
HAL Id: hal-01312751
https://inria.hal.science/hal-01312751

Submitted on 11 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending Feature Models with Relative Cardinalities
Gustavo Sousa, Walter Rudametkin, Laurence Duchien

To cite this version:
Gustavo Sousa, Walter Rudametkin, Laurence Duchien. Extending Feature Models with Relative
Cardinalities. 20th International Systems and Software Product Line Conference, Sep 2016, Beijing,
China. �10.1145/2934466.2934475�. �hal-01312751�

https://inria.hal.science/hal-01312751
https://hal.archives-ouvertes.fr

Extending Feature Models with Relative Cardinalities

Gustavo Sousa
University of Lille, France

CRIStAL UMR 9189
École Centrale de Lille

Inria
gustavo.sousa@inria.fr

Walter Rudametkin
University of Lille, France

CRIStAL UMR 9189
École Centrale de Lille

Inria
walter.rudametkin@inria.fr

Laurence Duchien
University of Lille, France

CRIStAL UMR 9189
École Centrale de Lille

Inria
laurence.duchien@inria.fr

ABSTRACT
Feature modeling is widely used to capture and manage common-
alities and variabilities in software product lines. Cardinality-based
feature models are used when variability applies not only to the
selection or exclusion of features but also to the number of times
a feature can be included in a product. Feature cardinalities are
usually considered to apply in either a local or global scope. How-
ever, we have identified that these interpretations are insufficient
to capture the variability of cloud environments. In this paper, we
redefine cardinality-based feature models to allow multiple relative
cardinalities between features and we discuss the effects of rela-
tive cardinalities on feature modeling semantics, consistency and
cross-tree constraints. To evaluate our approach we conducted an
analysis of relative cardinalities in four cloud computing providers.
In addition, we developed tools for reasoning on feature models
with relative cardinalities and performed experiments to verify the
performance and scalability of the approach. The results from our
study indicate that extending feature models with relative cardinal-
ities is feasible and improves variability modeling, particularly in
the case of cloud environments.

CCS Concepts
•Software and its engineering→ Software product lines;

Keywords
Feature Model, Cardinality, Constraints

1. INTRODUCTION
Feature modeling is a widely used approach to capture common-

alities and variability across software systems that are part of a
product line or system family [16]. A feature model is usually de-
picted as a tree diagram whose nodes represent features that can be
selected to build a software product. The tree hierarchy describes
a composition relationship between features, while additional con-
straints refine these relationships.

Several extensions to feature modeling have been proposed since
its inception, usually motivated from pragmatic needs in product

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPLC ’16 September 19–23, 2016, Beijing, China
c© 2016 ACM. ISBN . . . $15.00

DOI:

line engineering. Among these, feature cardinalities were intro-
duced to deal with scenarios where a feature can be selected mul-
tiple times for a given product, each time with a possibly different
set of subfeatures [4].

The semantics of cardinalities in feature models and its effects
on cross-tree constraints have been thoroughly studied and formal-
ized in different ways [6, 19, 21, 25]. Feature cardinalities are in-
terpreted to apply either locally (in relation to its immediate par-
ent feature) or globally (concerning the whole product configura-
tion). However, through our investigation in managing variability
in cloud computing platforms, we found that feature cardinalities
may also be related to an ascendant feature that is not the direct
parent feature.

To deal with this limitation, we introduce the concept of relative
cardinality, which is a generalization of the existing interpretations
of feature cardinalities. In this paper we redefine cardinality-based
feature models to take into account relative cardinalities. We then
analyze the effects on feature model semantics, including cross-
tree constraints and cardinality consistency. Finally, we evaluate
the use of this extended feature model definition for modeling vari-
ability in cloud computing platforms as well as the scalability of
automatically generating and validating configurations.

In Section 2 we identify the limitations we found in feature cardi-
nalities while designing feature models for cloud computing plat-
forms. Section 3 explains the concept of relative cardinality and
discusses how it affects cardinality consistency and cross-tree con-
straints. Section 4 describes how we implemented relative cardi-
nalities into a tool for automatic analysis of feature models and
Section 5 evaluates the approach. Finally, we discuss related work
in Section 6 and the conclusions in Section 7.

2. MOTIVATION
In the cloud computing paradigm, computing resources are usu-

ally delivered to customers in the form of infrastructure, platform
or software services. Each cloud computing provider offers a differ-
ent set of services, at different abstraction levels, such as processing
power, network communication, virtual machines, containers, soft-
ware packages, application servers, databases, development and
management tools, etc. To choose a provider, configure a suitable
cloud environment, and deploy a cloud application, stakeholders
need to be aware of the services available and of all the constraints
between them.

Commonalities and variabilities in the providers’ services can
be captured as feature models, making the selection of a provider
suitable for automated processing using a software product line ap-
proach. This approach has been employed in recent work to support
the automatic selection and configuration of cloud providers [22, 8,
10]. However, in previous work, variability is only considered in

OpenShift

Application

Gear
Size

small

small.highcpu medium

0..1

1..1

0..16

Cartridge

large

Web Addon

1..1

Tomcat
7

MongoDB
2.4

MySQL
5.5

Python
2.7

1..*

Node.js
0.10

Scalable

0..1

Type

1..1

1..1

Gear

0..16

PHP
5.3

Postgre
SQL 8.4

1..1

Plan

Free

Bronze

Silver

1..1

1..1

Figure 1: Excerpt from the OpenShift cloud feature model

the context of a resource (e.g. virtual machine, storage, network)
or for the deployment of a single application.

When variability is only considered in a specific context, con-
straints at the provider level are ignored, which leads to invalid
configurations. However, while considering variability in a cloud
provider’s context we identified that existing feature modeling con-
structs were insufficient to capture all the variability. In the fol-
lowing section we present an example of these limitations and the
challenges to overcome them.

2.1 Motivating example
Figure 1 provides an extract of a feature model we designed to

capture variability in the OpenShift PaaS provider. In OpenShift,
an Application is composed of a set of Cartridges, which are
software features such as application servers, databases, caching
services, management tools, etc. Cartridges are run by process-
ing nodes called Gears. For each Cartridge the user can choose
the number of Gears, as well as the Gear Size, which defines the
memory and processing capabilities.

