O. Anoshchenko and A. Boutet-de-monvel-berthier, The Existence of the Global Generalized Solution of the System of Equations Describing Suspension Motion, Mathematical Methods in the Applied Sciences, vol.6, issue.6, pp.495-519, 1997.
DOI : 10.1002/(SICI)1099-1476(199704)20:6<495::AID-MMA858>3.0.CO;2-O

C. Baranger, L. Boudin, P. Jabin, and S. Mancini, A Modeling of Biospray for the Upper Airways, CEMRACS 2004 ? Mathematics and applications to biology and medicine, pp.41-47, 2005.
DOI : 10.1051/proc:2005004

C. Baranger and L. Desvillettes, COUPLING EULER AND VLASOV EQUATIONS IN THE CONTEXT OF SPRAYS: THE LOCAL-IN-TIME, CLASSICAL SOLUTIONS, Journal of Hyperbolic Differential Equations, vol.03, issue.01, pp.1-26, 2006.
DOI : 10.1142/S0219891606000707

C. Bardos, Probl??mes aux limites pour les ??quations aux d??riv??es partielles du premier ordre ?? coefficients r??els; th??or??mes d'approximation; application ?? l'??quation de transport, Annales scientifiques de l'??cole normale sup??rieure, vol.3, issue.2, pp.185-233, 1970.
DOI : 10.24033/asens.1190

S. Benjelloun, L. Desvillettes, and A. Moussa, EXISTENCE THEORY FOR THE KINETIC-FLUID COUPLING WHEN SMALL DROPLETS ARE TREATED AS PART OF THE FLUID, Journal of Hyperbolic Differential Equations, vol.11, issue.01, pp.109-133, 2014.
DOI : 10.1142/S0219891614500027

URL : https://hal.archives-ouvertes.fr/hal-00805104

L. Boudin, B. Boutin, B. Fornet, T. Goudon, P. Lafitte et al., Fluid-Particles Flows: A Thin Spray Model with Energy Exchanges, CEMRACS 2008?Modelling and numerical simulation of complex fluids, pp.195-210, 2009.
DOI : 10.1051/proc/2009047

URL : https://hal.archives-ouvertes.fr/inria-00543156

L. Boudin, L. Desvillettes, C. Grandmont, and A. Moussa, Global existence of solutions for the coupled Vlasov and Navier-Stokes equations, Differential Integral Equations, vol.22, pp.11-121247, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00331895

L. Boudin, L. Desvillettes, and R. Motte, A Modeling of Compressible Droplets in a Fluid, Communications in Mathematical Sciences, vol.1, issue.4, pp.657-669, 2003.
DOI : 10.4310/CMS.2003.v1.n4.a2

L. Boudin, C. Grandmont, A. Lorz, and A. Moussa, Abstract, Communications in Computational Physics, vol.42, issue.03, pp.723-756, 2015.
DOI : 10.1080/02786820119122

F. Boyer, Trace theorems and spatial continuity properties for the solutions of the transport equation, Differential Integral Equations, vol.18, issue.8, pp.891-934, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00004420

F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, Applied Mathematical Sciences, vol.183, 2013.
DOI : 10.1007/978-1-4614-5975-0

URL : https://hal.archives-ouvertes.fr/hal-00777731

J. Carrillo, R. Duan, and A. Moussa, Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system, Kinetic and Related Models, vol.4, issue.1, pp.227-258, 2011.
DOI : 10.3934/krm.2011.4.227

URL : https://hal.archives-ouvertes.fr/hal-00652339

M. Chae, K. Kang, and J. Lee, Global existence of weak and classical solutions for the Navier???Stokes???Vlasov???Fokker???Planck equations, Journal of Differential Equations, vol.251, issue.9, pp.2431-2465, 2011.
DOI : 10.1016/j.jde.2011.07.016

M. Chae, K. Kang, and J. Lee, GLOBAL CLASSICAL SOLUTIONS FOR A COMPRESSIBLE FLUID-PARTICLE INTERACTION MODEL, Journal of Hyperbolic Differential Equations, vol.10, issue.03, pp.537-562, 2013.
DOI : 10.1142/S0219891613500197

L. Desvillettes, Some aspects of the modeling at different scales of multiphase flows, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.21-22, pp.21-221265, 2010.
DOI : 10.1016/j.cma.2009.08.008

R. J. Diperna and P. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Inventiones Mathematicae, vol.307, issue.3, pp.511-547, 1989.
DOI : 10.1007/BF01393835

G. Dufour, Modélisation multi-fluide eulérienne pour les écoulements diphasiques à inclusions dispersées, 2005.

H. Fujita and N. Sauer, On existence of weak solutions of the Navier-Stokes equations in regions with moving boundaries, J. Fac. Sci. Univ. Tokyo Sect. I, vol.17, pp.403-420, 1970.

