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1 A stochastic chemostat model

The stochastic model of the chemostat given by equation (1) was first introduced by ?{
dX1

t = (µ(X2
t )−D)X1

t dt+ c1
√
X1
t dω

1
t

dX2
t = D(sin −X2

t ) dt− kcsµ(X2
t )X1

t dt+ c2
√
X2
t dω

2
t

(1)

where µ(X2
t ) = µmax

X2
t

Ks+X2
t
, ω1

t and ω2
t are two mutually independant Brownian motions

of covariance matrix Qw.
For the model output, we suppose that only the substrate concentration X2

tk
is mea-

sured at discrete time instants tk = k∆ where ∆ is the observation step. This output is
subject to a measurement noise vk of standard deviation σ which is supposed proportional
to X2

tk
?. This leads to the output equation (2).

yk = X2
tk

+ σX2
tk
vk (2)

where vk
iid∼ N(0, Qv)1.

1iid : independant and identically distributed.
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This system could be simulated using an explicite Euler-Maruyama scheme with the
simulation step δ where δ < ∆. Algorithm (1) presents the state space model (1) simula-
tion.

% initialization
δ = T/(Nsyst ∗Nobs)
v0, . . . , vNobs ∼ N(0, 1)
w1
0, . . . , w

1
Nsyst∗Nobs ∼ N(0, 1)

w2
0, . . . , w

2
Nsyst∗Nobs ∼ N(0, 1)(

X1
0 , X

2
0

)
∼ p (x0)

% iterations
For k = 0, . . . , Nobs do

For j = 1, . . . , Nsyst do

µ = µmax
X2
j−1

ks +X2
j−1

X1
j = max ( 0 , X1

j−1 + (µ−D)X1
j−1δ + c1

√
X1
j−1
√
δ w1

j )

X2
j = max ( 0 , X2

j−1 − kcs µX1
j−1δ +D(sin −X2

j−1)δ + c2
√
X2
j−1
√
δ w2

j )

End For
X2
k = X2

j

yk = X2
k + σX2

kvk
% State initialization of the next k loop

µ = µmax
X2
j

ks +X2
j

X1
0 = max ( 0 , X1

j + (µ−D)X1
j δ + c1

√
X1
j

√
δ w1

j )

X2
0 = max ( 0 , X2

j − kcs µX1
j δ +D(sin −X2

j )δ + c2
√
X2
j

√
δ w2

j )

End For

Algorithm 1: Simulation of system (1) using the Euler-Maruyama scheme.

2 Nonlinear filtering

Nonlinear filtering is the task of estimating recursively in time the sequence of marginal

posteriors
{
pXtk |Y0:k (xtk |y0:k)

}
k≥0

called the filtering densities, that is, the estimation

of the current state Xtk given the measurements y0, . . . , yk. There are many methods
to explicitly perform filtering task for nonlinear systems. In this paper, we will present
three of them and compare their results. In this section, we suppose that all the model
parameters are known.

Previous research work was carried out on the state estimation for the deterministic
state-space model of the chemostat. For example, ? used an invariant observer for this
purpose. These methods, as well as the used deterministic models, do not take account of
the noises the system and the observations are subject to. Hence, these results could not
be considered trustworthy.
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the state-space model (1) along with the output equation (2) are more descriptive of the
stochastic nature of the system. The state estimation for this stochastic model could not be
performed using classical observers but it requires the use of nonlinear filtering techniques.
Among these methods, we could cite the Extended Kalman Filter EKF [Citation], the
Unscented Kalman Filter UKF ? and the Particle Filtering PF techniques [Citation]. The
EKF and the UKF are used for state estimation of nonlinear models where the state and
measurement noises are Gaussians, whereas the PF techniques could be applied for all
types of noises.

Many authors in the litterature used the nonlinear filtering methods for the state esti-
mation of stochastic biological models. ? used an EKF for state and parameter estimation
on a non-linear stochastic dynamic chemostat model in an aerobic yeast continuous cul-
tivation process. The filter algorithm uses accessible inputs such as the input substrate
concentration and the dilution rate to estimate the biomass concentration, the maximum
specific growth rate, the saturation constant and the substrate yield coefficient. This
model however only features additive Gaussian noise on the state and output equations
(.../...).

In the next sections, we present the application of these methods for the state estima-
tion of model (1) and we compare their results.

2.1 Extended Kalman Filter

The application of the EKF to the stochastic model of the chemostat is given by Algorithm
(2). The EKF gives estimation of both state mean and covariance matrix in two steps,
the prediction step and the correction step. In the prediction step we linearize system (1)
around the state mean estimation at the previous instant, then use the Euler scheme to
compute the predicted mean and variance of the current state. Next, in the correction
step we use the output equation (2), its linearization and the measurements y0, . . . , yk to
compute the Kalman gain and update the mean and variance estimation.