OpenShift imposes no limit on the number of Applications or
Cartridges allowed. However, the number of Gears is limited by
the user’s plan. Considering that the limit for a plan is 16 Gears,
we can have any combination ranging from 1 Application with
16 Gears, to 16 Applications with 1 Gear each. To enable users
to describe both of these valid configurations, the feature model
was designed in a way that the feature cardinalities of Application
and Gear allow for up to 16 instances. Though this modeling al-
lows for expressing all possible valid configurations, it does not
prevent users from describing invalid ones. For instance, we could
define an application with 16 Applications, each one with 16
Gears, thus exceeding the provider’s limits.

A similar problem can be found when we consider the case of
Web cartridges. An Application can have multiple cartridges, but
the provider requires that every Application should have exactly
one of type Web. Nevertheless, the feature model does not provide
any information about this restriction, allowing for Applications
with any number of Web cartridges.

This problem occurs because the features Gear and Web are di-
rectly associated to the Cartridge feature, but the number of al-
lowed instances are respectively associated to the whole product
configuration and to Application instances. This means that the

number of allowed instances of a given feature may not only be
related to its direct parent, but also to ascendant features in the hi-
erarchy or to the whole product configuration.

2.2 Challenges
Providing a way to specify cardinalities in multiple levels would

make it possible to capture the variability found in cloud comput-
ing configurations and to increase the expressive power of feature
models. However, introducing new constructs to feature modeling
may affect its semantics.

In this paper we investigate how feature models can be extended
to deal with multiple interpretations of the cardinality scope. We
then analyze how this extension affects the semantics and the analy-
sis of cardinality-based feature models. More specifically, we seek
to deal with the following challenges:

• Capture relative cardinalities in feature models. How to ex-
tend cardinality-based feature models to consider features for
which cardinality interpretation is neither global nor local?
That is, to take into account cardinalities that can be associ-
ated to features at different levels of hierarchy.

• Ensure the consistency between relative cardinalities. What
are the criteria for relative cardinalities to be consistent and
how do we ensure consistency in such a feature model?

• Update additional constraints to handle multiple relative car-
dinalities. How does the introduction of relative cardinali-
ties affect additional constraints and how can additional con-
straints be evolved to take relative cardinalities into account?

3. RELATIVE FEATURE CARDINALITIES
Feature cardinalities define the number of instances of a given

feature, and their semantics have been previously studied and for-
malized [6, 19, 25]. Cardinalities are applied either globally or
locally. In the first case, all instances of a feature (throughout an en-
tire configuration) are counted, while in the second case, the num-
ber of instances is counted for each instance of the parent feature.

Figure 2 shows a feature model with three example configura-
tions that use different interpretations for cardinality 1..2 of feature
E. (a) shows the feature model. In (b) cardinalities are interpreted
globally, thus no more instances of E can be added to the configu-
ration (i.e., the limit is 2 in the configuration). In (c) cardinalities
are interpreted locally, meaning each instance of D can have 1 or 2
children instances of E.

However, as we described in the OpenShift example in Sec-
tion 2.1, there are cases where the cardinality context is neither
global nor local, but relative to some other feature. This can be seen
in Figure 2 (d), where the cardinality 1..2 of E is, for this example,
interpreted as relative to feature B. This means that each instance
of B can have 1 or 2 instances of E in its subtree, regardless of the
number of instances of D.

3.1 Formalization
We introduce and formalize the concept of relative cardinality.

Definition 1. (Relative cardinality) The relative cardinality be-
tween two features x and y, such that x is descendant of y in the
feature diagram, is the interval that defines the minimum and max-
imum number of x instances for each y instance.

The concept of relative cardinality can be seen as a generaliza-
tion of the possible interpretations for cardinalities in feature mod-
els. In this sense, the cardinality of a feature in relation to the fea-
ture model’s root is equivalent to its global cardinality. Similarly,

B

A

DC

1..1 1..2

1..2

E

1..2

:B

:A

:D:C

:E :E

:D

:E

:B

:C

:B

:A

:D:C

:E

:D

:E

:B

:C :D

:E :E

(a) feature model

:B

:A

:D:C

:E

:B

:D

:E

(b) global

(c) local (d) relative to feature B

:D:D

:E

Figure 2: Different interpretations for cardinalities.

the cardinality of a feature in relation to its parent corresponds to
its local cardinality.

Most cardinality-based feature modeling approaches consider that
cardinalities apply locally [7, 6, 9, 18, 19, 28]. In this case, the fea-
ture diagram hierarchy defines an implicit relative cardinality be-
tween any feature and its ancestors. As an example, in Figure 2 (a),
if we consider cardinalities apply locally we can infer that the im-
plicit relative cardinality between E and B is 1..4. Each instance
of B can have from 1 to 2 instances of D and each instance of D 1
or 2 instances of E. Thus there can be 1 to 4 Es for each B.

Although feature cardinalities can be interpreted locally in many
cases, there are scenarios where a local interpretation of cardinali-
ties is insufficient. In these cases there is a mismatch between the
implicit and the actual relative cardinality. To deal with this prob-
lem, we have extended the existing cardinality-based feature model
constructs to consider relative cardinalities as part of their defini-
tion. Based on the work done by Michel et al. [19], we redefine a
feature model as follows:

Definition 2. (Feature model) A feature model is a 7-tupleM =
(F , G, r, E, ω, λ, φ) such that:

- F is a non-empty set of features;

- r ∈ F is the root feature;

- E : F \ {r} → F is a function that represents the parent-of
relation between features such that its transitive closure on
F , denoted byE+, is irreflexive and asymmetric. These con-
ditions guarantee the tree structure of the feature diagram;

- C = {(x, y) ∈ N2 : x ≤ y} is the set of cardinality intervals;

- ω : E+ → C is a function that represents the relative cardi-
nality between two features that are part of the ancestors-of
relation, denoted by E+, the transitive closure of E on F ;

- G ⊂ F is a possibly empty subset of feature groups;

- λ : G → C is a function that represents the group cardinali-
ties of feature groups;

C

A

D

0..2

1..2

E

<C> 1..3

1..2

(a)

B

F

C

A

D

0..2

1..2

E

<C> 0..5

1..2

(b)

B

F

C

A

D

0..2

1..2

E

<C> 0..3

1..2

(c)

B

F

C

A

D

1..2

1..2

E

<C> 1..3

1..2

(d)

B

F

0..1 0..1

0..1 0..1

<A> 1..10

2..8

2..82..8

<A> 2..6

2..8

Figure 3: Relative cardinalities consistency

- φ is a set of cross-tree constraints (Section 3.3).

