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ABSTRACT

Decentralized data-injection attack construction with minimum-
mean-square-error state estimation is studied in a game-
theoretic setting. Within this framework, the interaction
between the network operator and the set of attackers, as well
as the interactions among the attackers, are modeled by a
game in normal form. A novel utility function that captures
the trade-off between the maximum distortion that an attack
can introduce and the probability of the attack being detected
by the network operator is proposed. Under the assumption
that the state variables can be modeled as a multivariate Gaus-
sian random process, it is shown that the resulting game is a
potential game. The cardinality of the corresponding set of
Nash Equilibria (NEs) of the game is analyzed. It is shown
that attackers can agree on a data-injection vector construc-
tion that achieves the best trade-off between distortion and
detection probability by sharing only a limited number of bits
offline. Interestingly, this vector construction is also shown
to be an NE of the resulting game.

Index Terms— Data-injection attacks, state estimation,
game theory, decentralized attacks.

1. INTRODUCTION

The introduction of advanced sensing and communication
infrastructure in electricity grids enables the implementa-
tion of applications and services envisioned in the smart grid
paradigm but it also opens the door to cyber-security threats
[1]. In this paper, data-injection attacks [2] against electric-
ity grids are studied in a decentralized setting. The attack
construction is formulated within a Bayesian framework in
which the statistical structure of the state variables is ex-
ploited. With growing data mining and analysis capabilities
provided by modern computing, it is reasonable to assume
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that network operators can learn the statistical structure of
the system and incorporate it into a model of the underlying
stochastic process governing the network [3]. Following the
approach of [4], [5] and [6], the state variables are modeled as
a multivariate Gaussian process whose second order moments
are available to the attacker and the operator. The rationale
for this is to consider a worst-case scenario for the operator.
The validity of the Gaussian assumption about the distribu-
tion of the state variables is corroborated with real data for
the case of low voltage distribution systems in [7].

Given the complexity and extent of most electricity grids,
it is plausible to think of scenarios in which several attackers
intrude upon a network at different locations. In this scenario,
in which multiple attackers are present and/or limited com-
munication is available among different instantiations of the
same attacker, raises the notion of distributed attacks. Dis-
tributed attack and detection strategies are investigated in [4]
and [8]. The decentralized system with different actors oper-
ating over a large number of processes poses a suitable frame-
work for the exploration of game theoretic techniques. A
comprehensive account of smart grid services and applica-
tions that can be tackled with game theory is given in [9]. In
[10], centralized data-injection attacks are studied in a game
theoretic setting in which the operator performs least squares
estimation. Attack constructions that aim to manipulate mar-
ket prices are modeled as a zero-sum game in [11]. However,
the case in which several attackers disrupt the state estimation
process in an uncoordinated way is still not well understood.
Furthermore, the impact of making the statistical structure of
the state variables available to attackers in decentralized set-
tings has not been studied either. These issues are considered
in this paper.

The next section describes the system model, including
the estimation and detection procedures. The decentralized
case and the properties of the resulting game are analyzed in
Section 3. The paper ends with with concluding remarks in
Section 4.



2. SYSTEM MODEL

Let x ∈ RN be a vector containing the state variables of a
power system withN buses [12]. Assuming linearized system
dynamics with M measurements corrupted by additive white
Gaussian noise, the measurement vector yo ∈ RM is given
by

yo = Hx + z, (1)

where H ∈ RM×N is the Jacobian of the linearized sys-
tem dynamics around a given operating point and z ∼
N (0, σ2IM ) is additive white noise with power spectral
density σ2. The data-injection attack a is an M -dimensional
deterministic vector introduced by an external attacker with
the aim of disrupting the state estimation procedure. The
attacker interferes with the measurements and modifies the
observation model to

y = Hx + z + a, (2)

where y ∈ RM are the measurements available to the network
operator that have been corrupted by the data-injection attack.

