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Abstract

We consider the problem of sorting a circular permutation by super
short reversals (i.e. reversals of length at most 2), a problem that finds
application in comparative genomics. Polynomial-time solutions to the
unsigned version of this problem are known, but the signed version re-
mained open. In this paper, we present the first polynomial-time solution
to the signed version of this problem. Moreover, we perform experiments
for inferring phylogenies of two different groups of bacterial species and
compare our results with the phylogenies presented in previous works. Fi-
nally, to facilitate phylogenetic studies based on the methods studied in
this paper, we present a web tool for rearrangement-based phylogenetic
inference using short operations, such as super short reversals.

Keywords : Genome Rearrangement, Short Reversals, Circular Permutations.
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1 Introduction

Distance-based methods are one of the three large groups of methods to infer phylo-
genetic trees from sequence data [1, Chapter 5]. Such methods proceed in two steps.
First, the evolutionary distance is computed for every sequence pair and stored in a
matrix of pairwise distances. Then, a phylogenetic tree is constructed from this ma-
trix using a specific algorithm, such as Neighbor-Joining [2]. Note that, to complete
the first step, we need some method to estimate the evolutionary distance between
a sequence pair. Assuming the sequence data correspond to complete genomes, we
can resort to the genome rearrangement approach [3] to estimate the evolutionary
distance.



In genome rearrangements, one estimates the evolutionary distance between two
genomes by finding the rearrangement distance between them, which is the length of
the shortest sequence of rearrangement operations that transforms one genome into
the other. Assuming genomes consist of a single chromosome, share the same set of
genes, and contain no duplicated genes, we can represent them as permutations of in-
tegers, where each integer corresponds to a gene. If, besides the order, the orientation
of the genes is also regarded, then each integer has a sign, + or —, and the permu-
tation is called a signed permutation. Similarly, we also refer to a permutation as an
unsigned permutation when its elements do not have signs. Moreover, if the genomes
are circular, then the permutations are also circular; otherwise, they are linear.

Many publications address the problem of finding the rearrangement distance be-
tween two permutations, which is equivalent to the problem of sorting a permutation
into the identity permutation. For a detailed survey, the reader is referred to the book
of Fertin et al. [3]. This problem varies according to the rearrangement operations
allowed to sort a permutation. Reversals are one of the most common rearrangement
operations observed in genomes. They reverse the order and orientation of a sequence
of genes within a genome. Although the problem of sorting a permutation by reversals
is a well-studied problem, most of the works do not take into account the length of
the reversals (i.e., the number of genes affected by it). As observed, short reversals
are prevalent in the evolution of some species [4-7], therefore efforts have been made
to address this issue algorithmically.

Jerrum [8] proved that the problem of sorting an unsigned linear permutation by
reversals of length 2 is solvable in polynomial time. He has also shown a polynomial-
time solution to the problem of sorting an unsigned circular permutation by reversals of
length 2. However, Egri-Nagy et al. [9] recently presented a different solution (Jerrum’s
solution is based on a combinatorial approach while Egri-Nagy et al. solution is based
on an algebraic approach). Heath and Vergara [10] considered the problem of sorting
an unsigned linear permutation by reversals of length at most 3 and presented a 2-
approximation algorithm. Galvao et al. [11] presented a polynomial-time solution to
the problem of sorting a signed linear permutation by reversals of length at most 2 and
a b-approximation algorithm to the problem of sorting a signed linear permutation by
reversals of length at most 3. Finally, Feng et al. [12] provided lower and upper bounds
for the problems of sorting an unsigned circular permutation by reversals of length 2
and by reversals of length at most 3.

In this work, we add to those efforts and present a polynomial-time solution to
the problem of sorting a signed circular permutation by super short reversals, that is,
reversals which affect at most 2 elements (genes) of a permutation (genome). This
solution closes a gap in the literature, as polynomial-time solutions to the problem of
sorting by super short reversals are known for unsigned circular permutations [8, 9],
unsigned linear permutations [8], and signed linear permutations [11]. In an attempt
to evaluate the proposed methods, we perform two experiments for inferring distances
and phylogenies of different groups of bacterial species. Firstly, we reproduce the
experiment performed by Egri-Nagy et al. [9] to infer the phylogeny of 8 bacteria of
Yersinia genus using super short reversal distance. However, we also consider the
orientation of the genes, while the authors have ignored it to treat the permutations
as unsigned. Secondly, we reproduce the experiment performed by Belda et al. [13] to
infer the phylogeny of y-proteobacteria using the reversal distance, but this time we
use the super short reversal distance. In order to facilitate phylogenetic studies based
on the proposed methods, we present a web tool for rearrangement-based phylogenetic
inference using short operations, called ShortPhy.