The proposed definition updates the cardinality function ω to
consider not only one but two features that are related in the feature
model hierarchy. By doing so, it gives first-class status to rela-
tive cardinalities, which were only implicit in feature models with
local cardinalities. This concept is more general and allows for ex-
pressing cardinalities at different levels, including global and local
cardinalities.

3.2 Cardinalities consistency
By their nature, relative cardinalities allow defining multiple car-

dinalities for a feature, where each cardinality is relative to a differ-
ent ancestor feature. In order to be valid, these cardinalities need to
be consistent among themselves. Cardinality consistency is linked
to the notion of range consistency [20]. A cardinality is considered
range consistent if each value in its range is used in at least one
valid product configuration.

In Figure 3 we show some feature models that were defined with
inconsistencies in relative cardinalities. In the given examples, rel-
ative cardinalities are described above the feature node using the
notation <X> m..n, where m..n is its cardinality relative to fea-
ture X . When no specifier is given, the cardinality is considered to
apply locally, in relation to the feature’s direct parent.

In the feature model in Figure 3 (a), feature E has, in addition
to its local cardinality 1..2, a cardinality of 1..3 relative to its an-
cestor C. However, this cardinality is inconsistent with the local
cardinality 0..2 of feature D. If an instance of C has no instances
of D, it is not possible to have instances of E, thus the cardinality
1..3 betweenE andC does not hold. In this case there would be no
valid products with 0 instances of D, even though the cardinality
of D is 0..2.

In Figure 3 (b), the cardinality ofE relative to C allows for up to
5 instances. However, each instance of C allows for a maximum of
2 instances ofD, and for each of them a maximum of 2 instances of

E, allowing for a total of 4 instances of E for each instance of C.
Thus, the local cardinalities of D and E are not consistent with the
0..5 relative cardinality between E and C. Sample fixes for these
examples are shown in (c) and (d) where either the relative cardi-
nality between E and C, or local cardinality of D, are updated.

Figure 3 (c) shows another example of inconsistency where the
relative cardinality between F and A is 1..10 but from the local
cardinalities of C and F we can infer that we should have at least
2 instances of F in any product. Also, in (d) we have an example
where the relative cardinality between F and A has a maximum of
6 instances, which conflicts with the 2..8 local cardinality of feature
F , since no valid products can exist with 7 or 8 instances of F.

When cardinalities are inconsistent the number of allowed in-
stances is ambiguous and subject to diverse interpretations. In ad-
dition, they do not represent the actual number of allowed feature
instances. Based on the notion of range consistency and analysis
of the semantic relation between multiple relative cardinalities, we
define the criteria for cardinality consistency as below.

Definition 3. (Cardinality consistency) Given functions min
andmax that return the minimum and maximum values for a cardi-
nality range, a feature modelM = (F , G, r, E, ω, λ, φ) is consis-
tent concerning its relative cardinalities if ∀x, y, z ∈ F | (z, y) ∈
E+ ∧ (y, x) ∈ E+ the following conditions hold:

min(ω(z, x)) ≥ min(ω(z, y)) · min(ω(y, x)) (1)

If each x instance has at least min(ω(y, x)) instances of y and
each y instance have at least min(ω(z, y)) instances of z, then
the minimum number of z instances for each x instance is at least
min(ω(z, y)) · min(ω(y, x)).

max(ω(z, x)) ≤ max(ω(z, y)) · max(ω(y, x)) (2)

If each x instance has at most max(ω(y, x)) instances of y and
each y has at most max(ω(z, y)) instances of z, then each x in-
stance can have at most max(ω(z, y)) · max(ω(y, x)) instances
of z.

min(ω(z, x)) ≤ max(ω(z, y)) · min(ω(y, x)) (3)

The feature model should enable specifying at least one valid prod-
uct in which the number of y instances for an x instance is the
minimum min(ω(y, x)). In this case, the maximum number of
instances of z for each x is min(y, x) · max(z, y). Thus, if
min(ω(z, x)) ≥ max(ω(z, y)) · min(ω(y, x)) there would be
no valid products using the lower bound of the cardinality ω(y, x)
and the cardinalities would not be consistent.

max(ω(z, x)) ≥ max(ω(z, y)) · min(ω(y, x)) (4)

Similarly, in at least one product, the number of y instances for each
x should be max(ω(y, x)). In this case, the minimum number of
instances of z for each x instance ismax(ω(y, x)) ·min(ω(z, y)).
Thus, if max(ω(z, x)) ≤ max(ω(y, x)) · min(ω(z, y)) there
would be no product with the maximum cardinalitymax(ω(y, x)).

min(ω(z, x)) ≤
min(ω(z, y)) + max(ω(z, y)) · (max(ω(y, x))− 1)

(5)

At least one instance of y should have the minimum number of z
instancesmin(ω(z, y)). In this case, if one y instance has this min-
imum number of z instances, the maximum number of z instances

for the x ascendant instance would be reached if all other y in-
stances under the same x had the maximum number of z instances.
That said, the maximum number of z instances for this x instance
would be min(ω(z, y)) + max(ω(z, y)) · (max(ω(y, x))− 1).
Therefore, if the minimum relative cardinality between z and xwas
greater than this value, there would be no cases where the lower
bound of the cardinality ω(z, y) would be valid.

max(ω(z, y)) ≥
max(ω(z, y)) + min(ω(z, y)) · (min(ω(y, x))− 1)

(6)

At least one instance of y should have the maximum number of
z instances max(ω(z, y)). Also, if at least one y has this max-
imum number, then the ascendant x instance would have at least
max(ω(z, y)) + (min(ω(y, x))−1). Therefore, if the maximum
bounds of ω(z, x) is less than this value there would be no valid
configuration that uses the maximum cardinality of max(ω(z, y)).

