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Abstract

Let V' C C" be an equidimensional algebraic set and g be an n-variate polynomial with
rational coefficients. Computing the critical points of the map that evaluates g at the points
of V is a cornerstone of several algorithms in real algebraic geometry and optimization. Under
the assumption that the critical locus is finite and that the projective closure of V' is smooth,
we provide sharp upper bounds on the degree of the critical locus which depend only on deg(g)
and the degrees of the generic polar varieties associated to V. Hence, in some special cases
where the degrees of the generic polar varieties do not reach the worst-case bounds, this implies
that the number of critical points of the evaluation map of g is less than the currently known
degree bounds. We show that, given a lifting fiber of V| a slight variant of an algorithm due to
Bank, Giusti, Heintz, Lecerf, Matera and Solerné computes these critical points in time which
is quadratic in this bound up to logarithmic factors, linear in the complexity of evaluating the
input system and polynomial in the number of variables and the maximum degree of the input
polynomials.

1 Introduction

Problem statement. Let f = (f1,...,fy,) C Q[Xj,...,X,] be a polynomial system defining a

smooth and equidimensional algebraic set V' C C" of dimension d and g € Q[Xy,...,X,] be a
polynomial of degree D. We focus on the complexity of computing the critical points of the map
evaluating g at the points of V. These critical points are defined by f; =--- = f, = 0 and by the
simultaneous vanishing of the (n — d + 1)-minors of the jacobian matrix jac(f, g)
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Usually, in symbolic computation, when the critical locus is finite, we aim at computing a rational
parametrization of it, which is the data ((q,v1,...,v,),A) where ¢ and the v;’s lie in Q[T] (T

is a new variable) and \ is a linear form in Xi,..., X, with ¢ square-free, deg(v;) < deg(q),
Av1,...,0n) = Tg—% mod ¢ and the set defined by
g(7) =0, Y (r) 1<i<n

Xj=—o
' 9q/OT

coincides with the critical locus under consideration. Observe that the degree of ¢ coincides with
the number of critical points and the number of rational numbers required in such a rational
parametrization is O(n deg(q)).

Assuming again the critical locus to be finite, several bounds on its cardinality have been established
(see [26] and references therein). These bounds depend on n, p and the degrees of fi,..., f, and
g. However, it has been remarked that when V is not a complete intersection, or when it has
some special properties, the cardinality of the critical locus may be far less than these bounds and
sometimes depends only on D and on some quantities attached to geometric objects. These latter
objects are polar varieties (see [2, 4]); they may be understood as the critical loci of the restriction
to V of projections on generic linear subspaces ; we define them further precisely.

Assuming the smoothness of the projective closure of V' and the finiteness of the critical locus under
study, this paper adresses the following topical questions.

e Provide a bound on the number of complex critical points depending on D and on the degrees
of the generic polar varieties associated to V.

e Find an algorithm computing a rational parametrization of this critical locus within an arith-
metic complexity which is essentially quadratic in the obtained bound and polynomial in p,
n, the complexity of evaluating f, g and maxi<;<p(deg(f;)).

Motivations and prior works. Since local extrema of the evaluation map of g are reached at
critical points, computing critical points is a basic and useful task for polynomial optimization
(see e.g. [18, 19, 30]). Because of their topological properties related to Morse theory, computing
critical points is also a subroutine for many modern algorithms in real algebraic geometry yielding
asymptotically optimal complexities (see e.g. [20, 21, 29] and [6] for a textbook reference on this
family of algorithms). Polar varieties have been introduced in [2] for computing sample points in
each connected component of a real algebraic set and this technique has been developed in [3, 31];
they are also used for computing roadmaps for deciding connectivity queries [7, 8, 32, 33], for
computing the real dimension of a real algebraic set (see [5] and references therein) or for variant
quantifier elimination [23].

Some bounds on the cardinality of the critical locus under consideration are given in [26] when
fi,..., fp is a regular sequence. These bounds depend on the degrees of the f;’s, D, n and p.
Since polynomial systems appearing in applications arise most of the time with a special structure,
a natural question to ask for is to identify situations where the cardinality of the considered critical
locus is less than what the worst case bounds predicted in [26].

Such situations have been exhibited in [9] where critical points are used in computational statistics
via the notion of ML degree. When deg(g) = 2 the cardinality of the critical locus is bounded
by the generic ED degree of V' which depends only on the degrees of the generic polar varieties
associated to V' [10]. These bounds do not require any smoothness assumption. The results on
polar varieties in [22, 28] play a central role in this setting.



On the algorithmic side, many recent works have focused on the complexity of computing critical
loci. The results in [14, 35] provide complexity bounds for computing critical points using Grébner
bases under genericity assumptions on the input polynomials f. The obtained complexity bounds
are not quadratic in the generic number of critical points and the genericity assumptions are not
well-suited to the situations we are willing to consider. The results in [1] provide complexity bounds
for a probabilistic algorithm computing degeneracy loci in time quadratic in an intrinsic quantity
called the system degree. This work is strongly related to the algorithmic framework of the solver
proposed in [17] and to computational aspects of polar varieties which have been deeply investigated
in the last decades, see [2, 3, 4] and references therein. We will use a slight variant of [1] for our
algorithmic contribution.

Main results. Under some smoothness assumptions which are precised below, we prove a bound
on the number of complex critical points of the map x € V' — g(x) depending on the degree of
g and integers 61(V),...,94+1(V). The number §;,1(V) is the degree of the polar variety of V'
associated to a generic linear projection on C**!. In the sequel, given a = (ay,...,a;) C C™, we
denote by W((g,a),V) the critical locus of the map x € V — (g(z),a1 - x,...,a; - ). We also
denote by C[X1,...,X,]<p the set of polynomials in C[X7, ..., X,] of total degree < D.

Theorem 1. Let V C C" be a d-equidimensional algebraic set whose projective closure is smooth
and D > 1 and i € {0,...,d}. There exists a Zariski dense subset Q; C C[X1,...,X,]<p x C*X"
such that for any (g,a) € Q, the degree of W((g,a),V) C C" is bounded by

deg(W ((g. ), V) < {5”;(‘/) yo=1

35— 641(V)(D — 1)77" otherwise.
One of the central ingredient of the proof is an algebraic version of Thom’s weak transversality
Theorem. We use a formalism and notation similar to [33, Sec 4.2] which provides a proof of
this result using charts and atlases. We also show that this degree bound holds under milder
assumptions on g: it is sufficient to assume that the evaluation map of g has finitely many critical
points on V. Let us see how such a bound behaves on an example.