We would like to note that this paper corresponds to the full version of a previously
published conference paper [14]. The first relevant difference between both papers is
that this one contains expanded explanations and expositions of the methods. In par-
ticular, this paper uses some of the formalism introduced by Meidanis et al. [15] and
Solomon et al. [16] for dealing with the problem of sorting circular permutations by
reversals. The second relevant difference is that this paper shows additional experi-
mental results. Specifically, the experiment with ~y-proteobacteria was not present in
the conference paper. Lastly, the third relevant difference is that this paper presents
the web tool for rearrangement-based phylogenetic inference.

The rest of this paper is organized as follows. Section 2 presents the solution devel-
oped by Jerrum [8] to the problem of sorting by cyclic super short reversals. Section
3 builds upon the previous section and presents the solution to the problem of sorting
by signed cyclic super short reversals. Section 4 explains how we can use the solutions
described in sections 2 and 3 to solve the problem of sorting a (signed) circular permu-
tation by (signed) super short reversals. Section 5 presents the experimental results
performed on real data and also describes ShortPhy. Finally, Section 6 concludes the
paper.

2 Sorting by Cyclic Super Short Reversals

A permutation 7 is a bijection of {1, 2, ..., n} onto itself. A classical notation used
in combinatorics for denoting a permutation 7 is the two-row notation

( 1 2 ... n)
T = s
1 ) Tn

m € {1, 2, ..., n} for 1 < i < n. This notation indicates that m(1) = 71, 7(2) = w2,
..., m(n) = m,. The notation used in genome rearrangement literature, which is the
one we will adopt, is the one-row notation m = (71 72 ... m,). We say that 7 has size
n. The set of all permutations of size n is S,. Finally, we use the notation 7r;1 to
denote the position of element ¢ in the permutation 7, that is, 71'2-_1 = k such that m
= 4. In other words, 7! is the inverse of .

For i,j € {1, 2, ..., n}, define the interval [i,j] to be the set {i, i D1, ..., j© 1,
j}, where @ and © are the usual operations of subtraction and addition, respectively,
except that we take the result modulo n and choose n rather than 0 as the represen-
tative of the class of multiples of n. For instance, if n is 6, then [1, 3] = {1, 2, 3}
and [3, 1] = {3, 4, 5, 6, 1}. A cyclic reversal p(i, j) is an operation that transforms a
permutation 7 = (71 w2 ... 7,) into the permutation 7’ = 7 - p(4, j) such that

o { migjes i@ € [i]],
® T otherwise.
The cyclic reversal p(i, j) is called a cyclic k-reversal if k = j © i @ 1. It is called super
short if k = 2. In other words, a cyclic super short reversal p(i, ¢ @ 1) is equivalent to
the permutation (1...44+14¢...n) if i < n and to the permutation (n 2 ... n—11)
if ¢ = n. For this reason, the action of p(i, ¢ ® 1) over a permutation =, denoted by 7
p(i, 1® 1), can be seen as a composition of permutations performed from right to left.
The problem of sorting by cyclic super short reversals consists in finding the mini-
mum number of cyclic super short reversals that transform a permutation 7« € S,, into
tn = (12 ...n). This number is referred to as the cyclic super short reversal distance
of permutation 7 and it is denoted by d(7).



Let S = p1, p2, ..., pt be a sequence of cyclic super short reversals that sorts a
permutation 7 € S,, that is,

L P2 Ppr=in.
Then, we have that

o prt iy Py =T

We say that the sequence S~! = p;!, p;ll, e pfl generates m and, therefore, is a
generator sequence for 7. In this section, we revise the solution presented by Jerrum [8]
to the problem of finding a minimum-length generator sequence and explain how it
relates to the solution to the problem of finding a minimum-length sorting sequence.

Before presenting Jerrum’s solution [8], it is important to note that he uses a
different convention for compositions: in his paper, they are performed from left to
right; in ours, from right to left. Therefore, the solution to the problem of finding
a minimum-length generator sequence using left-to-right convention is also a solution
to the problem of finding a minimum-length sorting sequence using the right-to-left
convention, as Lemma 1 shows.

Lemma 1. A sequence S = p1, p2, ..., pt is a generator sequence for m when the
compositions are performed from left to right if, and only if, S is a sorting sequence
for m when the compositions are performed from right to left.