This definition establishes that any three features that are linked
in an ancestors-descendant relationship should meet the six identi-
fied constraints. Together, these constraints guarantee that for any
value in the concerning cardinality ranges, at least one valid product
can be defined in which this value is employed. Since these condi-
tions should apply for all possible relative cardinality relationships,
it guarantees that the feature model is consistent regarding relative
cardinalities.

3.3 Multiple cardinalities and constraints
In cardinality-based feature models, additional cross-tree con-

straints such as requires and excludes need to be adapted to con-
sider instances of features [19]. Quinton et al. [21] extended cross-
tree constraints with cardinalities allowing for requires constraints
over the global or local number of instances of a feature. In [17],
authors propose cross-tree constraints that can be applied to indi-
vidual instances of features. These previous developments allow
for defining constraints that can be interpreted in global or local
scope, but do not consider relative cardinalities neither how con-
straints involving multiple scopes can be evaluated.

When we consider multiple relatives cardinalities, additional con-
straints need to be defined not only over feature cardinalities but
also over their relative ones. To enable the definition of additional
constraints over relative cardinalities, we update existing constraint
notations and define their semantics. We first establish the notion
of a constraining expression, and based on it, we define the concept
of relative cardinality constraints.

Definition 4. (Constraining expression) A constraining expres-
sion is described by a tuple ε = (r, c) where

- r ∈ C is a cardinality range;

- c ∈ E+ is a pair of features part of the child-ancestor relation
in the associated feature model.

We use the notation [m..n] (x, y) to describe a constraining expres-
sion where r = (m,n) and c = (x, y). Such expressions represent
a predicate over the number of instances of feature x that are de-
scendant of an instance of y. Therefore constraining expressions
represent a condition over a relative cardinality in a feature model.

Definition 5. (Relative cardinality constraint) A constraint is
defined as an implication <C> ε1 δ ... δ εn → εcons where:

- C ∈ F is a feature that defines the context where the con-
straint will be evaluated;

C

B

ED

0..1 1..5

1..2

F

0..3

G

I

H

0..2

0..2

0..1

A

0..1

C1: <C> [1..1] (D, C) → [2..3] (F, E)

C2: <A> [1..2] (I, A) → [1..2] (G, A)

C3: <C> [1..1] (D, C) ⋀ [1..1] (H, G) → [2..3] (F, E)

Figure 4: Additional constraints and relative cardinalities

- ε1...εn and εcons are constraining expressions;

- δ ∈ {∧,∨} is a logical operation.

A relative cardinality constraint defines an implication that if the
composed left hand constraining expressions ε1 δ ... δ εn hold, the
right hand εcons expression should also hold.

As shown in the above definition, constraining expressions are
the base elements for describing a constraint. However, though they
express a condition over a relative cardinality, they do not express
in which context it should be evaluated. For example, considering
the feature model in Figure 4, we can define a constraining expres-
sion such as [5..10] (F,C). Does this expression evaluate to true if
one instance of C has 5 to 10 instances of F or if all instances of
C have 5 to 10 instances of F ?

The role of the context feature in the constraint is to remove this
ambiguity and specify in which context expressions should be eval-
uated. Thus, in constraint C1 (Figure 4), the <C> context indicates
that its constraining expressions should be evaluated individually
for each instance of C. For instance, the C1 constraint expresses
that C instances that have exactly oneD instance as a child should
have 2 or 3 instances of F for each E instance. Actually, this con-
straint redefines the local cardinality of F (relative to its parent E)
for some set of C instances, those that have exactly one D instance
as a child.

Likewise, in C2 the <A> context indicates that the constraint
has to be evaluated globally, for the singleton instance of the root
feature A. In this case, C2 expresses a global implication that if at
least one I instance is part of the product configuration then at least
one G instance should also be included.

In C1 and C2, all constraining expressions deal with features
that are under the subtree of the context features <C> and <A> re-
spectively. The semantics of constraint evaluation are simpler as it
suffices to consider each instance of C or A individually (and its
subtree) and verify if the constraining expressions hold. However,
how can we evaluate a constraint such as C3, which contains com-
bined expressions at different levels of hierarchy, including outside
the context feature?

In this case, expressions whose features are not in the subtree
of the context feature are evaluated in the context of the lowest
common feature. This is the lowest common ancestor, in the feature
diagram tree, of all features involved in the constraint; which in the
case of C3 is feature B.

With the described semantics, C3 expresses that for each c in-
stance of C and b instance of B such that b is an ancestor of c in a

configuration tree, if c has exactly one child instance of D, and if
all instances of G that are children of b have exactly one instance
ofH , then all instances of F that are children of this same c should
have 2 or 3 instances of E.

The proposed constructs enable describing both simple and com-
plex constraints involving relative cardinalities. The introduction of
context features along with the semantics described above clarify
how constraints can be evaluated even when they involve cardinal-
ities from different levels in the feature diagram tree.

3.4 Contribution summary
In our approach for feature modeling, we tackle the challenges

identified in Section 2.2 in the following way:

• To enable multiple interpretations of cardinalities, we ex-
tended the definition of cardinality-based feature models, re-
placing feature cardinalities by relative cardinalities.

• To ensure consistency between relative cardinalities, we iden-
tified a set of constraint conditions to verify range consis-
tency in the presence of multiple relative cardinalities.

• To consider relative cardinalities in cross-tree constraints, we
introduced constraining expressions over relative cardinal-
ities and precise semantics for identifying the constraint’s
context of evaluation.

4. MODELING AND AUTOMATION
This section discusses the tooling support we developed to en-

able modeling feature models with relative cardinalities, including
language support, inference and consistency analysis, and configu-
ration conformance.

4.1 Modeling
To enable the description of feature models with relative car-

dinalities, we designed a domain specific language based on the
definitions given in Section 3.1. Figure 5 (a) depicts the abstract
syntax of the designed language as a metamodel. The classes in
gray represent the concepts commonly found in cardinality-based
feature models; those in green represent the concepts introduced by
our approach. Our language includes the RelativeCardinality
concept, which is composed by a cardinality range and is associated
to two features (from and to). In addition, elements Constraint
and ConstrainingExpression allow the definition of relative
cardinality constraints as described in Section 3.3.