This algorithm could not be implemented directly because of the nonlinearity between
the state variable and the noise in the observation equation (2). This problem could be
resolved by replacing the observation yk by ỹk = log (yk) in the EKF algorithm. In-
deed, measuring yk or log (yk) is not of an issue on the estimation quality since the same
information is acquired in both cases. The new measure ỹk is given by :

yk = X2
tk

+ σX2
tk
vk

yk = X2
tk

(1 + σ vk)

ỹk = log (yk)

ỹk = log
(
X2
tk

(1 + σ vk)
)

= log
(
X2
tk

)
+ log (1 + σ vk)

Using a first order Taylor series development of log (1 + σ vk) at point 1, we obtain:

ỹk = log
(
X2
tk

)
+ log (1) + σ vk log′ (1)
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ỹk = log
(
X2
tk

)
+ σ vk (3)

Then the function h in the EKF algorithm becomes :

h (Xtk) = log
(
X2
tk

)
Let Ft and Ht be the derivatives of f (Xt) and h (Xt) with respect to Xt respectively

given by :

Ft = ∇f (Xt) =

[
µ
(
X2
t

)
−D µ′

(
X2
t

)
X1
t

−kcsµ
(
X2
t

)
−D − kcsµ′

(
X2
t

)
X1
t

]
Ht = ∇h (Xt) =

[
0 1

X2
t

]
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% initialization
δ = T/(Nsyst ∗Nobs)
X0 ∼ N(µ0, Q0)
X̂0 ← µ0
R0 = Q0

Qw =

[
1 0
0 1

]
% state noise variance matrix

Qv = 1 % output noise variance
% iterations
For k = 0, . . . , Nobs do
% prediction step

For j = 1, . . . , Nsyst do
X̂1
j− ← max ( 0 , X̂1

j−1 + f1(X̂
1
j−1, X̂

2
j−1) δ)

X̂2
j− ← max ( 0 , X̂2

j−1 + f2(X̂
1
j−1, X̂

2
j−1) δ)

Rj− ← Rj−1 +
(
Rj−1F

∗ + FRj−1 + g(X̂1
j−1, X̂

2
j−1)Q

wg(X̂1
j−1, X̂

2
j−1)

∗
)
δ

X̂1
j ← X̂1

j−

X̂2
j ← X̂2

j−

Rj ← Rj−
End For

% correction step
X̂1
k− = X̂1

j−

X̂2
k− = X̂2

j−

Rk− = Rj−

Kk = Rk−H
∗ (HRk−H

∗ + σQvσ)−1 % Kalman gain[
X̂1
k

X̂2
k

]
←
[
X̂1
k−

X̂2
k−

]
+Kk

(
log (yk)− h

(
X̂k−

))
Rk ← (I −KkH)Rk−

% State estimate initialization of the next k loop
X̂1

0 ← max ( 0 , X̂1
k + f1(X̂

1
k , X̂

2
k) δ)

X̂2
0 ← max ( 0 , X̂2

k + f2(X̂
1
k , X̂

2
k) δ)

R0 ← Rk +
(
RkF

∗ + FRk + g(X̂1
k , X̂

2
k)Qwg(X̂1

k , X̂
2
k)∗
)
δ

End For

Algorithm 2: State estimation for the chemostat using EKF.

2.2 Unscented Kalman Filter

The application of the UKF to the stochastic model of the chemostat is given by Algorithm
(3)-(4). Unlike The EKF, the UKF does not linearize the system, but uses the unscented
transform ? to directly approximate the mean and covariance of the target distribution
instead of trying to approximate the non-linear function. The idea of the unscented
transform is to create a fixed number of wheighted sigma points X̃j−1,i from the previous
estimation of the mean and covariance matrix. Then, these sigma points are propagated
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through the non-linearity in the state equation to obtain new sigma points X̂j−,i, and
the predicted mean and covariance of the current state are estimated from them. The
same method is used in the correction step, we propagate the sigma points X̃k−,i created
from the predicted mean and covariance matrix through the non-linearity in the output
equation. The resulting sigma points Ŷk,i are used to compute the Kalman gain and the
estimation of the current state’s mean and covariance matrix.

Again, because of the non-linearity between the noise and the state variables in the
system equations (1) and the output equation (2), we should add the noise variables

in the state vector to create an augmented variable with mean X̃j−1 =


X̂1
j−1

X̂2
j−1
0
0

 and

variance R̃j−1 =

[
Rj−1 0

0 Qw

]
in the prediction step and X̃k− =

 X̂1
k−

X̂2
k−

0

 and variance

R̃k− =

[
Rk− 0

0 Qv

]
in the correction step then compute the sigma points from them.

