Estimating and localizing the algebraic and total numerical errors using flux reconstructions

Abstract : This paper presents a methodology for computing upper and lower bounds for both the algebraic and total errors in the context of the conforming finite element discretization and an arbitrary iterative algebraic solver. The derived bounds are based on the flux reconstruction techniques, do not contain any unspecified constants, and allow estimating the local distribution of both errors over the computational domain. We also discuss bounds on the discretization error, their application for constructing mathematically justified stopping criteria for iterative algebraic solvers, global and local efficiency of the total error upper bound, and the relationship to the previously published estimates on the algebraic error. Theoretical results are illustrated on numerical experiments for higher-order finite element approximations and the preconditioned conjugate gradient method.
Type de document :
Article dans une revue
Numerische Mathematik, Springer Verlag, 2017, 〈10.1007/s00211-017-0915-5〉
Liste complète des métadonnées

Littérature citée [48 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01312430
Contributeur : Martin Vohralik <>
Soumis le : vendredi 6 mai 2016 - 12:56:07
Dernière modification le : vendredi 15 décembre 2017 - 12:57:48
Document(s) archivé(s) le : mercredi 25 mai 2016 - 04:50:37

Fichier

PapStrVoh16.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jan Papež, Zdeněk Strakoš, Martin Vohralík. Estimating and localizing the algebraic and total numerical errors using flux reconstructions. Numerische Mathematik, Springer Verlag, 2017, 〈10.1007/s00211-017-0915-5〉. 〈hal-01312430〉

Partager

Métriques

Consultations de la notice

288

Téléchargements de fichiers

92