We implemented the feature modeling language on the XTEXT
framework [3]. We defined the abstract syntax using the EMF
ECORE metamodel [27] and the concrete syntax as a XTEXT gram-
mar. Figures 5 (a) and (b) show the feature model and configuration
editors with the motivating feature model described in Section 2.1.
The editor plugin, together with the metamodel and grammar are
available in the accompanying site1.

A feature model is described as a tree structure where braces
({}) define the decomposition hierarchy and brackets ([]) feature
groups. Feature cardinalities are defined between brackets ([]) and
feature groups’ cardinalities between less and greater than symbols
(<>). Additional relative cardinalities are described using the <X>
[m..n] notation where m..n is the cardinality relative to feature
X . In line 8 of Figure 5 (b) we can see that relative cardinality
between Gear and Application is 1..16. Once a feature model is
defined in the feature model DSL, we can check for the consistency
of cardinalities and generate configurations for it.
1http://researchers.lille.inria.fr/~sousa/relativecard/

http://researchers.lille.inria.fr/~sousa/relativecard/

Feature

Model

Cardinality

- min : int

- max: int

AbstractFeature

- name : String

RelativeCardinality

Feature
Feature

Group

variants

2..**

subFeatures

cardinalities

1..*

root

Constraint

Constraining

Expression

Expression

And

Expression

Or

Expression

Composed

Expression

condition consequence

11

subExpressions

2..*

context1

from to

1 1

1

1

*
Configuration

Instance

1

*

1

children

(a) metamodel (b) feature model editor (c) configuration editor

Figure 5: Metamodel and editor for feature models with relative cardinalities.

Configurations are also defined in a hierarchy that matches that
of the feature model. The configuration editor allows for describ-
ing full or partial configurations. In a partial configuration, not
all required feature instances need to be included and intermedi-
ary features may be omitted. To avoid repeating identical instances
users can also add the number of desired instances of a feature.
In Figure 5 (c), lines 3-10 include two Application instances
with the same decomposition of features. Line 14 states that the
third Application should have a Cartridge with 10 instances
of Gear. Overall, this example describes a configuration for the
OpenShift provider to deploy two Python application services in
Europe as well as a Java application service and a Mongo database
in the United States. From a feature model configuration we can
check if it conforms to the feature model and if it is partial to gen-
erate a complete configuration.

4.2 Inference and consistency checking
As we can see from the abstract syntax, the language allows the

specification of multiple relative cardinalities. However, in most
cases, relative cardinalities match exactly with the implicit rela-
tive cardinality derived from local cardinalities. In these cases, the
product line designer may not want to describe all the relative car-
dinalities but rather those that are different from the implicit ones,
letting the system infer the remaining cardinalities.

For example, in Figure 5 (b), we can see that relative cardinalities
were only defined for features Gear and Web. In the other cases,
the expected behavior is the same of local cardinalities. Also, in
the case of Gear feature, the cardinality relative to its direct parent
Cartridge is not defined and should be inferred from the other
cardinalities.

To support this requirement the designed language requires to
specify only one cardinality for each feature (local or relative) and
can automatically infer the remaining relative cardinalities. The in-
ference is achieved by modeling the cardinalities as a constraint sat-
isfaction problem (CSP), according to the consistency constraints
described in Section 3.2, and finding a solution that maximizes car-
dinality ranges.

Figure 6 (a) shows an example feature model where cardinalities
in bold face were inferred from declared cardinalities. Because the
inference process relies on the cardinality consistency constraints,
the inferred cardinalities will always be consistent. In addition, if
described cardinalities are not consistent the generated constraint
problem will not have a solution. Therefore, the cardinality consis-
tency check and inference are executed as a sole process.

4.3 Automated analysis of feature models
To automatically verify if a configuration conforms to a feature

model, we also translate it into a constraint satisfaction problem
and use the Choco CSP Solver [15]. We rely on the translation
method described in [18], extending it to deal with relative car-
dinalities. The referenced method considers cardinalities to apply
locally, therefore enabling configurations that consider not only the
number of feature instances, but also how they are hierarchically
organized. For each possible feature instance, a boolean variable
is created to represent if the instance is part of a configuration and
an integer variable is created to represent the number of instances
of the feature type in relation to its parent. For the feature model
in Figure 6, for each instance of feature B, we create a boolean
variable Bi and two integer variables BiC and BiD with domains
[0..10] and [0..2] that represent the number of instances of C and
D for the i-th instance of B. Additional constraints are added to
enforce the minimum number of instances for mandatory features,
hierarchical dependencies and group feature cardinalities.

For the semantics of relative cardinalities, besides creating vari-
ables representing the number of instances for each direct subfea-
ture, we also create variables that represent the number of instances
of indirect subfeatures. Still in the example of Figure 6, it means
that in addition to the variablesBiC andBiD, we create a variable
BiE representing the number of instances of E for this given in-
stance of B. Constraints are added to guarantee that BiE matches
with the number of instances ofE for each of itsD instances. In the
given example, we add the constraint BiE = BiD1E + BiD2E.
The variables generated by this process for the feature model in
our example are shown in Figure 6 (b). The variable names are

B

A

DC

<A> 1..2

E

 1..2

<A> 1..4

<D> 0..2

 1..2

<A> 1..4

 1..10

<A> 1..20

A = (0, 1)

A1 = (0, 1)

A1B = (0, 2)

A1B1 = (0, 1)

A1B1C = (0, 10)

A1B1D = (0, 2)

A1B1E = (0, 2)

A1B1D1 = (0, 1)

A1B1D1E = (0, 2)

A1B1D2 = (0, 1)

A1B1D2E = (0, 2)

A1B2 = (0, 1)

A1B2C = (0, 10)

A1B2D = (0, 2)

A1B2E = (0, 2)

A1B2D1 = (0, 1)

A1B2D1E = (0, 2)

A1B2D2 = (0, 1)

A1B2D2E = (0, 2)

 [5,10] (C, B) → [1,1] (D, E)

(a) feature model (b) CSP variables created

Figure 6: Feature model evaluation.

prepended by A1 to express that they represent instances that are
under the singleton instance of the root feature A.