[ . ]i denotes de ith column of the matrix in between brackets.
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% initialization
δ = T/(Nsyst ∗Nobs)
X0 ∼ N(µ0, Q0)
X̂0 ← µ0
R0 = Q0

n1 = nx + nw % state dimension + state noise dimension
n2 = nx + nv % state dimension + output noise dimension
λ1 = α2(n1 + κ)− n1 , λ2 = α2(n2 + κ)− n2
% weights computation
Wm,l

0 = λl
nl+λl

, l = 1, 2

W c,l
0 = λl

nl+λl
+ (1− α2 + β) , l = 1, 2

Wm,l
i = λl

2(nl+λl)
, i = 1, . . . , 2nl, l = 1, 2

W c,l
i = λl

2(nl+λl)
, i = 1, . . . , 2nl, l = 1, 2

% iterations
For k = 0, . . . , Nobs Do

For j = 1, . . . , Nsyst Do
% prediction step

X̃j−1 =


X̂1
j−1

X̂2
j−1
0
0


R̃j−1 =

[
Rj−1 0

0 Qw

]
X̃j−1,0 = X̃j−1

X̃j−1,i = X̃j−1 +
√
n1 + λ1

[√
R̃j−1

]
i

, i = 1, . . . , n1

X̃j−1,i+n1 = X̃j−1 −
√
n1 + λ1

[√
R̃j−1

]
i

, i = 1, . . . , n1

X̂j−,i = max ( 0 , X̃ xj−1,i + f(X̃ xj−1,i)δ+ g(X̃ xj−1,i)
√
δX̃wj−1,i ) , i = 0, . . . , 2n1

% where X̃ xj−1,i denotes the nx first components of X̃j−1,i and X̃wj−1,i denotes its nw last
components

X̂j− =
∑2n1

i=0W
m,1
i X̂j−,i

Rj− =
∑2n1

i=0W
c,1
i (X̂j−,i − X̂j−)(X̂j−,i − X̂j−)∗

X̂j ← X̂j−

Rj ← Rj−
End For

Algorithm 3: State estimation for the chemostat using UKF (1st section)
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% correction step

X̃k− =

 X̂1
k−

X̂2
k−

0


R̃k− =

[
Rk− 0

0 Qv

]
X̃k−,0 = X̃k−

X̃k−,i = X̃k− +
√
n2 + λ2

[√
R̃k−

]
i

, i = 1, . . . , n2

X̃k−,i+n2
= X̃k− −

√
n2 + λ2

[√
R̃k−

]
i

, i = 1, . . . , n2

Ŷk,i = h(X̃ xk−,i) + σ(X̃ xk−,i) X̃
v
k−,i , i = 0, . . . , 2n2

% where X̃ xk−,i denotes the nx first components of X̃k−,i and X̃ vk−,i denotes its nv last
components

µ =
∑2n2

i=0W
m,2
i Ŷk,i

S =
∑2n2

i=0W
c,2
i (Ŷk,i − µ)(Ŷk,i − µ)∗

C =
∑2n2

i=0W
c,2
i (X̃k−,i − X̂k−)(Ŷk,i − µ)∗

Kk = C S−1 % Kalman gain
X̂k ← X̂k− +Kk (yk − µ)
Rk ← Rk− +Kk SkK

∗
k

% State estimate initialization of the next k loop

X̃k =


X̂1
k

X̂2
k

0
0


R̃k =

[
Rk 0
0 Qw

]
X̃k,0 = X̃k

X̃k,i = X̃k +
√
n1 + λ1

[√
R̃k

]
i

, i = 1, . . . , n1

X̃k,i+n1 = X̃k −
√
n1 + λ1

[√
R̃k

]
i

, i = 1, . . . , n1

X̂0−,i = max ( 0 , X̃ xk,i + f(X̃ xk,i)δ + g(X̃ xk,i)
√
δX̃wk,i ) , i = 0, . . . , 2n1

X̂0 =
∑2n1

i=0W
m,1
i X̂0−,i

R0 =
∑2n1

i=0W
c,1
i (X̂0−,i − X̂0)(X̂0−,i − X̂0)

∗

End For

Algorithm 4: State estimation for the chemostat using UKF (2nd section)

2.3 Particle Filter “Bootstrap”

The application of particle filter to the stochastic model of the chemostat is given by
Algorithm (5). This application was first carried out in ?. The particle filter gives a
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Monte Carlo approximation to the filtering density pXtk |Y0:k (xtk |y0:k) of the form

pXtk |Y0:k (xtk |y0:k) ≈
1

N

N∑
i=1

δξi (xtk) (4)

where ξi are the particles and they are distributed according to pXtk |Y0:k (xtk |y0:k) and δξi

is the Dirac measure at point ξi. However, since the density pXtk |Y0:k (xtk |y0:k) is unknown,
the particles are drawn from a proposal density qXtk |Y0:k (xtk |y0:k) and the approximation

is corrected using weights ωi. The simplest method to do this is to consider the process
transition density pXt|Xt−δ (xt|xt−δ) as a proposal density and to compute the weights from
the likelihood function pYk|Xtk (yk|xtk) given by :

pYk|Xtk (yk|xtk) =
1

σx2tk
√

2π
exp

(
− 1

2
(
σx2tk

)2 ∣∣yk − x2tk ∣∣2
)