2.1. MMSE State Estimation

The aim of the network operator is to obtain an estimate x̂ of
the state vector x using the measurements y. In practical state
estimation settings, linear estimators are preferred due to their
simplicity, and thus the estimation procedure reduces to x̂ =
Ly, given a linear estimation matrix L. In the case in which
the operator knows the underlying random process governing
the state of the network, a common performance criterion for
the estimation is to minimize the mean square error (MSE). In
this case, the network operator uses a linear estimation matrix
M that is the unique solution to the following optimization
problem:

M
∆
= arg min

L∈RM×M
E

[
1

N
‖x− Ly‖2

]
, (3)

where the expectation is taken with respect to the distributions
of x and z. Under the assumption that the network state vector
x follows an M -dimensional real Gaussian distribution with
zero mean and covariance matrix Σxx, the minimum MSE
(MMSE) estimation matrix is

M = ΣxxHT(HΣxxHT + σ2I)−1, (4)

and the MMSE estimate of the state vector x is

x̂MMSE = My. (5)

The aim of an attacker is to choose a data-injection vector a ∈
RM in order to obstruct the ability of the network operator to
estimate the variables without being detected. Note that the
impact of the data-injection vector a on the estimate x̂MMSE

is quantified by the second term on the right-hand side of the
following equality:

x̂MMSE = M(Hx + z) + Ma. (6)

The term Ma is referred to as the excess distortion induced
by the attack vector a and is denoted by

xa = Ma = ΣxxHT(HΣxxHT + σ2I)−1a. (7)

2.2. Attack Detection

As a part of grid management, a network operator performs
bad data detection to identify corrupted measurements. This
operation can be cast as a hypothesis testing problem with
hypotheses

H0 : There is no attack (8)
H1 : Measurements are compromised. (9)

Assuming the operator knows that x ∼ N (0,Σxx) it can
obtain the joint probability density function of the measure-
ments, y, and the state variables x. From (2) and the random
model adopted to describe the state variables, it follows that
the observations y are realizations of an M -dimensional real
Gaussian random variable with covariance matrix

Σyy = HΣxxHT + σ2I, (10)

and mean a when there is an attack; or zero mean when there
is no attack. The resulting hypothesis testing problem com-
pares the following hypotheses:

H0 : y ∼ N (0,Σyy) (11)
H1 : y ∼ N (a,Σyy). (12)

A worst case scenario approach is assumed for the attackers,
namely, the operator knows the attack vector, a, used in the
attack. However, the operator does not know a priori whether
the grid is under attack or not, which accounts for the need for
an attack detection strategy. That being the case, the optimal
attack detection strategy for the operator is to perform a likeli-
hood ratio testL(y,a) with respect to the measurement vector
y. Under the assumption that state variables follow a multi-
variate Gaussian distribution, the likelihood ratio is given by

L(y,a) =
fN (0,Σyy)(y)

fN (a,Σyy)(y)
= exp

(
1

2
aTΣ−1

yya− aTΣ−1
yyy

)
,

(13)
where fN (µ,Σyy) is the probability density function of a mul-
tivariate Gaussian random variable with mean µ and covari-
ance matrix Σ. Therefore, either hypothesis is accepted by
evaluating the inequalities

L(y,a)
H0

≷
H1

τ, (14)

where τ ∈ [0,∞) is tuned to set the trade-off between the pro-
bability of detection and the probability of false alarm. The
average probability that the network operator is unable to de-
tect the attack vector a is

PND(a) = E
(
1{L(y,a)>τ}

)
, (15)



where the expectation is taken over the state variables x and
the noise z, and 1{·} denotes the indicator function. Note that
under these assumptions, y is a Gaussian random vector with
mean a and covariance matrix Σyy. Thus, the probability
PND(a) of a vector a being a successful attack, i.e., a non-
detected attack is given by [13]

PND(a) =
1

2
erfc

 1
2aTΣ−1yya + log τ√

2aTΣ−1yya

 . (16)

3. DECENTRALIZED ATTACK CONSTRUCTION

This section describes the decentralized construction of data-
injection attacks when K attackers are present. Let K =
{1, . . . ,K} be the set of attackers that can potentially perform
a data-injection attack on the network. Let also Ci be the set
of sensors that attacker i controls. Assume that C1, . . . , CK
are proper sets and form a partition of the setM of all mea-
surement sensors. The set Ak of data attack vectors ak that
can be injected into the network by attacker k ∈ K is of the
form