To optimize the translation and solving of the constraint problem,
variables and constraints for relative cardinalities are only added
when they are explicitly declared and do not match the implicit
cardinality that is derived from the individual local cardinalities.
After generating the variables, they can be used for implementing
the additional cross-tree constraints using simple logic implication
constraints. For example, the constraint [5..10] (C,B) in Fig-
ure 6 (a) would generate the following CSP constraint for each i-th
instance of B:

IF (BiC IN [5..10]) THEN (BiD1E IN [1..1] AND BiD2E IN [1..1]).

The tools that we developed allow to define feature models with
relative cardinalities and configurations of these feature models us-
ing a domain specific language. These can then be translated to a
constraint satisfaction problem to verify the validity of a configura-
tion or to generate a full configuration from a partial one.

5. EVALUATION
To assess the use of relative cardinalities for feature modeling,

we analyze their utility in capturing variability in cloud providers
as well as the performance and scalability of the automation solu-
tions proposed in the previous section. Besides this, we discuss the
limitations of the work and the threats to its validity.

5.1 Usefulness
To evaluate the usefulness of relative cardinalities we captured

variability identified from a set of popular cloud providers into
feature models with relative cardinalities. Information from cloud
providers was obtained from their documentation and through the
use of their configuration tools. Table 1 shows the total number of
features and constraining expressions for each modeled provider, as
well as how many of them employ local and relative cardinalities.

A feature is considered to have a cardinality if its maximum lo-
cal cardinality is greater than 1. Features are considered to have
a relative cardinality when their cardinalities relative to an ascen-
dant feature do not match the implicit cardinalities derived from
intermediary local cardinalities.

A constraint can be composed of many constraining expressions
as described in Section 3.3. A constraining expression is con-
sidered to employ cardinalities if it constrains a local cardinality

whose maximum bound is greater than 1. It is considered to em-
ploy relative cardinalities if it applies to a pair of features that are
not directly related in the feature model hierarchy.

Features Constraining Expressions
Cloud Total card relCard Total card relCard
Google 69 6 3 6 1 5
Heroku 45 3 1 0 0 0
Jelastic 37 4 5 18 5 13
OpenShift 30 3 2 16 1 9

Table 1: Analysis of cloud providers

As seen from the table, in the studied examples, relative car-
dinalities describe many relationships and constraints that are not
covered by previous feature modeling constructs.

5.2 Scalability
Adding new constructs to feature modeling may bring additional

costs to automated feature model analysis, and eventually render
it unfeasible. To identify the effects of relative cardinalities in the
performance of feature model analysis, we conducted three experi-
ments with feature models of different sizes. First, we evaluated the
performance of checking cardinality consistency. Then we verified
the performance of translating feature models to constraint satis-
faction problems. Finally, we verified the time for checking if a
configuration complies to a feature model.

5.2.1 Experimental setup
To execute the experiments, we randomly generated feature mod-

els of different sizes (50, 100, 250, 500, 1000, 2500 features). Fea-
ture models were generated to be similar to those found in cloud
environments and are based on our experience designing the fea-
ture models shown in Table 1. Therefore, features in the first three
levels of the hierarchy had a 50% chance of having a local car-
dinality, while in lower levels this chance would be of 1%. For
the features chosen to have cardinalities, a random cardinality was
generated with the maximum upper bound of 10 instances. Later,
for each generated feature model, we randomly selected half of the
features for which local cardinalities were defined and added extra
relative cardinalities to them.

For each feature model size, 50 different models were generated
and had relative cardinalities added. From this process, we ob-
tained two sets of feature models, one composed of random feature
models with local cardinalities, and another composed of the same
models augmented with relative cardinalities.

Using the generated feature models we performed experiments
to evaluate the scalability of a) the consistency check and inference
mechanism; b) the translation to constraint satisfaction problem;
and c) the validation of a configuration.

All experiments were run on a MacBook Pro Computer with a 2
GHz Intel Core i7 processor and 8GB of memory.

5.2.2 Results
For the first experiment we measured the time to verify the con-

sistency between cardinalities and infer cardinalities that were not
described in the model. This includes the time to translate the con-
sistency conditions described in Section 3.2 into a constraint satis-
faction problem and the time to solve the problem.

This experiment was ran only for the set of feature models with
relative cardinalities. The average measured time, by number of
features of the model, is shown in Table 2.

For the second experiment, for both sets of feature models we

Features
Average

time
(ms)

Standard
deviation

(ms)

50 63.80 17.60
100 220.16 60.79
250 796.82 194.29
500 3, 627.55 698.80

1, 000 14, 923.11 4, 438.63
2, 500 129, 472.05 38, 772.75

Table 2: Average time for consistency checking and cardinality
inference.

measured the time to fully translate a model to a constraint satis-
faction problem. Figure 7 shows, in a logarithmic scale, the distri-
bution of execution times by the number of features for both sets of
feature models.

As many random models were generated for each number of fea-
tures, we obtained many different translation times for the same
number of features. This happens because according to how the
hierarchy was generated and where the cardinalities were placed,
the number of instances that can be generated by the feature model
may vary greatly. Still, as we can see from the chart, translating
a feature model with relative cardinalities introduces an overhead
into the processing, which in the conducted experiments was on
average of 41%.

Despite the overhead added by relative cardinalities in the trans-
lation, it is still feasible to use them, and in the worst case found in
our experiments it took less than 10 minutes to translate a feature
model with 2500 features that can generate configurations with up
to 187,770 feature instances. Feature models from cloud providers
have usually far less features, but can still have a large number of
possible feature instances.