Example 2. Let V C C? be the set of points (x1,...,x8) where the matriz

1 X1 X9
T3 T4 Is
Te T7 I8

has rank 1. This variety has dimension 4, degree 6 and (d1,...,05) = (1,4,10,12,6). Consider
g = §:1 ix3. Representing an open subset of V as the zero locus of a reduced reqular sequence
of quadratic polynomials fi,..., fa, bounds depending on the degrees of fi,..., fa,q (see e.g. [26,
Thm. 2.2]) would give the upper bound 2608 for the number of complex critical points. Theorem
1 and its variant for non-generic objective functions (see Prop. 12 below) yield the bound 241 =
01 + 202 + 403 + 844 + 16d5. Computations show that the evaluation map of g restricted to V has

actually exactly 241 complex critical points on V.

A convenient representation of an equidimensional variety V' of dimension d is a lifting fiber for V
(see [17]). Roughly speaking, this lifting fiber consists in a rational parametrization of the (finite)
set of points in a section of V' by a (n — d)-dimensional affine plane, together with a lifting system



which allows to reconstruct a curve in the variety by symbolic Newton-Hensel iteration. Assuming
that a lifting fiber of V' has been precomputed and that deg(g) > 2, we use the algorithm proposed
in [1] to compute the critical points. Since this algorithm handles the more general case of quasi-
affine varieties, so does the proposed variant. However, our main complexity results hold only under
the assumption that the projective closure of V' is smooth and that the evaluation map of g has
finitely many critical points on V. Our second main result is a proof that the arithmetic complexity
is quadratic up to logarithmic factors in the degree bound from Theorem 1, polynomial in n, the
maximum of the degrees of the lifting system, deg(g), and the complexity of evaluating the lifting
system and g.

Organization of the paper. Section 2 describes notation and preliminary results used throughout
this paper. Section 3 is devoted to the proof of Theorem 1. It relies on a transversality result which
is proved in Section 4. Section 5 deals with nongeneric objective functions. Finally, Section 6
discusses algorithmic aspects and complexity bounds.

Acknowledgments. Mohab Safey El Din is member of and supported by Institut Universitaire
de France.

2 Preliminaries

2.1 Notation and basic definitions

We refer to [34] and [12] for basic definitions about algebraic sets and polynomial ideals. Given
an algebraic set V' C C", we denote by I(V') the ideal associated to V. Given f = (fi,..., fp) in
Q[Xy,...,X,], the set of their common solutions in C™ is denoted by Z(f) and the ideal generated
by f is denoted by (f). We say that f = (f1,..., fp) is a reduced sequence when the ideal (f)
generated by f is radical.
Tangent spaces, regular and singular points. Let V' C C" be an algebraic set. For z € V', the
tangent space T,V at z to V is the vector space defined by > ;" ;—)J(:(x)Y; =0 for any f € I(V).
Also, given a finite set of generators f = (f1,..., fp) of I(V), T,V is the kernel of the jacobian
matrix jac(f) = (g—)]?]) 1<i<p- We denote by N,V the orthogonal complement to T, V.

1<i<n
Assume now that V is d-equidimensional. The set of points € V where dim(7, V') = d is the set of
regular points of V; we denote it by reg(V"). The subset of singular points sing(V) is the complement
of reg(V') in V; it has dimension less than d. Observe that given a finite set of generators f of I(V),
jac(f) has rank n — d at all x € reg(V). Also, N,V is generated by the gradient vectors of the
polynomials in f evaluated at z. An equidimensional algebraic set V is said to be smooth when
sing(V') is empty.
Zariski topology. The Zariski topology over C™ is the topology for which the closed sets are the
algebraic sets of C". Let f € C[Xy,...,X,]; we denote by O(f) C C™ the subset defined by f # 0;
it is a Zariski open set, which is non-empty when f is not identically 0. Further, we will prove
some properties depending on parameters that are generically chosen. That means that, in the
parameter space, there exists a non-empty Zariski open set such that the property is satisfied for
any choice of the parameter values in this set.
Projective varieties. We will consider algebraic sets in the projective space P™(C) defined by
homogeneous polynomials. In the sequel, we use the shorthand P™ for P"*(C).
Let V' C P" be a projective variety. Notions of dimension, tangent space and regular (resp. singular)
spaces extend to projective varieties. We denote by aff(V) C C"*! the Zariski closure of the set



{(zo,...,zn) CC" | (2g:---:3,) € V}. The variety aff(V) is an affine cone (for all z € aff(V),
A € C we have Az € aff(V)). By a slight abuse of notation, when V' is an algebraic set of C", we
also denote by aff(V) the affine cone of the projective closure of V. Let now V'’ C C"*! be an affine
cone. Observe that the map proj : (zg,...,z,) € V' \ {0} = (zo: -+ : z,,) € P" sends V' \ {0}
to a projective set. Besides, for a projective variety V' C P", proj(aff(V)) = V. We also consider
bi-projective varieties lying in P™ x P". The above constructions extend similarly: to any variety
V C P" x P" can be associated a cone aff(V) € C"*! x C"*! which is the Zariski closure of the
set of points (xg,...,Zn,Y0,--.,Yn) such that ((zg : -+ :x,),(yo : -+ : yn)) € V. The map proj is
extended in the following way: proj : (z,y) € (C"*1\ {0}) x (C"*1\ {0}) — (z,y) € P x P

2.2 Atlases and transversality

Let V C C™ be a d-equidimensional algebraic set of codimension c and .S C V be a subset. Following
the terminology in [33, Chap. 5], an atlas for (V,S) is a finite sequence ¥ = ((h;,m;))1<j<¢, with
h; = (hj1,...,hjc) C C[Xy,...,X,] and m; € C[Xy,...,X,] such that for all 1 < j < ¢ the
following holds:

P1 O(m;) N (V' \S) = O(m;) N (Z(hy) \ 5);

Py O(m;) N (V '\ S) is not empty;

Ps for all x € O(m;) NV '\ S, jac(h;) has full rank c at x;
P4 the open sets O(m;) cover V' \ S.

We say that h; is a set of local equations over O(m;). [33, Lemma 5.2.4] establishes that there
exists an atlas for (V,sing(V')). Also, observe that sing(V) C Z(my - --my).

Further, we use the notion of transverse intersection for algebraic sets and projective varieties. Let
V and W be equidimensional algebraic sets in C". As in [13, pp. 21], we say that V and W
intersect transversely at x if x € reg(V)Nreg(W) and T,V + T, W = C™. They intersect generically
transversely if they meet transversely at a generic point of each irreducible component of V N W.
This definition is naturally extended to projective varieties.

