Infarct localization from myocardial deformation: Prediction and uncertainty quantification by regression from a low-dimensional space

Abstract : Diagnosing and localizing myocardial infarct is crucial for early patient management and therapy planning. We propose a new method for predicting the location of myocardial infarct from local wall deformation, which has value for risk stratification from routine examinations such as (3D) echocardiography. The pipeline combines non-linear dimensionality reduction of deformation patterns and two multi-scale kernel regressions. Confidence in the diagnosis is assessed by a map of local uncertainties, which integrates plausible infarct locations generated from the space of reduced dimensionality. These concepts were tested on 500 synthetic cases generated from a realistic cardiac electromechanical model, and 108 pairs of 3D echocardiographic sequences and delayed-enhancement magnetic resonance images from real cases. Infarct prediction is made at a spatial resolution around 4 mm, more than 10 times smaller than the current diagnosis, made regionally. Our method is accurate, and significantly outperforms the clinically-used thresholding of the deformation patterns (on real data: sensitivity / specificity of 0.828/0.804, area under the curve: 0.909 vs. 0.742 for the most predictive strain component). Uncertainty adds value to refine the diagnosis and eventually re-examine suspicious cases.
Type de document :
Article dans une revue
IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers, 2016, 35 (10), pp.2340-2352. 〈10.1109/TMI.2016.2562181〉
Liste complète des métadonnées

Littérature citée [50 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01314767
Contributeur : Nicolas Duchateau <>
Soumis le : jeudi 12 mai 2016 - 14:56:08
Dernière modification le : mardi 5 juin 2018 - 10:14:34
Document(s) archivé(s) le : mercredi 16 novembre 2016 - 01:51:45

Fichier

jDuchateau_TMI_2016_FINALok1.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Nicolas Duchateau, Mathieu De Craene, Pascal Allain, Eric Saloux, Maxime Sermesant. Infarct localization from myocardial deformation: Prediction and uncertainty quantification by regression from a low-dimensional space. IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers, 2016, 35 (10), pp.2340-2352. 〈10.1109/TMI.2016.2562181〉. 〈hal-01314767〉

Partager

Métriques

Consultations de la notice

263

Téléchargements de fichiers

183