10
1

10
2

10
3

10
4

10
5

10
6

50 100 250 500 1000 2500

T
im

e
 (

m
s)

Number of features

local cardinalities
relative cardinalities

Figure 7: Distribution of time to translate feature model to con-
straint satisfaction problem

For the last experiment we evaluate the time to check if a con-
figuration conforms to a feature model. Using the translations ob-
tained in the previous experiment we generate valid configurations
for feature models in both sets and check their compliance to their
respective feature model. Figure 8 shows the time distribution for
checking a configuration for feature models with local and relative
cardinalities. This time includes the translation of the configura-
tion, together with the conversion of feature model constraints to a

constraint satisfaction problem, and the resolution of the problem.
From the graph we can see that introducing relative cardinalities
did not affect the time to validate a configuration. This is linked
to the fact that configurations for feature models with relative car-
dinalities tend to be smaller as relative cardinalities usually restrict
the number of allowed instances of a feature.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

50 100 250 500 1000 2500

T
im

e
 (

m
s)

Number of features

local cardinalities
relative cardinalities

Figure 8: Time to verify compliance of a configuration to a fea-
ture model

5.3 Threats to validity
Though we have studied and worked extensively with cloud provider

configurations to propose relative cardinalities, we only formally
modeled a small number of them for extracting data. Still, other
domains such as cyber-physical systems [24] exhibit similar com-
plex variability and could benefit from this extension.

The feature models generated to measure the scalability follow
a pattern where cardinalities are mostly concentrated in the upper
levels. As the hierarchy of a feature model and placement of car-
dinalities may greatly influence the size of the translated constraint
satisfaction problem, it can also influence the performance of fea-
ture model processing negatively. We tried to ensure that the so-
lution is feasible for models similar to those we identified for the
cloud domain.

6. RELATED WORK
Cardinalities were originally introduced to feature models [23]

as an application of UML multiplicities to feature groups from the
original FODA notation [16]. Feature cardinalities were first in-
troduced in [4], motivated by practical applications. Czarnecki et
al. [5] integrated feature model extensions, such as attributes, group
and feature cardinalities to formalize the concept of cardinality-
based feature models [6]. Our approach relies on this concept and
the preceding developments in the field of feature models.

In [7], the authors discuss the need for additional constraints
that deal with cardinality-based feature models, and for constraints
that apply only in a given scope of the feature model. However,
the proposed constraints are defined in OCL, which is a general
purpose constraint language and whose evaluation may limit the
performance of automated analysis of feature models. Similarly,
XPath has also been employed as a notation for describing addi-
tional constraints in feature models [2].

In [19], Michel et al. discuss about global and local interpreta-
tions of feature cardinalities and argue for choosing the local inter-
pretation for feature cardinalities. The authors also discuss about

the need to update additional constraints to consider feature in-
stances, but do not present any proposal to deal with it.

Quinton et al. [21] proposes a constraining language that extends
requires constraint with cardinalities and allows for constrains to
apply in local or global scope. In [17], authors propose a feature
modeling language where cross-tree constraints can be applied to
individual instances. Though it potentially allows for expressing
any kind of constraint between instances, describing constraints in-
dividually for each possible instance is not feasible when we have
thousands of possible feature instances.

CardyGAn [26] is a tool for analysis of consistency in cardinality
feature models with unbounded cardinalities. Like in our approach,
it provides a domain-specific language for describing feature mod-
els and configurations and can be used for the generation and vali-
dation of configurations.

Feature modeling has been employed to capture variability in
cloud environments, but usually in a constrained context. In [8,
10] regular feature models are used to model variability within vir-
tual machine configurations, while in [22] cardinality-based feature
models capture variability in cloud providers.

In summary, what distinguishes our proposal from previous work
is that we generalize the interpretation of cardinality scope. Instead
of choosing for a global or local interpretation we enable users
to choose on a per case basis the most appropriate interpretation.
Concerning cloud environment modeling, our motivation for using
relative cardinalities is to enable capturing all variability in cloud
providers, within and across different contexts such as applications,
virtual machines, projects, etc.

7. CONCLUSION
In this paper we introduced the concept of relative cardinali-

ties for feature models. Based on our investigation on managing
variability in cloud computing platforms, we identified limitations
found in feature cardinalities and the need to extend their interpre-
tation. We proposed a definition of cardinality-based feature mod-
els with relative cardinalities, analyzed the issue of consistency be-
tween cardinalities, and updated cross-tree constraints to take into
account relative cardinalities.

In addition, we proposed a metamodel and editing tools for de-
scribing feature models with relative cardinalities, as well as a trans-
lation process into constraint satisfaction problems for automatic
processing. We also demonstrate that relative cardinalities are valu-
able for modeling variability in cloud computing configurations and
that automated reasoning upon them is feasible. We have fully im-
plemented and thoroughly tested our approach. The implementa-
tion and research results can be found in the accompanying site2.

As future work, we plan to integrate feature models from multi-
ple cloud providers into a into a multi-product line approach [1, 12].
Our goal is to support the automatic configuration of multi-cloud
environments for service-based applications. This includes taking
into account requirements such as scalability, redundancy and loca-
tion, which will lead to constraints across multiple cloud providers
and their respective feature models. Due to the huge number of
possible multi-cloud configurations, we intend to evaluate the use
of search-based strategies [11] combined with constraints [13] for
reasoning on multiple product lines. Another research direction is
to extend variability management to runtime [14] in order to sup-
port self-adaptive multi-cloud configurations.

2http://researchers.lille.inria.fr/~sousa/relativecard/

8. REFERENCES
[1] M. Acher, P. Collet, A. Gaignard, P. Lahire, J. Montagnat,

and R. France. Composing multiple variability artifacts to
assemble coherent workflows. Software Quality Journal,
20(3-4):689–734, 2012.

[2] M. Antkiewicz and K. Czarnecki. FeaturePlugin: Feature
modeling plug-in for eclipse. In Proceedings of 2004
OOPSLA Workshop on Eclipse Technology eXchange, pages
67–72, New York, NY, USA, 2004. ACM.

[3] L. Bettini. Implementing Domain-Specific Languages with
Xtext and Xtend. Packt Publishing, 2013.

[4] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker.
Generative programming for embedded software: An
industrial experience report. In D. Batory, C. Consel, and
W. Taha, editors, Generative Programming and Component
Engineering, volume 2487 of Lecture Notes in Computer
Science, pages 156–172. Springer Berlin Heidelberg, 2002.

[5] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged
configuration using feature models. In R. Nord, editor,
Software Product Lines, volume 3154 of Lecture Notes in
Computer Science, pages 266–283. Springer Berlin
Heidelberg, 2004.

[6] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing
cardinality-based feature models and their specialization.
Software Process: Improvement and Practice, 10(1):7–29,
2005.