Proof. Suppose that the sequence S generates m when the compositions are performed
from left to right. Then, this sequence generates m~' when the compositions are
performed from right to left because it will give the same result as of performing the
compositions from left to right in the sequence S™' = p;*, p;%,, ..., p;* (note that
p;l = p;). Since 7 - 71 = 1, it follows that S sorts 7 when the compositions are
performed from right to left. Now, suppose that S sorts 7 when the compositions are
performed from right to left. Then, this sequence generates m when the compositions
are performed from left to right because it will give the same result as of performing the
compositions from right to left in the sequence S~!. Therefore the lemma follows. [

From this point, we will consider that the compositions are performed from left to
right when a permutation is being generated. On the other hand, we will consider that
the compositions are performed from right to left when a permutation is being sorted.
For this reason, according to Lemma 1, saying that a sequence S sorts a permutation
7 is equivalent to saying that S generates 7.

Another consequence of the convention difference is that some notions need to be
translated from his convention to ours. For instance, given a sequence S = p1, p2,
..., pt that generates a permutation ® € S,, Jerrum [8] defines the generator trace
of an element ¢ € [1,n] as the sequence (po, ..., p:) of images of ¢ under the partial
compositions of S. More specifically, if 7" is the permutation generated by the partial
composition i, - p1 -+ pk, with 7° = 1,,, then pp = 7F. Now, let ¢ : Z — {—1,0,4+1}
be the function given by

-1 ifi=-1 (mod n)
o(i) =<9 +1 ifi=+1 (mod n)
0 otherwise.

Then, he defines the generator displacement vector d° € Z™ of the sequence S as the
vector whose ¢th component is given by



a7 =320 ¢(pi — pi-1),

where (po, ..., pt) is the generator trace of i.

Now, considering that S sorts m, we define the sorting trace of an element 7; as
the sequence (po, . .., pt) of positions of m; under the partial compositions of S. More
specifically, if 7% is the permutation generated by the partial composition 7 - py - - -
pr, with 7° = 7, then p, = ﬁfri_l. Then, we define the sorting displacement vector
d®(m) € Z"™ of 7 with respect to S as the vector whose ith component is given by

i (m) = i1 (i — pi-1),
where (po, ..., pt) is the sorting trace of ;.

Lemma 2. Let S = p1, p2, ..., p+ be a sequence that sorts a permutation m € Sy,.
Then, d° = d°(x).

Proof. We prove this lemma by induction on the length of S. The base case |S| = 1
is trivial so assume |S| > 1. Let S’ be sequence yielded by removing p; from S, that
is, S’ = pa2, p3, ..., pt. Then, on the one hand, S’ generates the permutation 7’ = p1
- 7. On the other hand, S’ sorts permutation 7’ = 7 - p1. We argue that 7’ = =".
To see why this is true, suppose that p1 = p(i, i ®1). Then, m}, = my for k ¢ {i,i D1},
T = i1, and g, = m. In other words, ' can be obtained from 7 by switching
the positions of elements 7; and 7;g1, which is precisely the result of performing the
composition 7 - p(i, i @ 1) from right to left. Therefore, 7’ = 7" and, by induction
hypothesis, d° = d%' (x').

For analyzing the effect of adding p1 = p(i, i @ 1) back to S’, let k ¢ {i,i ® 1} be
an integer. If the generator trace of k with respect to S’ is (k, p1, ..., pi—1), then the
generator trace of k with respect to S is (k, k, p1, ..., pr—1). Similarly, the sorting
trace of an element m;, with respect to S’ is (k, p1, ..., pt—1) and the sorting trace of
7k, with respect to S is (k, k, p1, ..., pt_1). Therefore, d = df, = df/ (x') = df ().

Now, let (4, p1, ..., pt—1) be the generator trace of i and (i ® 1, pi, ..., pi_1) be
the generator trace of i @ 1 with respect to S’. Then, we have that (i, i ® 1, pi, ...,
pi_1) is the generator trace of i and (i ® 1, i, p1, ..., pt—1) is the generator trace of
i @ 1 with respect to S. Therefore, df = dfﬂgl + 1 and df®1 = dis/ — 1.

Similarly, let (i, p1, ..., pt—1) be the sorting trace of m; and (i ® 1, pi, ..., Pi_1)
be the sorting trace of mjg; with respect to S’. Then, we have that (i, i ® 1, pi, ...,
pi_1) is the sorting trace of m; and (i ® 1, 4, p1, ..., pt—1) is the sorting trace of m;g1
with respect to S. Therefore, df () = dfs, (x') + 1 and ds (7) = df (7') — 1.