We say that two sets V and W intersect transversely over an open set U if V and W intersect
tranversely at any point of VAW NU.

Lemma 3. Let V1 and Vy be equidimensional algebraic sets of codimensions c1 and cy. Consider
atlases or; = ((hy,m;))1<j<¢ and as = ((8;,1n5))1<j<k for (V1,sing(V1)) and (Va,sing(V2)). Assume
that V1 N Va is either empty or that for any irreducible component Z of Vi N Va, there exist r €
{1,...,¢} and s € {1,...,k} such that

T1 ZNO(myns) is not empty;
To At any point of reg(Z) N O(m,nyg), the matriz jac(h,, gs) has rank ¢ + co.
Then V1 and Vo intersect generically transversely.

Proof. The equality rank(jac(h,,gs)) = rank(jac(h,)) + rank(jac(gs)) implies that at any point
z € reg(Z) N O(myny,), N,Vi N N,Vo = 0. Consequently, T,Vi + T,Va = (N, Vi N N, Vp)t = C™.
Finally, noticing that reg(Z) N O(m,ns) is dense in Z N O(m,ns), which is dense in Z (by T;)
concludes the proof. O



We also need to prove that the intersection of bi-projective varieties is transverse. This is done via
their associated affine cones. In the sequel, the set {(z,y) | z = 0} € C**! x C"*! is denoted by
2 and the set {(z,y) | y = 0} € C"*! x C"*! is denoted by .

Lemma 4. Let V; and Vs be projective varieties in P™ x P™. Then Vi and Vs intersect transversely
at every point (z,y) = ((xo : ... : @p), (Yo : ... : yn)) € P* x P" iff aff (V) and aff(Va) intersect
transversely over C*T1 x C"H\ (2 U #).

Proof. Let i, j be such that z; # 0 and y; # 0. W.Lo.g., we assume that ¢ = j = 0. Consider the
affine chart U C P" x P" defined by zg # 0,59 # 0. Let H; c C"*! x C"*! (resp. Hs) be the
hyperplane defined by xo = 1 (resp. yo = 1). For ¢ € {1,2}, the variety V; N U can be identified
to aff(Vy) N Hy N Hy. By definition of transversality, the varieties V4 and V5 intersect transversely
at (z,y) € P* x P" if and only if so do V; N U and Vo, N U. By the previous identification,
this is equivalent to saying that aff(Vy) N Hy N Hy and aff(V2) N Hy N Hs intersect transversely
at (L,xy,...,2n,1,91,...,yn). Finally, direct tangent space computations show that for zj, 2o in

C\ {0} and for £ € {1,2}, T(Z1,Z1m1,...,Z1:rn,z2,my1,...,zzyn)aff(vﬁ) = T(Lfl'l7~~~733n717y17---yn)aﬂ:(w)' U

2.3 Critical points and modified polar varieties

Let V' C C™ be an equidimensional algebraic set of codimension ¢ and g € Q[X1,...,X,]. Con-
sider the evaluation map ¢4 : © € V. — g(x). We denote by w(pg, V) the set {x € reg(V) |
rank(jac,(f,g)) < ¢+ 1}. This is a locally closed constructible set and it coincides with the crit-
ical locus of the map 4. Its Zariski closure is denoted by W (pg, V). This construction can be
generalized as follows.

Let a1, ..., a, be linearly independent vectors in C" and for 1 < i < n, set a; = (ay,...,a;) € C*".
Then, for 1 <1i <mn, let W((g,a;),V) denote the algebraic set

{w € V | rank(jac, (f, g, ¢a,) < ¢ +i+ 1},

where f is a set of generators of I(V'), and g, is the set of linear forms (a; - X);eq1,.. 4y (With
X = (Xy,...,X,)). Reusing the terminology of [19], we call these sets modified polar varieties
associated to g and V, the i-th one being W((g,a;),V). We let W(a;, V) be the classical polar
variety {z € V' | rank(jac,(f, pa,) < ¢+ i}, reusing the letter W for the sake of simplicity.

Proposition 5. Let V' be a d-equidimensional algebraic set, and i € {1,...,d}. There exists a
Zariski dense subset 0 C C'™ and an integer integer numbers &; such that for any a € O, the
following holds:

e W(a,V) is either empty or equidimensional of dimension i — 1;
o W(a,V) has degree at most 0;.

Proof. The first statement follows directly from [1, Prop.3|. For the second statement, we refer to
the definition of d.4ssic in [4, Sec. 4]. O

The integers §; are denoted by 0;(V') in the sequel. By convention, we set 6411 = deg(V'). These
numbers are also called projective characters of V' (see [16, Example 14.3.3]).



3 Proof of Theorem 1

We start by introducing some objects which play a central role in the proof. As before, V is a
d-equidimensional algebraic set and aff(V") denotes the affine cone over the projective closure of V.
Let Ny € C™1 x C™*! be the Zariski closure of the set

{(z,y) € C" x C""! | z € aff(V) \ {0}, y € N,aff(V)\ {0}}.

It is called the conormal variety of aff(V). Consider a = (ay,...,a;) € C™*Di a homogeneous
polynomial g € C[Xy, X1,...,X,,] of degree D and the matrix

Yo Y,
9g9/0Xy --- 0g/0X,

aq

El(ga a) =
- a; -

Let Si(g,a) C C""! x C"*! be the variety defined by the rank condition rank(X;(g,a)) < i + 1.
Let II be the projection

m: (z,y) eC**t xCrtl — zeCrtl (3.1)

If a is generic, then Ny NS;(g,a) is the Zariski closure of set of points (z,y) such that y € N,aff(V),
and (yo,.-.,yn) € Span(a) + V,g. In other words, (zg,z1,...,zy,) is a critical point of the map
(X0, Xn) = (9(X),a1 - X,...,a;- X). Let a = (a},...,a,_,) € C"0=1) be a basis of the vector
space {(u1,...,u,) € C" | (0,u1,...,u,) € Span(ay,...,a;)}. Therefore, if the first coordinate of
a1 is nonzero, then the restriction of II(NVy N S;(g,a)) to the chart xy = 1 is the modified polar
variety W((g|zo=1,a"), V). The set of homogeneous polynomials in C[Xy, ..., X,] of degree D is
a finite dimensional vector space; we denote by IV its dimension and identify those homogeneous
polynomials to points in CV. Assume for the moment the following result which is proved in
Section 4.