[7] K. Czarnecki and C. H. P. Kim. Cardinality-based feature
modeling and constraints: A progress report. In International
Workshop on Software Factories, pages 16–20, 2005.

[8] A. Ferreira Leite, V. Alves, G. Nunes Rodrigues, C. Tadonki,
C. Eisenbeis, and A. Magalhaes Alves de Melo. Automating
resource selection and configuration in inter-clouds through a
software product line method. In Proc. IEEE International
Conference on Cloud Computing, (CLOUD’15), pages
726–733, New York, United States, June 2015.

[9] N. Gamez and L. Fuentes. Software product line evolution
with cardinality-based feature models. In K. Schmid, editor,
Top Productivity through Software Reuse, volume 6727 of
Lecture Notes in Computer Science, pages 102–118.
Springer Berlin Heidelberg, 2011.

[10] J. García-Galán, P. Trinidad, O. F. Rana, and A. Ruiz-Cortés.
Automated configuration support for infrastructure migration
to the cloud. Future Generation Computer Systems, 55:200 –
212, 2016.

[11] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and
Y. Zhang. Search based software engineering for software
product line engineering: A survey and directions for future
work. In Proceedings of the 18th International Software
Product Line Conference - Volume 1, SPLC ’14, pages 5–18,
New York, NY, USA, 2014. ACM.

[12] H. Hartmann, T. Trew, and A. Matsinger. Supplier
independent feature modelling. In Proceedings of the 13th
International Software Product Line Conference, SPLC ’09,
pages 191–200, Pittsburgh, PA, USA, 2009. Carnegie Mellon
University.

[13] C. Henard, M. Papadakis, M. Harman, and Y. Le Traon.
Combining multi-objective search and constraint solving for
configuring large software product lines. In Proceedings of
the 37th IEEE/ACM International Conference on Software
Engineering (ICSE 2015), 2015.

[14] M. Hinchey, S. Park, and K. Schmid. Building dynamic
software product lines. Computer, 45(10):22–26, 2012.

http://researchers.lille.inria.fr/~sousa/relativecard/

[15] N. Jussien, G. Rochart, and X. Lorca. Choco: an open source
Java constraint programming library. In CPAIOR’08
Workshop on Open-Source Software for Integer and
Contraint Programming (OSSICP’08), pages 1–10, 2008.

[16] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-oriented domain analysis (foda) feasibility
study. Technical report, DTIC Document, 1990.

[17] A. S. Karataş, H. Oğuztüzün, and A. Doğru. From extended
feature models to constraint logic programming. Science of
Computer Programming, 78(12):2295 – 2312, 2013. Special
Section on International Software Product Line Conference
2010 and Fundamentals of Software Engineering (selected
papers of {FSEN} 2011).

[18] R. Mazo, C. Salinesi, D. Diaz, and A. Lora-Michiels.
Transforming Attribute and Clone-Enabled Feature Models
Into Constraint Programs Over Finite Domains. In 6th
International Conference on Evaluation of Novel Approaches
to Software Engineering (ENASE), Beijing, China, June
2011.

[19] R. Michel, A. Classen, A. Hubaux, and Q. Boucher. A
formal semantics for feature cardinalities in feature
diagrams. In Proceedings of the 5th Workshop on Variability
Modeling of Software-Intensive Systems, VaMoS ’11, pages
82–89, New York, NY, USA, 2011. ACM.

[20] C. Quinton, A. Pleuss, D. L. Berre, L. Duchien, and
G. Botterweck. Consistency checking for the evolution of
cardinality-based feature models. In Proceedings of the 18th
International Software Product Line Conference - Volume 1,
SPLC ’14, pages 122–131, New York, NY, USA, 2014.
ACM.

[21] C. Quinton, D. Romero, and L. Duchien. Cardinality-based
feature models with constraints: A pragmatic approach. In
Proceedings of the 17th International Software Product Line
Conference, SPLC ’13, pages 162–166, New York, NY,
USA, 2013. ACM.

[22] C. Quinton, D. Romero, and L. Duchien. SALOON: a
platform for selecting and configuring cloud environments.
Software: Practice and Experience, 46(1):55–78, 2016.

[23] M. Riebisch, K. Böllert, D. Streitferdt, and I. Philippow.
Extending feature diagrams with uml multiplicities. In 6th
World Conference on Integrated Design & Process
Technology (IDPT2002), volume 23, 2002.

[24] D. Romero, C. Quinton, L. Duchien, L. Seinturier, and
C. Valdez. Software Architecture: 9th European Conference,
ECSA 2015, Dubrovnik/Cavtat, Croatia, September 7-11,
2015. Proceedings, chapter SmartyCo: Managing
Cyber-Physical Systems for Smart Environments, pages
294–302. Springer International Publishing, Cham, 2015.

[25] A. Safilian, T. Maibaum, and Z. Diskin. The semantics of
cardinality-based feature models via formal languages. In
FM 2015: Formal Methods, pages 453–469. Springer, 2015.

[26] T. Schnabel, M. Weckesser, R. Kluge, M. Lochau, and
A. Schürr. Cardygan: Tool support for cardinality-based
feature models. In Proceedings of the Tenth International
Workshop on Variability Modelling of Software-intensive
Systems, VaMoS ’16, pages 33–40, New York, NY, USA,
2016. ACM.

[27] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro.
EMF: eclipse modeling framework. Pearson Education,
2008.

[28] W. Zhang, H. Yan, H. Zhao, and Z. Jin. A bdd-based
approach to verifying clone-enabled feature models:

Constraints and customization. In H. Mei, editor, High
Confidence Software Reuse in Large Systems, volume 5030
of Lecture Notes in Computer Science, pages 186–199.
Springer Berlin Heidelberg, 2008.

	Introduction
	Motivation
	Motivating example
	Challenges

	Relative Feature Cardinalities
	Formalization
	Cardinalities consistency
	Multiple cardinalities and constraints
	Contribution summary

	Modeling and automation
	Modeling
	Inference and consistency checking
	Automated analysis of feature models

	Evaluation
	Usefulness
	Scalability
	Experimental setup
	Results

	Threats to validity

	Related Work
	Conclusion
	References

