,1

+ τ(∇ynh ,θ
n
π)Ω︸ ︷︷ ︸

T7,2

−τ κh

γµ+ κh

(
ynhn,

.
ξnπ
)

Σ︸ ︷︷ ︸
T7,3

−τ γµ

γµ+ κh

(
ynhn,θ

n
π

)
Σ︸ ︷︷ ︸

T7,4

.

Terms T7,1 and T7,2 can be bounded as in (65). The control for T7,3 follows as in (66). For T7,4,
using (44), we have

T7,4 ≤ τ
1

2ε7,4
γµ‖θnπ‖21

2 ,h,Σ
+ τ

ε7,4

2

h

γµ+ κh
‖ynh‖20,Σ

. τh2 γµ

ε7,4
‖un‖22,Ω + τ

ε7,4

2

h

γµ+ κh
‖ynh‖20,Σ,

the last term can be absorbed in the left hand side of (95), for ε7,4 > 0 small enough. The above
estimations of T7,1, T7,2, T7,3 and T7,4 provide bounds which involve either terms with the right
convergence order or contributions that can be absorbed by the left-hand side of (95).

For the term T8 we have

T8 = τ
h

γµ+ κh

(
σ(θnπ, y

n
π)n,σ(θnh, 0)n

)
Σ

+ τ
h

γµ+ κh

(
σ(θnπ, y

n
π)n, ynhn

)
Σ

≤ τ 1

ε8

1

γµ+ κh
‖σ(θnπ, y

n
π)n‖2− 1

2 ,h,Σ
+ 2τε8

µ

γµ+ κh
µ‖ε(θnh)n‖2− 1

2 ,h,Σ

+ τ
ε8

2

h

γµ+ κh
‖ynh‖20,Σ,

. τh2 1

ε8γµ

(
‖un‖22,Ω + ‖pn‖21,Ω

)
+ 2τε8

1

γ
µCTI‖∇θnh‖20,Ωh

+ τ
ε8

2

h

γµ+ κh
‖ynh‖20,Σ,
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and the last two terms can be absorbed by the left-hand side of (95), for ε8 > 0 small enough.
The boundary penalty term T9 can be controlled using a Taylor expansion

T9 ≤ τ
1

2ε9

γκµ

γµ+ κh
‖τ∂τ

.
ξnπ‖20,Σ + τ

ε9

2

γκµ

γµ+ κh
‖θnh −

.
ξnh‖20,Σ

. τ2 1

2ε9

γκµ

γµ+ κh
‖∂t

.
ξπ‖2L2(tn−1,tn;L2(Σ)) + τ

ε9

2

γκµ

γµ+ κh
‖θnh −

.
ξnh‖20,Σ

. τ
1

2ε9
h2ρsε‖∂tu‖2L2(tn−1,tn;H2(Σ)) + τ

ε9

2

γκµ

γµ+ κh
‖θnh −

.
ξnh‖20,Σ.

Note that the second term can be absorbed in the left-hand side of (95), for ε9 > 0 small enough.
Similarly, the boundary penalty term T10 is bounded by

T10 = τ
κh

γµ+ κh

( .
ξnπ −

.
ξn−1
π ,σ(θnh, 0)n

)
Σ

+ τ
κh

γµ+ κh

( .
ξnπ −

.
ξn−1
π , ynhn

)
Σ

. τ
1

2ε10
h2ρsε‖∂t

.
d‖2L2(tn−1,tn;H2(Σ)) + 2τε10µCTI‖∇θnh‖20,Ωh

+ τ
ε10

2

h

γµ+ κh
‖ynh‖20,Σ,

Note that the second term can be absorbed in the left-hand side of (95), for ε10 > 0 small enough.
Similarly, the boundary penalty term T11 is bounded by

T11 . τ
1

2ε11
ρsετ2‖∂ttu‖2L2(tn−1,tn;L2(Σ)) + τ

1

2ε11

τ

ρsε
‖Ledn‖20,Σ + τ

ε11

2

γκµ

γµ+ κh
‖θnh −

.
ξnh‖20,Σ.

The last term can be absorbed in the left-hand side of (95), for ε11 > 0 sufficiently small.
Similarly, the boundary penalty term T12 is bounded by

T12 . τ
1

ε12
ρsετ2‖∂ttu‖2L2(tn−1,tn;L2(Σ)) + τ

1

ε12

τ

ρsε
‖Ledn‖20,Σ + τε12CTIµ‖∇θnh‖20,Ωh

+ τε12
h

γµ+ κh
‖ynh‖20,Σ,

The last term can be absorbed in the left-hand side of (95), for ε12 > 0 small enough.
The estimate (91) follows by inserting the above estimates into (95), summing over m =

1, . . . , n, and applying Lemma 3.1 with

am =
ρf

2
‖θmh ‖20,Ω +

ρsε

2
‖
.
ξmh ‖20,Σ +

1

2
‖ξmh ‖2s , ηm =

1

T
.