Proposition 6. Let V C C" be a d-equidimensional algebraic set such that its projective closure is
smooth and i € {0,...,d}. There exists a non-empty Zariski open set O C C Vi CN such that
for any (g,a) € O, Ny and S;(g,a) meet generically transversely over (C"*1\ {0}) x (C"*1\ {0}).

One can associate to any equidimensional variety Z C P™ x P" of codimension ¢ a bivariate homoge-
nous polynomial bideg(Z) € N[T, U] of degree ¢, called the bidegree of Z [36, 37]. The coefficient of
TFU** in bideg(Z) is the number of points (counted with multiplicity) of ZN(H; x P™) N (P" x Hy)
where Hy (resp. Hz) is a generic linear space of dimension n — k (resp. n — ¢+ k).

By [10, Sec. 5], the bidegree of Ny, is ¢ _q dpy1 (V)T FUFHL,

We focus now on the bidegree of S;(g,a).

Lemma 7. There exists a non-empty Zariski open set ' C CN x (C@*Ui such that for (g,a) € 0",
Si(g,a) C C"* xC"*! has codimension n—i and its bidegree is ZZ;S(D—l)kaU"_k_i. Moreover,
reg(Si(g,a)) coincides with the set of points where the matriz ¥;(g,a) has rank i+ 1.



Proof. S;(g,a) is the variety of (z,y) € C" x C"*! where the evaluation of ¥;(g,a) is rank
defective. There exists a Zariski dense subset ¢, ¢ Ct1D7 such that for all a € @, the top-left
i X 1 submatrix of A is invertible, where A is the matrix with rows aq,...,a;. For a € 071, let
B = (b; j) be an invertible (n 4+ 1) x (n + 1) matrix such that A- B = [0 | I;]. The rank condition
on A - B shows that S;(g,a) is the set of points (z,y) € C"*! x C"*! where the rank of

Vo | S e S b
1 05,109/0X; - YU bjng1-i0g/0X;
is at most 1, where Y7,...,Y, ;11 are new variables. Next, let S/ C P"~¢ x P"% denote the
determinantal variety of rank-defective matrices
Wo -+ UWin—g
Uo -+ U2an—g ’

together with the grading given by deg(u; ;) = 1, deg(uz;) = D — 1 for all j € {0,...,n — i}.
Setting s = 0, deg(t;) = D — 1, deg(te) = 1, in [25, Example 15.39], the multidegree of S/ is
ZZ;é(D — 1)kTkUn—F=i where T (resp. U) corresponds to the class of a hyperplane in the first
(resp. second) operand in the product P~ x P*~1. Let C[Xy,...,X,]p_1 denote the set of
homogeneous polynomials of degree D — 1. Since determinantal varieties are Cohen-Macaulay
[27, Thm. 11], by the same argument as in [15, Sec. 4], there exists a Zariski dense subset
0Oy, C (C[X(),...,Xn]gr_l1 x C"1i guch that for any (hg,...,hn,a) € O, the bidegree of the
variety defined by rank(M) < 1 also has bidegree >3-4 (D — 1)*T*U"~*~%. Note that the set of
(ho, - .., hy) which are of the form (0g/0Xy,...,09/0Xy,) is a linear subspace of C[Xy,...,X,]. It
remains to prove that the restriction of &5 to this subspace is nonempty. This is done by considering
(hos - hn) = (XF71, ..., XP~1) (which comes from the derivatives of g = (X +---+X})/D) and
a;; = 1if i = j and 0 otherwise. Direct computations show that the corresponding variety has the
expected bidegree. Therefore the open set O’ of pairs (g, a) such that (9g/0Xy,...,09/0X,,a) € O,
satisfies the desired properties. Writing the equations defining the variety of S;(g, a) from the rank
of the matrix M shows that (z,y) € sing(S;(g,a)) iff the evaluation of the first row of M is zero,
which is equivalent to saying that (Yp,...,Y,) lies in Span(a). This implies that the regular locus
of S; is the set of points where ¥;(g,a) has rank i + 1. O

By Proposition 6, there exists a non-empty Zariski open set ¢ ¢ CN x C(*+D+1) guch that for g, d’
in 0, Ny and S;11(g,a’) meet generically transversely outside the set 2" U % introduced before
Lemma 4. Consider the map proj introduced in Section 2 (paragraph on projective varieties).
We deduce that for (g,a’) € 03, Nj, = proj(Ny) and S.(g,a’) = proj(Si(g,a’)) meet generically
transversely (Lemma 4). Below, we take (g,a) € & N &' (where 0’ is the non-empty Zariski open
set defined in Lemma 7).

Intersection theory [13, Theorem Definition 1.7] states that if two subvarieties Z; and Zy of P™ x P™
intersect generically transversely, then

bideg(Z; N Zy) = bideg(Z;) - bideg(Zs) mod (T, U™+,
We deduce that bideg(N{, N Si(g,a)) equals

(i 5k+1(V)Tn_kUk+1> (”le(D B 1)kaUn—k—i—1>
k=0

k=0
mOd(Tn+1, Un+1> )



Note that the degree of the image of S, ,(g,a’) N N, by the projection m : (z,y) — x is the
coefficient of T"~*~1U™ in its bidegree. Direct computations show that it equals

i (V) ifd =1
Z?Zi 31 (V)(D — 1)7~% otherwise.

For j € {1,...,i+ 1}, let v; be the first coefficient of a’; and let U be the set of a’ € Cr D+
such that v; # 0. Set 6 = {(g,d’) € 6N " | a' € U}. For d’ € U, let x be the map sending a’
to (ab, — v9a) /11, ..., a; — v;d}/v1). The image of U by x is a dense open subset &’ C C™. Finally,
we write Q for the set (g,x,—1,a) € C[X1,..., Xp]<p X C™ such that there exists (g,a’) € € with
x(a') = a. For (gx,=1,a) € Q, Si,1(g,a’) and N, intersect generically transversely. Moreover,
its image by the projection II (see (3.1)) restricted to the chart xg = 1, yo = 1 is W(g;xy=1,a)-
Consequently,

deg(W(Q\XO:ha)) < deg(H(SZ{+1(gh,a/)ﬂN‘//))

dir1(V) ifd=1
Z?:i 31 (V)(D — 1)=% otherwise.