Since df/ = disl(ﬂ") and disél = d%l(ﬂ'), it follows that df = d¥(m) and djy; =
dis1 (), what completes the proof. O

Example 1. Let S = p1, p2, ps be a sequence of cyclic super short reversals such that
p1 = p(1,4), p2 = p(1,2), and ps = p(2,3). Assuming that S is a generator sequence,
the partial compositions of S, with 7° = (1 2 3 4), produce the permutations T = (4 2
31), 7% = (4132), and 7 = (41 2 3). Therefore, the generator traces of elements
1, 2, 3, and 4 are respectively (1, 4, 4, 4), (2, 2, 1, 1), (3, 3, 3, 2), and (4, 1, 2, 3).
Moreover, the generator displacement vector of S is d® = -1, -1, -1, 3].

Now, considering that S sorts m = (4 1 2 3), the partial compositions of S produce
the permutations 7t = (312 4), 72 = (13 2 4), and w® = (1 2 3 4). Therefore, the
sorting traces of elements m1 = 4, e = 1, 3 = 2, and w4 = 3 are respectively (1, 4,
4, 4), (2,2,1,1), (3,3, 3,2), and (4, 1, 2, 3). Moreover, the sorting displacement
vector of ™ with respect to S is d°(w) = [-1, —1, —1, 3].



As Lemma 2 shows, if S is a sequence of cyclic super short reversals that sorts
a permutation w € S,, then the generator displacement vector of S is equal to the
sorting displacement vector of m with respect to S (see Example 1). Therefore, every
property about the generator displacement vector proved by Jerrum [8] also applies
to the sorting displacement vector. In particular, Lemma 3 states two properties of
special interest.

Lemma 3. Let S = p1, p2, ..., pt be a sequence of cyclic super short reversals that
sorts a permutation m € Syp. Then, we have that

> dim) =0, (1)

df(r) =m —i (mod n). (2)

Note that, in one hand, we can think of a sequence of cyclic super short reversals
as specifying a displacement vector. On the other hand, we can also think of a dis-
placement vector as specifying a sequence of cyclic super short reversals. Let = (x1,

2, ..., Tn) € Z" be a vector and m € S, be a permutation. We say that x is a valid
vector for wif 37, s = 0 and z; = m; — ¢ (mod n). Given a vector x = (z1, ®2, ...,
Zn) € Z" and two distinct integers ¢, j € {1,2, ..., n},let r =¢ — j and s = (i + ;)
— (4 + z;). The crossing number of ¢ and j with respect to x is defined by
c--(x):{ Hk e [r,s]: k=0 (mod n)}| if r <s,
I —{k €s,7r] : k=0 (mod n)}| ifr > s.

The crossing number of z is defined by C(z) = %Z#j lcij ()]

Using the notion of crossing number, Jerrum [8, Lemma 3.6] was able to prove a
fundamental lemma: if S is a minimum-length sequence that generates a permutation
7, then the length of S is equal to the crossing number of the generator displacement

vector of S. Lemma 4 is the restatement of that lemma considering lemmas 1 and 2.

Lemma 4. Let S be a minimum-length sequence of cyclic super short reversals that
sorts a permutation m € Sy, and let x € Z™ be a valid vector for w. If ds(7r) = x, then

d(r) = C(x).

Lemma 4 allows the problem of sorting a permutation 7 by cyclic super short
reversals to be recast as the optimization problem of finding a valid vector x € Z™ for
7 with minimum crossing number. More specifically, as Jerrum [8] pointed out, this
problem can be formulated as the integer program:

Minimize C(z) over Z"
subject to >, x; =0, s = m — ¢ (mod n).

Although solving an integer program is NP-hard in the general case, Jerrum [8] pre-
sented a polynomial-time algorithm for solving this one.

Firstly, Jerrum [8] introduced a transformation T;; : Z" — Z" defined as follows.
For any vector x € Z", the result, ' = T;;(z), of applying T;; to z is given by z}, = xx
for k ¢ {i,j}, #i = s — n, and 2 = x; + n. Let max(z) and min(z) respectively denote
the maximum and minimum component values of a vector x € Z™. The transformation
T;; is said to contract z iff x; = max(x), ; = min(z) and z; — x; > n. Moreover,
T;; is said to strictly contract x iff, in addition, the final inequality is strict. Lemma
5 shows what is the effect of contracting transformations on the crossing number of a
valid vector.



Lemma 5. Let x and ' be two valid vectors over Z™ such that ' = T;;(z) and T;;
is a contracting transformation. Then, C(z') — C(z) = 2(n + x; — x;).