Note in particular that, owing to the selection of the initial data, we have

θ0
h = 0,

.
ξ0
h = ξ0

h = 0.

We define the energy-norm of the error and dissipation error, at time step tn, as

Z̃nh
def
= (ρf)

1
2 ‖un − unh‖0,Ω + (ρsε)

1
2 ‖

.
dn −

.
dnh‖0,Σ + ‖dn − dnh‖s,(

n∑
m=1

cgτµ‖∇
(
um − umh

)
‖0,Ω

) 1
2

+

(
n∑

m=1

cgτ |(umh , pmh )|2S

) 1
2

+

(
n∑

m=1

cgτ
γκµ

γµ+ κh
‖umh −

.
dmh ‖20,Σ

) 1
2

for n > 0. We have the following a priori estimate as a crllr of Theorem 4.2.
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Corollary 4.1. Under the assumptions of Theorem 4.2, we have the following error estimates,
for n > r and nτ < T :

Z̃nh . c1h+ c2τ + c3τ
1
2 .

Here, the symbols {ci}3i=1 denote positive constants independent of h and τ , but which depend on

the physical parameters and on the regularity of (u, p,d,
.
d).

Proof. The proof follows directly as a consequence of a triangle inequality, Theorem 4.2 and the
optimal approximation properties of the interpolation operators.

The error estimate provided by Corollary 4.1 predicts a suboptimal O(τ
1
2 ) accuracy in time

and an optimal O(h) error contribution in space for Algorithm 3 with r = 0. It is worth noting
that a similar error estimate has been derived in Corollary 3.1 for Algorithm 2 with r = 0. This
indicates that, at least for the case r = 0, the semi-implicit or explicit nature of the splitting
does not affect the overall accuracy of the methods. Numerical evidence that this also holds for
r = 1, 2 is given in the next section.

5 Numerical experiments

In order to illustrate the stability and the accuracy of the proposed schemes, we consider the
problem of a pressure-wave propagation within a straight elastic tube (see, e.g., [13]). The solid
is modeled as a 1D string model, hence in (2) we have

d =

(
0
η

)
, Ld =

(
0

−λ1∂xxη + λ0η

)
, λ1

def
=

Eε

2(1 + ν)
, λ0

def
=

Eε

R2(1− ν2)
.

In the sequel, all the units are given in the CGS (Centimetre-Gram-Second) system. The fluid
domain is given by the rectangle Ω = (0, L) × (0, R) and the interface by the segment Σ =
[0, L] × {R} with L = 6 and R = 0.5. At x = 0 we impose a sinusoidal normal traction
of maximal amplitude 2 × 104 during 5 × 10−3 seconds, corresponding to half a period. Zero
traction is enforced at x = 6 and a symmetry condition is applied on the lower wall y = 0. The
fluid physical parameters are given by ρf = 1.0, µ = 0.035. For the solid we have ρs = 1.1 and
ε = 0.1 with Young’s modulus E = 0.75× 106 and Poisson’s ratio ν = 0.5.

⌃

⌦h

⌦

(a) Unfitted meshes.

⌃

⌦

(b) Fitted meshes.

Figure 2: Example of unfitted and fitted mesh configurations.

We compare the results obtained with the unfitted mesh methods given by Algorithms 1–3
and a first-order fully implicit scheme with fitted meshes. An example of the fitted and unfitted
mesh configurations considered in this study is given in Figure 2. In the unfitted case, we have
Ωh = (0, L) × (0, R + 0.3) so that we are in the framework of Remark 3.2. In Algorithms 1–3,
the Nitsche’s parameter is set to γ = 103 and the pressure and ghost-penalty stabilization terms
in (6) are given by (8) and (11) with γp = 10−3 and γg = 1, respectively. All the computations
have been performed with FreeFem++ [35].
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(a) Fitted-mesh implicit algorithm (b) Implicit unfitted (Algorithm 1)

(c) Algorithm 2 with r = 1 (d) Algorithm 3 with r = 1

Figure 3: Snapshots of the fluid pressure and (exaggerated) solid displacement at time instants
t = 0.005, 0.01, 0.015. The discretization parameters are given by τ = 2 · 10−4 and h = 0.01
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(b) Algorithm 3.

Figure 4: Time convergence history of the solid displacement in the relative elastic energy norm
with τ = O(h).