4 Proof of Proposition 6

Our proof relies on applying Lemma 3 with V; = Ny and V2 = S;(g, a) for a generic choice of (a, g).
It simply consists in proving that properties T; and T, defined in Lemma 3 hold. This leads us
to define atlases and local equations for Ny. Next, we define an atlas (and hence local equations)
for a set related to Si(g,a). We will apply an algebraic version of Thom’s weak transversality
Theorem to a well chosen map constructed using these local equations, establishing that this map
is regular at the origin. Finally, we will use these results in the last paragraph of this Section to
prove properties T; and Ty under some genericity assumption on (g, a).

4.1 Local equations for A

By assumption, V is d-equidimensional and smooth as is its projective closure; we denote by c
its codimension. This implies that the affine cone aff(V') of the projective closure of V is also
equidimensional of codimension c. Besides, if (z,y) € aff(V') with 2 # 0 then x is a regular point of
aff(V'). By [33, Lemma 5.2.4], there exists an atlas ¥ = ((h;,m;))1<;j<s for (aff(V'),sing(aff(V")))
(see Subsection 2.2). This leads us to define the set

Uj ={(z,y) | z € aff(V) N O(m;),y L T,aff(V)\ {0}}.

Since the open sets O(m;) cover aff(V)\ sing(aff(V')) (property P4), the sets U; cover Ny \ Z UZ.

Let mfy,...,m]  be the ¢ x ¢ minors of jac(h;) such that O(m;m/ )NV # 0 for 1 <k < L;. For

1 <r <n—c, we denote by M, (m,) the minor of the (c + 1,c+ 1) minors of the (c+1,c+1)

submatrix of
_ | jac(hy)
J = [YO Y,

whose upper left (¢ x ¢) minor is m;k and adding the missing row and column. In the sequel, we
denote by H; , the sequence hy, MLk(m;-’k), .. ,Mn_c7k(m;-7k).
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Lemma 8. Under the above notation and assumptions, the sequence of couples (H; , m;m ) for
1<j<Jand1<k<Ljisan atlas for (Ny,singNy)U Z U¥).

Proof. Recall that we are given an atlas 1 = ((h;,m;))1<;<s for (aff(V'),sing(aff(V))). Let (z,y) €
Ny \ (sing(Ny) U 2 U#). Then, z € reg(aff( )) (because x # 0 and the projective closure of V
is assumed to be smooth) and there exists 1 < j < J such that x € aff(V)) N O(m;). Besides note
that aff(V)) N O(m;) coincides with Z(h;) N (’)(mj) (property P;) and that jac(h;) has maximal
rank at x (property P3). We let m/ ;. be a (c x c¢)-minor of jac(h;) which does not vanish at .

Since (z,y) € Ny, we have y L T,aff(V). Using property P; and P3, we deduce that T,aff(V) is
the kernel of jac(h;). We deduce by elementary linear algebra that the matrix J introduced above
is rank defective at (z,y). Besides, elementary linear algebra (e.g. using a Schur complement)
shows that over O(m;m/ ), the variety defined by h;(x) = 0 and rank(J(z,y)) < c is defined by
H, ;. We have established properties P; and Py. Establishing the fact that the sets O(m;mj,)
cover Ny \ (sing(Ny)U 2 U%) (property Py) is immediate from the above discussion. It remains
to prove that jaC(H r) has maximal rank at (x,y) (property P3). Without loss of generality,
assume that m]k is the upper left minor of jac(h;). Observe that the minors M ;(m ]k),...,
M,,_ ck(m k) can be written as Yc+gmjk + p¢ where p; C Q[X1,...,X,,Y1,...,Y,]. Extracting
from _]aC(H] %) the columns of jac(h;) corresponding to m/, ;r and those corresponding to the partial
derivatives w.r.t Yoo for 1 < ¢ < n — ¢ yields a submatrix which is not rank defective over
Z(hj) N O(m;m} ;) which ends the proof. O

4.2 Local equations for S;(g,a)

In this section, we build an atlas for S;(g,a) for generic (g,a). To do that, we see (g,a) as in
point in the space CN x C(+1): (recall that N is the dimension of the vector space of homogeneous
polynomials in C[Xj,...,X,]) and see the entries of a and the coefficients of g as variables.
Formally, for 1 < r < i, let A, = (Aoy,...,A,r) be a vector of indeterminates. Let also M =
{(ao,...,an) € N"T1 | 370 o = D} and G = (Ga,a € M) be a vector of indeterminates. By
abuse of notation, we also denote by G the polynomial Y c v Go X ; it lies in Q(G)[Xo, ..., Xy].
We consider now the matrix

Yy Y,
0G/dXy - 0G/OX,
D= — A4 —

A —

and the algebraic set .7 € C"t1 x C**1 x CN x C("+1) defined by rank(%;) < i+ 1.

Let o1,...,0r be the sequence of (i 4+ 1,7 4+ 1)-minors of the submatrix ¥; obtained by removing
the line containing partial derivatives of G or the line A; for 1 < j < L such that .%; N O(oy) # 0.
For 1 < /¢ < L, we denote by S1¢,...,S,—i—1,¢ the (i + 2,7+ 2)-minors of ¥; obtained by selecting
the rows and columns used to compute oy and adding the missing row and column from ;. We
denote by S, the sequence S1,...,S,—i—1,4-

Finally, we define the set .7 C CN x C(™*t1 ag the complementary of the set of points (g,a =
(a1,...,a;)) € CN x C"*1 guch that

e the coefficients of XTXL?_1 in G for 1 <r, s <n with r # s are not zero;
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e (g,a) lies in the non-empty open set & defined in Lemma 7;

e Span(ai,...,a;) has dimension ¢ and none of the entries of A, is 0 (for 1 < r <7).

Note that .7 is Zariski closed in CN x C*+1)¢, Finally, we denote by .%’ the union of sing(.%}), the
set C"1 x C"1 x .7 and the subset of points .7; such that their Y-coordinates are all 0.

Up to renumbering the sequence of couples (S, 0¢)1<¢<1 we assume that the set of indices ¢ such
that (7 \ ") NO(op) #0is {1,...,L'} (for L' < L).

Lemma 9. The sequence (Sy,0¢)1<e<1/ is an atlas for the couple (7,.7"). Besides, the truncated
Jacobian matriz of Sy obtained by considering the partial derivatives w.r.t the entries of A1,..., A;
and the coefficients of G has full rank over O(oy). Moreover, there exists a non-empty Zariski open
set 0" such that for all (g,a) € 0", (Sp,00)1<e<1s is an atlas of the couple (S;(g,a),sing(S;(g,a)).