Proof. The proof of this lemma is given by Jerrum [8, Theorem 3.9]. We note, however,
that he mistakenly wrote that C(z') — C(z) = 4(n + x; — ;). In other words, he
forgot to divide the result by 2. This division is necessary because the crossing number
of a vector is the half of the sum of the crossing numbers of its indices. ]

The algorithm proposed by Jerrum [8] starts with a feasible solution to the integer
program and performs a sequence of strictly contracting transformations that decrease
the value of the crossing number. When no further strictly contracting transformation
can be performed, the solution is guaranteed to be optimal. It is explained by Jerrum
[8]: any two local optimum solutions (i.e., solutions that admit no strictly contracting
transformation) can be brought into agreement with each other via a sequence of
contracting transformations. The detailed algorithm is shown in Algorithm 1.

Algorithm 1: Algorithm for computing the cyclic super short reversal
distance of a permutation 7.

Data: A permutation © € S,,.
Result: Cyclic super short reversal distance of .

Let x be a n-dimensional vector
for k =1 ton do
‘ T < T — k

end

while max(z) — min(z) > n do
Let 4,j be two integers such that z; = max(z) and z; = min(x)
T; < T; — N
Tj—x;+n

end

return C(x)

© 00 N O ok W N
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Example 2. Suppose that we run Algorithm 1 on the permutation m = (4 5 3 1 2).
First, it will initialize the vector x to [3, 3, 0, —3, —3] (note that C(z) = 8). The vector
x admits strictly contracting transformations, hence the while loop will be executed. In
the first iteration of the while loop, the algorithm will perform the transformation Tia

to x, obtaining the vector x = [-2, 3, 0, 2, —3] (note that C(z) = 6). In the second
iteration of the while loop, the algorithm will perform the transformation Tss to x,
obtaining the vector x = [—2, =2, 0, 2, 2] (note that C(z) = 4). Since the resulting

vector admits no strictly contracting transformation, the while loop will stop executing
and the algorithm will return the value of C(z), which will be equal to 4.

Regarding the time complexity of Algorithm 1, we have that line 1 and the for loop
of lines 2-4 take O(n) time. Jerrum [8] observed that none of the variables z; changes
value more than once, therefore the while loop iterates at most 4 times. Due this fact,
we can implement the while loop in O(n) time by using an auxiliary n-dimensional
vector V. Each element of V' is composed of two variables: value and index. First,
we initialize V in such a way that V;.value = z; + n and V;.index = i. Since |z;| <



n, we have that 0 < z; + n < 2n. This means that we can sort V' with respect to
the variable value in O(n) time using counting sort. After sorting V', we can obtain
z; = min(z) and z; = max(x) in constant time because, at iteration k, we have that
j = Vi.index and i = Vyp1—g.index. Finally, we can compute the value of C(x) in
O(n?) time, therefore the overall complexity of the algorithm is O(n?). In fact, this
complexity analysis reveals that the time complexity of Algorithm 1 reduces to the
time complexity of computing the crossing number.

Note that, in this section, we have focused on the problem of computing the cyclic
super short reversal distance of a permutation rather than finding the minimum-length
sequence of cyclic super short reversals that sorts it. As Jerrum [8] remarked, his
proofs are constructive and directly imply an algorithm for finding the sequence of
cyclic super short reversals.

3 Sorting by Signed Cyclic Super Short Rever-

sals
A signed permutation 7 is a bijection of {—n, ..., =2, —1, 1, 2, ..., n} onto itself that
satisfies m(—t) = —n () for all ¢ € {1, 2, ..., n}. The two-row notation for a signed

permutation is

. -n ... =2 -1 1 2 ... 0n
T= —Tp ... —To —T1 T T2 ... Tn )’
m € {1, 2,...,n} for 1 <i < n. The one-row notation is 7 = (w1 m2 ... m,). Note
that we drop the mapping of the negative elements since w(—i) = —n (i) for all 7 €
{1, 2, ..., n}. By abuse of notation, we say that 7 has size n. The set of all signed

permutations of size n is Sit.
A signed cyclic reversal pi (4, j) is an operation that transforms a signed permu-
tation 7 = (w1 @2 ... 7,) into the signed permutation 7’ = 7 - p* (i, j) such that

o { ~Tigjee  ifz € [i,]],
z T otherwise.

The signed cyclic reversal pi (4, 7) is called a signed cyclic k-reversal if k =5 © 1 @ 1.

It is called super short if k =1 or k = 2.

The problem of sorting by signed cyclic super short reversals consists in finding the
minimum number of signed cyclic super short reversals that transform a permutation
7 € ST into ¢,. This number is referred to as the signed cyclic super short reversal
distance of permutation 7 and it is denoted by d* (r).