Ak = {ak ∈ RM : (ak)j = 0 for all j /∈ Ck,aTk ak ≤ Ek}.
(17)

The constant Ek < ∞ represents the energy budget of at-
tacker k. Let the set of all possible sums of the elements ofAi
and Aj be denoted by Ai ⊕Aj . That is, for all a ∈ Ai ⊕Aj ,
there exists a pair of vectors (ai,aj) ∈ Ai × Aj such that
a = ai + aj . Using this notation, let the set of all possible
data-injection attacks be denoted by

A = A1 ⊕A2 ⊕ . . .⊕AK , (18)

and the set of complementary data-injection attacks with re-
spect to attacker k be denoted by

A−k = A1 ⊕ . . .⊕Ak−1 ⊕Ak+1 ⊕ . . .⊕AK . (19)

Given the individual data-injection vectors ai ∈ Ai, with i ∈
{1, . . . ,K}, the global attack vector a is

a =

K∑
i=1

ak ∈ A. (20)

3.1. Choice of Utility Function

The aim of attacker k is to corrupt the measurements obtained
by the set of meters Ck by injecting an error vector ak ∈ Ak
that maximizes the damage to the network, i.e., the excess
distortion, while avoiding the detection of the global data-
injection vector a. Clearly, all attackers have the same interest
but they control different sets of measurements, i.e., Ci 6= Ck,
for any pair (i, k) ∈ K2. For modeling this behavior, attackers
use the utility function φ : RM → R, to determine whether a

data-injection vector ak ∈ Ak is more beneficial than another
a′k ∈ Ak given the complementary attack vector

a−k =
∑

i∈{1,...,K}\{k}

ai ∈ A−k (21)

adopted by all the other attackers. The utility function φ is
chosen considering the fact that an attack is said to be suc-
cessful if it induces a non-zero distortion and it is not de-
tected. Alternatively, if the attack is detected no damage is
introduced into the network as the operator discards the mea-
surements and no estimation is performed. Hence, given a
global attack a, the distortion induced into the measurements
is 1{L(Hx+z+a,a)>τ}x

T
axa. However, attackers are not able

to know the exact state of the network x and the realization
of the noise z before launching the attack. Thus, it appears
natural to exploit the knowledge of the first and second mo-
ments of both the state variables x and noise z and consider
as a metric the expected distortion φ(a) that can be induced
by the attack vector a:

φ(a) = E
[(
1{L(Hx+z+a,a)>τ}

)
xT
a xa

]
, (22)

= PND(a) aTΣ−1yyHΣ2
xxHTΣ−1yya, (23)

where the expectation is taken over the distribution of the state
variables x and the noise z. Note that under these assumptions
of global knowledge, this model considers the worse case sce-
nario for the network operator. More specifically, the result
presented in this section corresponds to a conservative case in
which the attackers inflict the most harm.

3.2. Game Formulation

The benefit φ(a) obtained by attacker k not only depends on
its own data-injection vector ak, but also on the data-injection
vectors a−k of all the other attackers. This becomes clear
from the construction of the global data-injection vector a in
(20), the excess distortion xa in (7) and the probability of not
being detected PND(a) in (16). Therefore, the interaction of
all attackers in the network can be described by a game in
normal form

G =
(
K, {Ak}k∈K , φ

)
. (24)

Each attacker is a player in the game G and it is identified by
an index from the setK. The actions player k might adopt are
data-injection vectors ak in the setAk in (17). Given a vector
of data-injection attacks a−k, player k aims to adopt a data-
injection vector ak such that the expected excess distortion
φ(ak + a−k) is maximized. That is,

ak ∈ BRk (a−k) , (25)

where the correspondence BRk : A−k → 2Ak is the best
response correspondence, i.e.,

BRk (a−k) = arg max
ak∈Ak

φ (ak + a−k) . (26)

From this perspective, a game solution that is particularly rel-
evant for this analysis is the Nash equilibrium (NE) [14].