T. Gemci, T. Corcoran, and N. Chigier, A Numerical and Experimental Study of Spray Dynamics in a Simple Throat Model, Aerosol Science and Technology, vol.9, issue.1, pp.18-38, 2002.
DOI : 10.1080/02786829708965417

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1983.

T. Goudon, L. He, A. Moussa, and P. Zhang, The Navier???Stokes???Vlasov???Fokker???Planck System near Equilibrium, SIAM Journal on Mathematical Analysis, vol.42, issue.5, pp.2177-2202, 2010.
DOI : 10.1137/090776755

URL : https://hal.archives-ouvertes.fr/inria-00384364

T. Goudon, P. Jabin, and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Part I: Light particles regime., Indiana University Mathematics Journal, vol.53, issue.6, pp.1495-1515, 2004.
DOI : 10.1512/iumj.2004.53.2508

URL : https://hal.archives-ouvertes.fr/hal-00018815

T. Goudon, P. Jabin, and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Part II: Fine particles regime., Indiana University Mathematics Journal, vol.53, issue.6, pp.1517-1536, 2004.
DOI : 10.1512/iumj.2004.53.2509

URL : https://hal.archives-ouvertes.fr/hal-00018815

K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan Journal of Industrial and Applied Mathematics, vol.17, issue.1, pp.51-74, 1998.
DOI : 10.1007/BF03167396

F. Li, Y. Mu, and D. Wang, Global well-posedness and large time behavior of strong solution to a kinetic-fluid model. ArXiv e-prints, 2015.

J. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, 1969.

J. Mathiaud, LOCAL SMOOTH SOLUTIONS OF A THIN SPRAY MODEL WITH COLLISIONS, Mathematical Models and Methods in Applied Sciences, vol.20, issue.02, pp.191-221, 2010.
DOI : 10.1142/S0218202510004192

A. Mellet and A. Vasseur, GLOBAL WEAK SOLUTIONS FOR A VLASOV???FOKKER???PLANCK/NAVIER???STOKES SYSTEM OF EQUATIONS, Mathematical Models and Methods in Applied Sciences, vol.17, issue.07, pp.1039-1063, 2007.
DOI : 10.1142/S0218202507002194

A. Mellet and A. Vasseur, Asymptotic Analysis for a Vlasov-Fokker-Planck/ Compressible Navier-Stokes System of Equations, Communications in Mathematical Physics, vol.22, issue.1, pp.573-596, 2008.
DOI : 10.1007/s00220-008-0523-4

S. Mischler, On The Trace Problem For Solutions Of The Vlasov Equation, Communications in Partial Differential Equations, vol.314, issue.7-8, pp.1415-1443, 2000.
DOI : 10.1007/BF01837113

A. Moussa, Some variants of the classical Aubin???Lions Lemma, Journal of Evolution Equations, vol.146, issue.4, pp.65-93, 2016.
DOI : 10.1007/s00028-015-0293-3

URL : https://hal.archives-ouvertes.fr/hal-01300507

A. Moussa and F. Sueur, On a Vlasov-Euler system for 2D sprays with gyroscopic effects, Asymptot. Anal, vol.81, issue.1, pp.53-91, 2013.

P. J. O-'rourke, Collective drop effects on vaporizing liquid sprays, 1981.

R. Salvi, On the existence of weak solutions of a nonlinear mixed problem for the Navier-Stokes equations in a time dependent domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math, vol.32, issue.2, pp.213-221, 1985.

R. Temam, Navier Stokes Equations: Theory and Numerical Analysis, Journal of Applied Mechanics, vol.45, issue.2, 2001.
DOI : 10.1115/1.3424338

D. Wang and C. Yu, Global weak solution to the inhomogeneous Navier???Stokes???Vlasov equations, Journal of Differential Equations, vol.259, issue.8, pp.3976-4008, 2015.
DOI : 10.1016/j.jde.2015.05.016

F. A. Williams, Combustion theory, Benjamin Cummings, 1985.
URL : https://hal.archives-ouvertes.fr/hal-00014918

C. Yu, Global weak solutions to the incompressible Navier???Stokes???Vlasov equations, Journal de Math??matiques Pures et Appliqu??es, vol.100, issue.2, pp.275-293, 2013.
DOI : 10.1016/j.matpur.2013.01.001

&. France and . Inria, F-78153 Le Chesnay Cedex, France E-mail address: laurent.boudin@upmc.fr C.G.: Inria, EPC Reo, F-78153 Le Chesnay Cedex E-mail address: celine.grandmont@inria, p.75005