Let the absolute position of an integer ¢ € {—n, ..., =2, —1, 1, 2, ..., n} in the
signed permutation 7 € S;* be the integer k such that mx = i or mx = —i. Then,
given a sequence S = pi‘:, pé':, e pti of signed cyclic super short reversals that sorts a

signed permutation 7, we define the sorting trace of an element 7; as the sequence (po,
..., pt) of absolute positions of m; under the partial compositions of S. The sorting
displacement vector ds(w) € Z" of 7 with respect to S is defined the same way as in
Section 2.

Example 3. Let 7 = (—3 —1 —2) be a signed permutation and let S = p1, p2, ps be
a sorting sequence for m such that p1 = p(1,2), p2 = p(2,3), and ps = p(3,3). The
partial compositions of S produce the permutations ' = (13 =2), 7% = (1 2 —3), and



= (1 2 3). Therefore, the sorting traces of elements m1 = —3, ma = —1, and w3 =
—2 are respectively (1, 2, 3, 3), (2, 1, 1, 1), and (3, 3, 2, 2). Moreover, the sorting
displacement vector of w with respect to S is d°(n) = [2, —1, —1].

Now, let o be the unsigned permutation such that o = (|m1| |m2| ... |m|) and let
S" = p1, p2, ..., pm, m < t, be the sequence of cyclic super short reversals obtained
from S by removing the signed cyclic 1-reversals and transforming every signed cyclic
2-reversal pki = p*(i, i®1) into the cyclic 2-reversal py, = p(i, i®1). Since signed cyclic
I-reversals do not affect the sorting trace of an element, it follows that d°(7) = s’ (o).
For this reason, every property about the sorting displacement vector of unsigned
permutations also applies to the sorting displacement vector of signed permutations.
In particular, Lemma 6 is the signed analog of Lemma 3.

Lemma 6. Let S = pli, in, e pti be a sequence of signed cyclic super short reversals
that sorts a signed permutation m € SE. Then, we have that

>_di(m) =0, 3)

di () = |mi| —i (mod n). (4)

Let € Z™ be a vector and m € S& be a signed permutation. We say that
x is a valid vector for w if Y, x; = 0 and z; = |m| — ¢ (mod n). Given a valid
vector z for the signed permutation 7, we define the set podd(w, x) as podd(w, x)
= {i:m > 0and |z;| is odd} and we define the set neven(w, x) as neven(rw, z) =
{i : my < 0 and |x;| is even}. Moreover, let U(w, =) denote the union of these sets,
that is, U(w, ) = podd(mw, x) U neven(w, z). The following lemma is the signed analog
of Lemma 4.

Lemma 7. Let S be a minimum-length sequence of signed cyclic super short reversals
that sorts a signed permutation © € S& and let x € Z™ be a valid vector for w. If
d®(n) = x, then d*(x) = C(x) + |U(x,x)|.

Proof. Note that the sequence S can be decomposed into two distinct subsequences
S1 and Sz such that S; is formed by the signed cyclic 1-reversals of S and S2 is formed
by the signed cyclic 2-reversals of S. We can assume, without loss of generality, that
the signed cyclic reversals of the subsequence Sy are applied first. This is because we
can replace any pair of consecutive signed cyclic reversals p(i, 1), p(j, 7@ 1) with: p(j,
J®1), p ) i ¢ 1, 1) p, jB1), pS1,i61) ifi = j© 1; and p(j, j & 1),
p(t®1,id1) if i = j. By making successive replacements of this type, we eventually
obtain a minimum-length sorting sequence S’ in which all the signed cyclic 2-reversals
are applied before the signed cyclic 1-reversals. Moreover, d° (7)) = dsl(w).

Now, we prove that |Si1| = |U(m, z)| by induction on the size of Sa. For the base
case, suppose that |S2| = 0. Then, we have that z; = 0 for ¢ € [1,n], therefore C(x)
= 0. Moreover, if 7 is not sorted, then it has |S1| negative elements. Since every |z;|
is even, we can conclude that |S1| = |neven(r, )| = |U(w, z)|. Now, assume |S2| > 1
and suppose that we apply a signed cyclic 2-reversal pi (¢, 1® 1) of Sa in 7, obtaining
a signed permutation 7’. Moreover, let S’ be the resulting sequence after we remove
p (i, i®1) from So. According to the proof of Lemma 2, we have that a3’ (n') = dg (m)
for k ¢ {iji®1}, d¥' (7') = ds, (7) + 1, and ds (x') = d (x) — 1. Then, assuming
the vector 2’ € Z" is equal to d° ('), we show that:



1) keUr',2') it k e Ulm,z) for k ¢ {ii®1};
i) i e U ,2")ifi®1 € U(r, z);
ili) and i 1 € U(r',2") iff i € U(m,z).
Statement (i) follows from the fact that 7}, = 7 and 3, = z for k ¢ {i,i ® 1}. To
prove statement (ii), we have four cases to analyze:
a) mie1 > 0 and |z;@1| is even. In this case, we have that 7; < 0 and |zj| is odd,
therefore i ¢ U(n',z") and i ® 1 ¢ U(w,z);
b) mi@1 > 0 and |z;g1| is odd. In this case, we have that 7; < 0 and |zj| is even,
therefore i € neven(n’,z') and i ® 1 € podd(m,z);
c) Tig1 < 0 and |z;g1] is even. In this case, we have that 7 > 0 and |z}| is odd,
therefore ¢ € podd(n’,z') and i ® 1 € neven(m,z);
d) mig1 < 0 and |7;g1] is odd. In this case, we have that 7, > 0 and |z}| is even,
therefore ¢ ¢ U(n',2') and i ® 1 ¢ U(w,z).
Finally, the proof of statement (iii) is analogous to the proof of statement (ii). Taken
together, these statements imply that |U(n’,z")| = |U(w, z)|, completing the inductive
step.
Given that |Si| = |U(m, z)| regardless the size of Sz and that |Sz| > C(z) (Lemma
4), we can conclude that |S2| = C(x), therefore the lemma follows. O

The Lemma 7 allows the problem of sorting a signed permutation 7 by signed
cyclic super short reversals to be recast as the optimization problem of finding a valid
vector € Z" for m which minimizes the sum C(z) + |U(w,z)|. The next theorem
shows how to solve this problem in polynomial time.

Theorem 1. Let 7 € Si be a signed permutation. Then, we can find a valid vector
x € Z" which minimizes the sum C(z) + |U(m,z)| in polynomial time.
Proof. We divide our analysis into two cases:

i) n is even. In this case, we have that the value of |U(m,x)| is the same for any
feasible solution x. This is because, in order to be a feasible solution, a vector

z has to satisfy the restriction z; = |m;| — ¢ (mod n). This means that z; is
congruent modulo n with @ = |m;| — ¢ and belongs to the equivalence class
{..,a—2n,a—mn, a,a+n, a+2n,...}. Since n is even, the parities of the

absolute values of the elements in this equivalence class are the same, therefore
the value of |U(w,x)| is the same for any feasible solution z. It follows that
we can only minimize the value of C(z) and this can be done by performing
successive strictly contracting transformations.

ii) n is odd. In this case, it is possible to minimize the values of |U(w,z)| and
C(z). Firstly, we argue that minimizing C(z) leads to a feasible solution z”
such that C(z") + |U(m,z")| is at least as low as C(z') + |U(m,’)|, where x’
can be any feasible solution such that C(z) is not minimum. To see this, let z’
be a feasible solution such that C(z’) is not minimum. Then, we can perform
a sequence of strictly contracting transformations which decrease the value of
C(x). When no further strictly contracting transformation can be performed,
we obtain a solution z” such that C(z’) is minimum. On the one hand, we
know from Lemma 5 that each strictly contracting transformation T;; decreases
C(x) by at least 2 units. On the other hand, since n is odd, its possible that
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the parities of |z;| and |z;| have been changed in such a way that the value
of |U(w,x)| increases by 2 units. Therefore, in the worst case, each strictly
contracting transformation does not change the value of C(z) + |U(w,z)|, so
C(@') + |U(mw,2")| > C(z") + |U(m,z")|. Now, we argue that, if there exists
more than one feasible solution z such that C(z) is minimum, then it still may
be possible to minimize the value of |U(w,z)|.

Jerrum (8, Theorem 3.9] proved that if there is more than one feasible solution
such that C(z) is minimum, then each of these solutions can be brought into
agreement with each other via a sequence of contracting transformations. Note
that a contracting transformation T;; does not change the value of C(x), but it
can change the value of |U (7, z)| because n is odd and the parities of |z;| and |z;|
change when Tj; is performed. Therefore, among all feasible solutions such that
C(z) is minimum some of them have minimum |U(, z)| and these solutions are
optimal. Hence, we can obtain an optimal solution by first obtaining a feasible
solution with minimum C(z) (this can be done by performing successive strictly
contracting transformations). Then every possible contracting transformation
T;; which decreases the value of |U (7, z)| can be applied to that feasible solution.