Definition 1 (Nash Equilibrium) The data-injection vector
a is an NE of the game G if and only if it is a solution of the
fix point equation

a = BR(a) , (27)

with BR : A → 2A being the global best-response corre-
spondence, i.e.,

BR (a) = BR1 (a−1)⊕ . . .⊕ BRK (a−K) . (28)

Essentially, at an NE, attackers obtain the maximum benefit
given the data-injection vector adopted by all the other attack-
ers. This implies that an NE is an operating point at which at-
tackers achieve the highest expected distortion induced over
the measurements. More importantly, any unilateral deviation
from an equilibrium data-injection vector a does not lead to
an improvement of the average excess distortion. Note that
this formulation does not say anything about the exact distor-
tion induced by an attack but rather it characterizes the aver-
age distortion. This is because the attack is chosen under the
uncertainty of the state vector x and the noise term z.

The following proposition highlights an important prop-
erty of the game G in (24).

Proposition 1 The game G in (24) is a potential game.

Proof: The proof follows from the observation that all the
players have the same utility function φ [15]. Thus, the func-
tion φ is a potential of the game G in (24) and any maximum
of the potential function is an NE of the game G. �

In general, potential games [15] possess numerous proper-
ties that are inherited by the game G in (24). These properties
are detailed by the following propositions

Proposition 2 The game G possesses at least one NE.

Proof: Note that φ is continuous in A and A is a convex and
closed set; therefore, there always exists a maximum of the
potential function φ in A. Finally from Lemma 4.3 in [15], it
follows that such a maximum corresponds to an NE. �

3.3. Achievability of an NE
The attackers are said to play a sequential best response dy-
namic (BRD) if the attackers can sequentially decide their
own data-injection vector ak from their sets of best responses
following a round-robin (increasing) order. Denote by a

(t)
k ∈

A the choice of attacker k during round t ∈ N and assume
that attackers are able to observe all the other attackers’ data-
injection vectors. Under these assumptions, the BRD can be
defined as follows.

Definition 2 (Best Response Dynamics) The players of the
game G are said to play best response dynamics if there exists
a round-robin order of the elements of K in which at each
round t ∈ N, the following holds:

a
(t)
k ∈ BRk

(
a

(t)
1 + . . .+ a

(t)
k−1 + a

(t−1)
k+1 + . . .+ a

(t−1)
K

)
.

(29)

From the properties of potential games (Lemma 4.2 in [15]),
the following proposition follows.

Lemma 1 (Achievability of NE attacks) Any BRD in the
game G converges to a data-injection attack vector that is an
NE.

The relevance of Lemma 1 is that it establishes that if attack-
ers can communicate in at least a round-robin fashion, they
are always able to attack the network with a data-injection
vector that maximizes the average excess distortion.

3.4. Cardinality of the set of NEs

Let ANE be the set of all data-injection attacks that form
NEs. The following theorem bounds the number of NEs in
the game.

Theorem 1 The cardinality of the set ANE of NEs of the
game G satisfies

2 6 |ANE| 6 C · rank(H) (30)

where C <∞ is a constant that depends on τ .

Proof: The proof of Theorem 1 can be found in [16]. �
Theorem 1 shows that the set of attackers only need to

share at most log2 dC · rank(H)e bits for coordinating an at-
tack. Note that this exchange of information needs to take
place only once and can be done offline. Interestingly, the
authors have not been able to obtain any example in which
|ANE| > 2. In view of the numerical evidence the following
conjecture is postulated.

Conjecture 1 The set of NEs of G satisfies |ANE| = 2.

Conjecture 1 suggests that exchanging one bit of information
is enough for the attackers to agree on the construction of an
attack vector that leads to an NE.

4. CONCLUSION

This paper has established that decentralized attack construc-
tion strategies are feasible in a setting in which multiple at-
tackers have limited communication. The trade-off between
MMSE estimation and attack detection has been used to pro-
pose a novel utility function. This utility function gives rise
to a game theoretic formulation that models the interaction
among multiple attackers in the system. We have shown that
the resulting game is a potential game, proved the existence
of at least two NEs, and shown that the number of NEs is up-
per bounded by a finite number that depends on the network
characteristics. Therefore the attackers cannot agree on an
attack construction that will lead to an NE without coordina-
tion. Nonetheless, exchanging a finite number of bits offline
enables the attackers to agree on a strategy that leads to an
NE.
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