Proof. Take (x,y,g,a) in % \ &'. Since (g,a) ¢ 7, (g,a) ¢ O and (z,y) ¢ sing(Si(g,a)). We
deduce that ¥; has rank i + 1 at (z,y,g9,a). Then, either dim(Span(ay,...,a;,y)) = ¢+ 1 or
y € Span(ay,...,a;) while Vo 4(G) ¢ Span(ay,...,a;) (because ¥; has rank ¢ + 1 at (z,y, 9, a)).
Since (Yo, --.,Yn) # 0 (because (z,y,9,a) ¢ .), we deduce that there exists 1 < r < ¢ such that
Span(ay,...,ar—1,0r41,-..,0;,y) = Span(aq,...,a;) and we deduce that

dim(Span(ai,...,ar—1,0r41,---,0;, V(9),y)) =i+ 1.

This implies that one of the (i + 1,7 + 1)-minor oy of ¥; does not vanish at (z,y, g,a). Elementary
linear algebra shows that .7 N O(oy) \ ' coincides with Z(Sy) over O(oy) \ #’. Thus, we have
established properties P; and Ps. The covering property P4 is immediate and follows also from the
above discussion.

It remains to prove property Ps, i.e. jac(S,;) has maximal rank at any point of . N O(ay) \ &'.
Assume first that oy is a (i + 1,7 + 1)-minor obtained from removing the partial derivatives of G
from ¥;. Without loss of generality, we may also assume that it is obtained by selecting the first
i + 1 columns of ;. Then, polynomials in Sy can be written as opA, ;11 + prgfori +1 <r <n
where p, ¢ has degree 0 in A,. That implies that one can extract a diagonal matrix with o, on the
diagonal from jac(Sy) which, of course, has maximal rank over O(oy).

When oy is obtained by removing one of the line A, (e.g. A;) a more involved but similar conclusion
can be made. Since we work over the complementary of .| there exists 0 < r < n such that the X,-
coordinate of x is not 0. Extracting the submatrix of jac(S,) corresponding to the partial derivatives
with respect to the coefficients of G' of the monomials X” and X,XP~! yields a diagonal matrix
with a power of the X,-coordinate of x multiplied by o, on the diagonal. These are non-zero over
O(o¢) \ 7.

The rank property of the truncated Jacobian matrix of S, is an immediate consequence of the
above discussion. Details on the proof of the specialization property of the atlas (Sy, oy) are left to
the reader; we mention that it is a direct consequence of specialization properties of minors with
polynomial entries and Lemma 7. O

4.3 A map and its regularity at the origin

Let mj, m), and H;; be the polynomials introduced in the paragraph on local equations for Ny
and oy, Sy be the (i + 1,7+ 1)-minor and (i 4+ 2,4 + 2)-minors of ¥ introduced in the paragraph on
local equations of S;(g,a). Consider the Zariski open set %; 5, C C" x C" x C¥ x C™ defined by

m]m;c#o’ (XO,,Xn)#O (Yb,aYn)#O’ 0-@7&0
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and the inequations defining the complement /. We define now the following map:
¢j7k7€ Pz e %jyk7£ — (H.]7k(z)7 SZ(Z))'

Observe that ¢;,i7€(0) C Ny N

Lemma 10. The map ¢; ¢ is reqular at 0.

Proof. Since j, k and ¢ are fixed in the sequel, we omit them as subscripts. Observe that jac(H, S)
has the following shape

_ | jacx(H) ©

| jacx(S) A
where the last columns correspond to the partial derivates with respect to the entries of Ay, ..., A4;
and G. By Lemma 8, (H;j, mjm ) satisfies properties P1,Py and P3. This implies that it has
maximal rank at any point in ¢ '(0) € %. By Lemma 9, A has maximal rank at any point

of $71(0). We deduce that J & has maximal rank at any point of ¢~1(0) and our conclusion
follows. O

In the sequel, for (g, a) € CNxC™ D7 we denote by q’)( the restricted map (z,y) = @; 1 ¢(2, 9, 9, ).
Applying Thom’s weak transversahty Theorem (see [33 Sec 4.2]) to ¢, ;, , shows that there exists

a non- empty Zariski open set 07 , C CN x C*+D? such that for all (g,a) € 0% o> the restricted

map q’)g k¢ 1s regular at 0. Lettlng ﬁ”’ be the intersection of all these non-empty Zariski open sets
Z leads to the following result.

Lemma 11. There exists a non-empty Zariski open set 0" < CN x CtVi such that for any
(4, k,£) and (g,a) € 0", the restricted map d)gﬂfg is reqular at 0.

4.4 Transversality of the intersection

Let € be the intersection of the non-empty Zariski open sets ¢” and ¢ defined 1n Lemma 9

and Lemma 11. Take (g,a) € 0 and Z,,) be the Zariski closure of U]keqﬁggkag (0). Recall
that we need to prove the transversality of Ny N Si(g,a) at any point outside 2" U #. Let
a1 = (Hj;, mjm;) be the atlas of (My,sing(Ny)) defined in Lemma 8 and as = (Sy, 0¢) be the
atlas of (S;(g,a),sing(S;(g,a))) defined in Lemma 9. We start by proving that the Zariski closure
of Ny NSi(g,a)\ (2 UZ) equals Z; .. The inclusion Z(, 5y C Ny NSi(g,a)\(Z U¥) is immediate
since all points in qbg?,fz) 1(O) C ZMH,k,Ske) N O(mjmyop) and Z(H;x, Sie) N O(mjmyop) =
Ny N Si(g,a) N O(m;myop) (property P2). We prove now the reverse inclusion. It is sufficient to
prove that for any irreducible component Z of the Zariski closure of Ny NS;(g,a)\ (Z U#), there

exists a triple (4, k, £) and a Zariski closed subset F' C Z such that Z\ F C d)ﬁ? 1(0). Since Z is an
irreducible component of the Zariski closure of Ny N.S;(g,a)\ (2 U#), there exists (z,y) € Z such
that (z,y) ¢ Z7U%. Let F = ZN(Z U%¥). Now, take (z,y) € Z\ F. By property P, applied to a1,
that implies that there exists j and k such that € Z(H, ;) N O(m;m;,). Besides, (yo,...,yn) # 0
since (x,y) ¢ F. This latter property implies that there exists ¢ such that oy(x,y) # 0. Finally, we
have established that (Z \ F)) N O(m;jm}.oy) is not empty for some (j, k, £). Property Py applied to

—1
a; and a imply that (z, y) lies in Z(H; 1) and Z(Sy). We deduce that (z,y) € qbggkag (0) which
-1
implies that Z \ F' C (]5] A Z (0) as requested.

