E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, J. Langou et al., LU factorization for accelerator-based systems, 2011 9th IEEE/ACS International Conference on Computer Systems and Applications (AICCSA), pp.217-224, 2011.
DOI : 10.1109/AICCSA.2011.6126599

URL : https://hal.archives-ouvertes.fr/hal-00654193

E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief et al., QR Factorization on a Multicore Node Enhanced with Multiple GPU Accelerators, 2011 IEEE International Parallel & Distributed Processing Symposium, pp.932-943, 2011.
DOI : 10.1109/IPDPS.2011.90

URL : https://hal.archives-ouvertes.fr/inria-00547614

E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst et al., Faster, Cheaper, Better ? a Hybridization Methodology to Develop Linear Algebra Software for GPUs, GPU Computing Gems, 2010.
DOI : 10.1016/b978-0-12-385963-1.00034-4

URL : https://hal.archives-ouvertes.fr/inria-00547847

E. Agullo, A. Buttari, A. Guermouche, and F. Lopez, Implementing Multifrontal Sparse Solvers for Multicore Architectures with Sequential Task Flow Runtime Systems, ACM Transactions on Mathematical Software, vol.43, issue.2, 2016.
DOI : 10.1145/2898348

URL : https://hal.archives-ouvertes.fr/hal-01333645

C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier, StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures . Concurrency and Computation: Practice and Experience, Special Issue: Euro-Par, pp.187-198, 2009.
DOI : 10.1007/978-3-642-03869-3_80

URL : https://hal.archives-ouvertes.fr/inria-00550877

G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar et al., Flexible Development of Dense Linear Algebra Algorithms on Massively Parallel Architectures with DPLASMA, 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum, pp.1432-1441, 2011.
DOI : 10.1109/IPDPS.2011.299

A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, Parallel tiled QR factorization for multicore architectures. Concurrency and Computation: Practice and Experience, pp.1573-1590, 2008.
DOI : 10.1007/978-3-540-68111-3_67

URL : http://arxiv.org/abs/0707.3548

J. Kurzak, H. Ltaief, J. Dongarra, and R. M. Badia, Scheduling dense linear algebra operations on multicore processors. Concurrency and Computation: Practice and Experience, pp.15-44, 2010.
DOI : 10.1002/cpe.1467

X. Lacoste, M. Faverge, P. Ramet, S. Thibault, and G. Bosilca, Taking Advantage of Hybrid Systems for Sparse Direct Solvers via Task-Based Runtimes, 2014 IEEE International Parallel & Distributed Processing Symposium Workshops, p.5, 2014.
DOI : 10.1109/IPDPSW.2014.9

URL : https://hal.archives-ouvertes.fr/hal-00925017

S. Nakov, On the design of sparse hybrid linear solvers for modern parallel architectures. Theses, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01304315

]. G. Quintana-ortí, E. S. Quintana-ortí, E. Chan, F. G. Van-zee, and R. A. Van-de-geijn, Scheduling of QR Factorization Algorithms on SMP and Multi-Core Architectures, 16th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP 2008), 2008.
DOI : 10.1109/PDP.2008.37

G. Quintana-ortí, F. D. Igual, E. S. Quintana-ortí, and R. A. Van-de-geijn, Solving dense linear systems on platforms with multiple hardware accelerators, ACM SIGPLAN Notices, vol.44, issue.4, pp.121-130, 2009.
DOI : 10.1145/1594835.1504196

Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, 2003.
DOI : 10.1137/1.9780898718003