(5)

In Algorithm (5), we used the state equation (1) to approximate the transition density
pXt|Xt−δ (xt|xt−δ) and to draw the particles ξi. The number of particles used is N = 1000.
A resampling procedure is performed within the correction step to replace the insignificant
low-weight particles by the high-weight ones. There exist several resampling methods
which are compared in ?. For our algorihtm, we used the residual resampling method.
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% initialization
δ = T/(Nsyst ∗Nobs)
N =number of particles
w1
0, . . . , w

1
Nsyst∗Nobs ∼ N(0, 1)

w2
0, . . . , w

2
Nsyst∗Nobs ∼ N(0, 1)

ξ1:N
iid∼ p̃X0 (x) , where ξ1:N =

[
ξ1:NX1

ξ1:NX2

]
% initialization

ωi ← 1
N i = 1, . . . , N % importance weights

X̂1
0 = 1

N

∑N
i=1 ξ

i
X1

X̂2
0 = 1

N

∑N
i=1 ξ

i
X2

% iterations
For k = 0, . . . , Nobs Do

For j = 1, . . . , Nsyst Do
% prediction step

µ
(
ξiX2

)
= µmax

ξiX2

ks + ξi
X2

i = 1, . . . , N

ξ̃iX1 = max
(

0 , ξiX1 +
(
µ
(
ξiX2

)
−D

)
ξiX1δ + c1

√
ξi
X1

√
δ w1

j

)
i = 1, . . . , N

ξ̃iX2 = max
(

0 , ξiX2 − kcs µ
(
ξiX2

)
ξiX1δ +D

(
sin − ξiX2

)
δ + c2

√
ξi
X2

√
δ w2

j

)
i =

1, . . . , N
ξi ← ξ̃i

X̂1
j = 1

N

∑N
i=1 ξ

i
X1

X̂2
j = 1

N

∑N
i=1 ξ

i
X2

End For
% correction step

ωi ← pYk|Xk(yk|ξ̃i) i = 1, . . . , N % importance weights

ωi ← ωi/sum(ω1:N ) i = 1, . . . , N % normalization

ξ1:n ← resample
(
ξ̃1:n, ω1:n

)
% resampling step

X̂1
k = 1

N

∑N
i=1 ξ

i
X1

X̂2
k = 1

N

∑N
i=1 ξ

i
X2

% State estimate initialization of the next k loop

µ
(
ξiX2

)
= µmax

ξiX2

ks + ξi
X2

i = 1, . . . , N

ξ̃iX1 = max
(

0 , ξiX1 +
(
µ
(
ξiX2

)
−D

)
ξiX1δ + c1

√
ξi
X1

√
δ w1

0

)
i = 1, . . . , N

ξ̃iX2 = max
(

0 , ξiX2 − kcs µ
(
ξiX2

)
ξiX1δ +D

(
sin − ξiX2

)
δ + c2

√
ξi
X2

√
δ w2

0

)
i =

1, . . . , N
ξi ← ξ̃i

End For

Algorithm 5: State estimation for the chemostat using the Bootstrap particle filter.
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3 Simulation results

A comparison between the three previous filtering algorithms is proposed in this section
to find out which one has the best performances for the chemostat’s state estimation. In
perfect conditions, all these methods give good results. However, the proposed second
degree model is a drastic simplification of the real system, the biomass and substrate
concentrations could have very large and noisy variations and unknown initial conditions.
The output of this system is measured at widely separated instants and could have a
very high noise variance. Therefore, the filtering algorithm should stay able to follow
the state’s variations, should be robust against high variance observation noises and far
initial conditions, and must remain efficient even for low-frequency observations. For these
reasons, many tests are proposed to select the most suited algorithm for the chemostat
model.

First, we present the estimation results of each algorithm in the normal conditions and
compare their estimation errors. Fig 1 and Fig 2 represent the estimation of the biomass
and substrat concentrations respectively using the EKF; Fig 3 and Fig 4 represent their
estimation using the UKF and Fig 5 and Fig 6 using the particle filter. The estimation
error comparison is represented in Fig 7.

Figure 1: State X1 estimation using EKF
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Figure 2: State X2 estimation using EKF

Figure 3: State X1 estimation using UKF
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Figure 4: State X2 estimation using UKF

Figure 5: State X1 estimation using PF
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Figure 6: State X2 estimation using PF

Figure 7: Estimation error comparison
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