12



Property (T1). Consider an irreducible component Z of the Zariski closure of Ny N S;(g,a) \
(Z'U%). The above discussion implies that Z is an irreducible component of Z, ,) and that there
exists j, k, ¢ such that Z N O(m;m}o,) is not empty.

Property (Ts). Recall that (g,a) € ¢’ and let Z be an irreducible component of Ny N S;(g, a).
We already proved that Z there exists (j, k, £) such that Z N O(m;mjo,) is not empty and meets

-1
¢§g,;a€) (0). By Lemma 11, the restricted map q’)ﬁ? is regular at 0. Then, the jacobian matrix

-1
associated to H; ;, Sy has maximal rank at any point of ZN q’)ﬁ? (0), which concludes the proof.

5 Non-generic function

We show in this section that the bounds in Theorem 1 hold under milder conditions than the
genericity of the coefficients of g. Consider a d-equidimensional algebraic set V' C C™ whose
projective closure is smooth, a set of generators f1,..., f, of I(V), and g € Q[X}, ..., X,,] of degree
D. Let a € C", g € Q[X1,...,X,] and Iit(g,a) be the ideal generated by fi,..., f, and the
(n —d + i+ 1)-minors of the matrix

— Jac(f)  ——
dg/oX, -+ 0g/0X,

JE— al

_ a’l’

Proposition 12. Let i € {0,...,d} and a € C™. Assume that the ideal Ii(g,a) is radical and
W (g, a) is empty or (i — 1) equidimensional. Then there exists a non-empty Zariski open subset
O C C™ such that the following holds. For any a = (a1, ...,a;) € O, the degree of W((g,a),V) is
bounded above by the bounds in Theorem 1.

Lemma 13. Let Q € C[T1,...,T;] be a nonzero multivariate polynomial, and (ty,...,t;) € C* be
such that Q(ty,...,ty) = 0. Then there exist univariate polynomials uq,...,u; € Cle] such that for
allie{1,...,0}, u;(0) =t; and Q(uy(e),...,ue(e)) € Cle] is not identically zero.

Proof. We prove the existence of uy,...,up of the form w;(¢e) = t; + s;e, where s; € C for all
i€ {l,...,¢}. Let t and s be shorthands for (¢1,...,t) and (s1,...,s¢). Using Taylor’s expansion,
we write Q(t + es) = edQ(t)(s) + ¢20?°Q(t)(s,s)/2 + ... + 8@ gde@Q)Q(t)(s,...,s)/ deg(Q)!.
Since @ # 0, at least one of its derivatives is not zero at t. Let k be the smallest integer such
that u — 0*Q(t)(u,...,u) is not the zero map. Finally, let s be such that 9*Q(t)(s,...,s) # 0.
Hence, we have Q(t + es) — ¢*F0FQ(t)(s, . ..,s)/k! = O(|]e**1]). Consequently, Q(t + es) cannot be
identically zero, as this would imply ¢ = O(]e*+1|). O

of Proposition 12. The proof is a classical deformation argument similar to the one used in [26].
Further we assume that W (g, a) is not empty (else the result is immediate). By Theorem 1, there
exists a polynomial Q) in N 4+ ni = ("J;LD ) + ni variables whose zero-set encode the pairs (g, a) for
which the bounds are not satisfied. By Lemma 13, there exists (g,a) € Q[e][X1, ..., X,] x Q[e]™
such that their evaluation at e = 0 is (g, a) and the evaluation of @ at (g,a) (seen as an element
in Q[e]V™) is nonzero. For € € C, we let (g-,a.) denote the evaluation of g and a at ¢ = e. For
i € {1,...,d}, the set of affine spaces in C" of codimension 7 — 1 can be identified with a dense open
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subset of the Grassmaniann of (n — i + 2)-dimensional vector spaces in C"*1. Since W ((g,a), V) is
(¢ — 1)-equidimensional, there exists a dense open subset & of this Grassmanian such that for any
E in 0, the intersection W ((g,a), V)N E is transverse, finite and its cardinality equals the degree
of W((g,a;),V). Let x € C™ be a point in this intersection. Let vy,...,v, € C[X1,...,Xy,¢| be
polynomials satisfying the following assumptions: v1,...,v, is a regular sequence, for every € € C
their evaluations at ¢ = € vanish on W ((ge, a:), V)N E, and the jacobian matrix jac(vi (X7, ..., X,
0),...,vn(X1,...,X,,0)) is invertible at x (since Iit(g,a) is radical). In order to obtain such
polynomials, we consider n generic linear combinations of the equations defining W ((g,a), V)N E.
Then the holomorphic implicit mapping theorem [24, Thm. 8.6] states that for xg € W((g,a), V)NE
there exist open neighborhoods (for the Euclidean topology) 0 € U; C C, xg € Us such that there
is a holomorphic map ¢ — {x € Uy | v1(x,&) = -+ = v,(x,&) = 0} on Uj. In particular this map is
continuous, which implies that for ¢ € C with sufficiently small complex modulus, the cardinality
of W((ge,ae), V)N E is bounded below by the degree of W ((g,a), V). Since this is true for any F
in the Zariski dense open subset & of affine subsets, the cardinality of W ((g.,a:),V) N E equals
its degree. Finally, as @ is not identically zero on the coefficients of (g, a), for €9 with sufficiently
small modulus, the evaluation of ) at the coefficients of (ge,,a,) is nonzero. Consequently, the
bounds in Theorem 1 hold for W ((gz,,as,), V) and hence they also hold for W ((g,a), V). O

6 Algorithms

Terminology and computational model. In this section, we consider bounded error probabilis-
tic algorithms. These algorithms are probabilistic random-access stored-program machines whose
probability of success is bounded from above by an a priori bound. It is the same computational
model as in [17]. Complexity bounds count the number of arithmetic operations (+, —, x, /) in Q.
A lifting fiber is a data structure giving an exact representation of an equidimensional algebraic
set. We recall below its definition and we refer to [17, Sec. 3.4] for more details.