Figure 3 presents the snapshots of the pressure field and the solid displacement (amplified by
a factor 5) at the time instants t = 0.005, 0.01 and 0.015, obtained with τ = 2 · 10−4 and h = 0.1
using the fitted-mesh implicit method (Figure 3(a)), Algorithm 1 (Figure 3(b)), Algorithm 2
with r = 1 (Figure 3(c)) and Algorithm 3 with r = 1 (Figure 3(d)). The schemes reproduce a
stable pressure-wave propagation. Note that this stable behavior was predicted for Algorithms 2
and 1 by Theorem 3.1 and Remark 3.6, respectively.

In order to assess the overall convergence rate of Algorithms 1–3, we have uniformly refined
in time and in space according to

(τ, h) = {2 · 10−4/2i, 10−1/2i}4i=0. (97)
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Figure 5: Algorithm 2. Comparison of the solid displacements at t = 0.015 for different levels of
(τ, h)-refinement (97).

Note that τ = O(h). Figure 4 reports the relative elastic energy-norm error of the solid dis-
placement, at time t = 0.015, obtained with all the different variants of Algorithm 2 (Alg. 2
in Figure 4(a)) and Algorithm 3 (Alg. 3 in Figure 4(b)). For comparison purposes, the results
obtained with both the fitted-mesh and the unfitted-mesh implicit schemes (Algorithm 1) are
also included in Figures 4(a) and 4(b). The reference solution has been computed using the
fitted-mesh implicit method, with a high space-time resolution: h = 3.125 · 10−3 and τ = 10−6.

The results of Figure 4(a) show an overall O(τ) optimal accuracy for Algorithm 2 with

r = 1, 2, while a sub-optimal O(τ
1
2 ) is obtained with r = 0. This is in agreement with the

error estimates stated in Corollary 3.1. Very similar results are observed for Algorithm 3 in
Figure 4(b): an optimal O(τ) convergence is obtained with r = 1, 2 and a sub-optimal O(τ

1
2 )

convergence is retrieved with r = 0. We recall that the sub-optimality in Algorithm 3 with r = 0
was predicted by Corollary 4.1. The first-order convergence rate O(τ) predicted by Corollary 3.2
for Algorithm 1 is also clearly visible.

Further numerical evidence of the above observations is given in Figures 5–6, where we have
displayed the displacements at t = 0.015 obtained with Algorithms 2 and 3, respectively, for
different levels of space-time refinement. For illustration purposes, the displacements obtained
with the implicit schemes, both in the fitted and unfitted frameworks, are also shown in both
figures.

Finally, Figure 7 compares the results obtained with the first-order extrapolated variants of
Algorithms 2 and 3 (r = 1) and with the stabilized explicit scheme of [13] (without correction
iterations). These results demonstrate that Algorithms 2 and 3 with r = 1 overcome the O(τ/h)
non-uniformity in space of the splitting error induced by the stabilized explicit scheme (which
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Figure 6: Algorithm 3. Comparison of the solid displacements at t = 0.015 for different levels of
(τ, h)-refinement (97).
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Figure 7: Time convergence history of the solid displacement in the relative elastic energy norm
using Algorithm 2 (r = 1), Algorithm 3 (r = 1) and the stabilized explicit scheme of [13] with
τ = O(h).

clearly prevents convergence under τ = O(h)).

6 Conclusion

In this paper, we have introduced two new numerical methods for incompressible fluid/thin-
walled structure interaction using unfitted meshes. Their semi-implicit or explicit nature depends
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on the order in which the space and time discretizations are performed:

• discretizing first in space using the unfitted formulation (5) and then in time via (14)-(15)
led to the semi-implicit schemes reported in Algorithm 2;

• discretizing first in time using (79)-(80) and then in space using a variant of Nitsche’s
method for Robin boundary conditions led to the explicit schemes reported in Algorithm 3.

For all the semi-implicit schemes (r = 0, 1, 2), a complete numerical analysis has been per-

formed in Section 3.3. The analysis retrieves the O(τ + h + τ2r−1

) convergence rate obtained
in [26] for fitted mesh case. These theoretical findings have been confirmed by the numerical
evidence of Section 5 which shows, in particular, that the semi-implicit scheme with r = 1: (i) de-
livers superior stability and/or accuracy with respect to explicit methods reported in [7, 13] and
(ii) avoids the strong coupling of alternative methods (see, e.g., [47, 8]), without compromising
stability and accuracy.

For the explicit scheme with r = 0, the stability and convergence results (Section 4.3) are
similar to those obtained for the same variant of the semi-implicit scheme. We retrieve, in
particular, the same O(h + τ

1
2 ) sub-optimal convergence rate. The analysis of the explicit

schemes with r = 1, 2 is open. Yet, the numerical evidence of Section 5 suggests that, in spite of
their different semi-implicit and explicit nature, Algorithms 2 and 3 deliver practically the same
behavior.
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