Three-dimensional paraxial migration method without lateral splitting

Abstract : We introduce a migration algorithm based on paraxial wave equation that does not use any splitting in the lateral variables. The discretization is first derived in the constant coefficient case by higher order finite differences, then generalized to arbitrarily varying velocities via finite elements. We present a detailed plane wave analysis in a homogeneous medium, and give evidence that numerical dispersion and anisotropy can be controlled. Propagation along depth is done with a higher order method based on a conservative Runge Kutta method. At each step in depth we have to solve a large linear system. This is the most time consuming part of the method. The key to obtaining good performance lies in the use of a Conjugate Gradient like iterative solver. We show the performance of the method with a model example.
Type de document :
Communication dans un congrès
Siamak Hassanzadeh. Mathematical Methods in Geophysical Imaging III, 1995, San Diego, United States. SPIE, 1995, 〈10.1117/12.218504〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01316193
Contributeur : Michel Kern <>
Soumis le : dimanche 15 mai 2016 - 19:25:12
Dernière modification le : mercredi 18 mai 2016 - 01:09:34
Document(s) archivé(s) le : mercredi 16 novembre 2016 - 05:42:16

Fichiers

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Michel Kern. Three-dimensional paraxial migration method without lateral splitting. Siamak Hassanzadeh. Mathematical Methods in Geophysical Imaging III, 1995, San Diego, United States. SPIE, 1995, 〈10.1117/12.218504〉. 〈hal-01316193〉

Partager

Métriques

Consultations de la notice

158

Téléchargements de fichiers

73