Definition 14. [17, Def. 4] Let V. C C™ be a d-equidimensional variety defined over Q (i.e.
Zc(Ig(V)) =V ). A lifting fiber for V is a tuple £ = (G, M, z,u,Q,V):

o A lifting system H = (hy,...,hy—q) € Q[X1,...,X,], such that hy,..., hy_q is a reduced
reqular sequence and V C Z(H).

o A n xn invertible matriz M with entries in Q such that the coordinates Y = M~1X are in
Noether position w.r.t. V;

A rational lifting point z = (z1,...,24) € Q%;

A primitive element u : C" — C, which is a linear form with rational coefficients having
distinct values at all points of the finite set V@ =V N {Y] —2 = =Yg — 29 =0} C C*;

A polynomial Q € Q[T of minimal degree vanishing at all points of u(V (®);

e univariate polynomials v = (vgi1,...,v,) € Q[T]""¢ of degree less than deg(Q) such that

Yi_zlz...: d—ZdZO
Yir1 —v441(T) ==Y, —v,(T) =0,Q(T) =0

is a rational parametrization of V2 by the roots of Q.
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The sequence (M, u,Q,v) is called a geometric resolution of V.

Computing a lifting fiber can be achieved in a probabilistic way with the Kronecker solver [11]. We
assume that we know a probabilistic algorithm POLARVAR which takes as input d € N, a lifting
fiber of a d-equidimensional variety V' C C" and a sequence a = (ay,...,aq) € Q¥™; it returns a
geometric resolution of the 0-dimensional polar variety W (a;, V') or “fail”. We use also the routine
CHANGEPRIMITIVEELEMENT [17, Algo. 6].

In [1], the authors propose an algorithm which takes as input a reduced regular sequence fi, ..., fn_q
defining a d-equidimensional algebraic set V' C C™, a matrix F whose entries are multivariate
polynomials, and a sequence a = (aj...,aq) of vectors in Q™. It returns lifting fibers for the
associated degeneracy loci. If F turns out to be the jacobian matrix of the regular sequence defining
the variety, then these degeneracy loci are the classical polar varieties W (a, V), see [1, Section 5.1].
This algorithm works in two steps: it computes first a lifting fiber for V; then, from this lifting
fiber and from the matrix a, it computes lifting fibers for the degeneracy loci. In the case of polar
varieties, the complexity of the second step is bounded by L(anaX)O(l)(S?, where 4 is the maximum

of the degrees of the polar varieties W(a;, V') (where a; = (a1,...,a;)), Dmnax is the maximum of
the degrees of fi,..., fn_q, and L is the size of an essentially division-free straight line program for
evaluating f1,..., fn—d-

Let a = (a1,...,aq) be a sequence of d vectors in Q™. We construct another sequence a’ =

(ent1,a},...,ay) of vectors in Q™! defined by the (d + 1) x (n + 1) coefficient matrix

0 |1
A “
E 0

Lemma 15. Let II,, : C*"T! — C” be the projection on the n first coordinates, and fi,... fp €
Q[Xy,...,X,] be polynomials defining a reduced smooth d-equidimensional variety and g € Q[X1, ..., X,]
be a polynomial. Then for any a € Q™™ and for i € {0,...,d}, the modified polar variety

W((g:a), Z(f1,- -, fp)) equals Ty (W(aiy1, Z(f1s-- -, fps g = Xnt1))):

Proof. Set V. =Z(f1,...,fp) CC*and V' = Z(f1,..., fp, g — Xnt1) C C**L. Direct computations
show that if V' is smooth, then so is V/. The modified polar variety W ((g,a;), V) is defined by the
set of points in V' at which

— Jjac(f) ——
- Vg —
rank | — ai — | <n—d+1.

Direct computations show that the corresponding matrix for W(aj, V') has the same rank at any
point (x,g(z)) where x € V. O
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Algorithm 1: CrITPOINTS

Input
e A lifting fiber (H, M, z,u, @, Vv) for a smooth d-equidimensional variety V' C C"
e g€ Q[Xy,...,X,]and a = (a1, ...,aq) € Q¥¥"
e A primitive element ucgt for W(ay, V)

M+ M0 ;

0 1
L'~ HU{g— Xpp1}, M (21, 20, 9(21, - -5 20)),
u, @, (v1,...,Up, g0 (v1(T),...,0,(T)) mod Q(T)));

0 |1
a1
a’ + sequence of rows of . ) . :
. . . O
aq

»2) POLARVAR(d, %', d’) or return “fail”;

(H',M® 2 ugie, @, v') + CHANGEPRIMITIVEELEMENT (.Z®) | tcie 0 M?));
v (M), )T

return (Id,,, Uerit © (M(z))q’ Q' (V1. v)):
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Theorem 16. Let ¥ = (H,M,z,u,Q,v) be a lifting fiber for a d-equidimensional algebraic set
V, g € Q[X1,...,X,] be a polynomial of degree D > 2 and a € C™. Assume that V,g and
a satisfy the same assumptions as in Proposition 12. Let Dpyax be the maximum of the degrees
of hi,...,hp—gq,9, (where H = (hy,..., hy_q)) and u be a primitive element for W(g, V). Assume
that the evaluation map x — (hi(z), ..., hn_q(x), g(x)) is represented by an essentially division-free
straight-line program of size L. Algorithm 1 with input (£,a,u) computes a geometric resolution
of the set W (g, V') or it returns “fail”. Using the algorithm in [1] for POLARVAR, it requires at
most (nDimax)°VO(LA2) operations in Q, where A = Z?:o §i1(V)(D—1)y%

Proof. We prove first the correctness of the algorithm. Note that ¢’ computed during Algorithm
1 is a lifting fiber for V' = {(z,g(x)) | € V'}. Assuming that POLARVAR returns a lifting fiber for
W (al, V'), Lemma 15 shows that the output of POLARVAR is a lifting fiber of the pairs (x, g(x)) for
x € W(g,V). The last steps compute a geometric resolution of the projection on the n first coor-
dinates, which is W (g, V). We prove now the complexity statement. The first step of Algorithm 1
does not cost any arithmetic operations. The second step requires O(L deg(V')) operations in Q
for the modular composition using quasi-linear algorithms for multiplication and reduction. The
evaluation of g costs L operations. The cost of the computation of a’ is negligible. By [1, Thm. 18],
the call to POLARVAR requires L(pnd)o(l)élz, where ¢ is the maximum of the degrees of the polar
varieties of V/. By Lemma 15, the projection of W (a}, V') on the n first coordinates is W (g, V).
By Theorem 1, Proposition 12 and since deg(g) > 2, we have deg(W(g,V)) < A. Changing the
primitive element costs 6(nA2) by [17, Lemma 6. Finally, the linear algebra computations in
the last step cost O(n?A) operations in Q. Summing all these complexities proves the complexity
statement. U
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