The previous analysis directly implies an exact algorithm for sorting by signed
cyclic super short reversals. Such an algorithm is described below (Algorithm 2).
Regarding its time complexity, we know from the previous section that lines 1-9 take
O(n) time. Note that, in the second while loop, none of the variables z; changes
value more than once, therefore the second while loop iterates at most 7 times. As
a consequence, we can implement the second while loop in O(n) time by using an
auxiliary n-dimensional vector V just as described at the end of Section 2. Finally, we
can compute C(x) + |U(m, )| in O(n?), therefore the overall complexity of Algorithm 2
is O(n?). In fact, the time complexity of Algorithm 2 is limited by the time complexity
of computing the crossing number. O

Example 4. Suppose that we run Algorithm 2 on the permutation m = (+4 —3 =5
—1 +2). First, it will initialize the vector x to [3, 1, 2, —3, —3] (note that C(z) =
7 and |U(mw,z)| = 3). The vector © admits strictly contracting transformations, hence
the first while loop will be executed. In the first iteration of the first while loop, the
algorithm will perform the transformation Ti4 to x, obtaining the vector x = [-2, 1, 2,
2, =3] (note that C(x) =5 and |U(w,z)| = 3). The resulting vector admits no strictly
contracting transformation, but it admits a contracting transformation Ti; such that
i,j € U(m,z), hence the second while loop will be executed. In the first iteration of the
second while loop, the algorithm will perform the transformation T35 to x, obtaining
the vector ¢ = [—2, 1, =3, 2, 2] (note that C(x) = 5 and |U(w,z)| = 1). Since the
resulting vector admits no contracting transformation T;; such that i,j € U(w,x), the
second while loop will stop executing and the algorithm will return the value of C(x)
+ |U(m, x)|, which will be equal to 6.

Until now, we have focused on the problem of computing the signed cyclic super
short reversal distance of a signed permutation rather than finding the minimum-
length sequence of signed cyclic super short reversals that sorts it. We remark that
the proof of Lemma 7 directly implies an algorithm for finding the sequence of signed
cyclic super short reversals. More specifically, given a signed permutation m € SE. we
can use Algorithm 2 to obtain a valid vector € Z" which minimizes the sum C(z) +
|U (7, z)|. Then, we can find a sequence S of cyclic super short reversals that sorts the
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Algorithm 2: Algorithm for computing the signed cyclic super short re-
versal distance of a signed permutation 7.

Data: A permutation 7 € S.
Result: Signed cyclic super short reversal distance of .

Let = be a n-dimensional vector
for k =1 ton do
‘ T < |7Tk| —k
end
while max(x) — min(z) > n do
Let i,j be two integers such that z; = max(z) and z; = min(z)
Ti < Ty — N
Tj < T;+n
end
if n is odd then
while exists a contracting transformation T;; such that i,j € U(rm, x)
do
12 T; < Ti — N
13 Tj T +n
14 end
15 end
16 return C(z) + |U(w,z)|

© O N O Gk W N

[
= O

unsigned permutation o = (|71 |m2| ... |7n|) using the algorithm implied by Jerrum’s
proofs [8]. Finally, we can sort = by applying the cyclic super short reversals of S
as if they were signed followed by signed cyclic 1-reversals on the remaining negative
elements.

4 Sorting Circular Permutations

In this section, we explain how we can use the solution to the problem of sorting by
(signed) cyclic super short reversals to solve the problem of sorting a (signed) circular
permutation by (signed) super short reversals. This explanation is based on the works
of Meidanis et al. [15], Solomon et al. [16], and Egri-Nagy et al. [9], where one can find
more details.

A circular permutation is an arrangement of the elements of {1, 2, ..., n} around
the circle. A super short reversal is an operation that swaps two adjacent elements of
a circular permutation. Similarly, a signed circular permutation is an arrangement of
n elements of {—n, ..., =2, =1, 1, 2, ..., n} around the circle such that |i| # |j| for
any two distinct elements ¢ and j in the arrangement. A signed super short reversal is
an operation that either swaps two adjacent elements and flips their signs or just flip
the sign of a single element of a signed circular permutation.

Given an initial element of a (signed) circular permutation with n elements, we can
represent it as a (signed) permutation — such as defined in the two previous sections
— as follows. Walk around the circle in a clockwise direction, beginning at the initial
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element, and write down the elements as they are visited. This process can produce
n different (signed) permutations, one for each possible initial element. Moreover,
since a (signed) circular permutation represents a circular chromosome, which lives in
three dimensions, it can also be “turned over” before we begin the walk. By doing
it, the process can also produce n different (signed) permutations. Because the n
(signed) permutations produced in the first process are different from those produced
in the second process, both processes can produce a total of 2n different (signed)
permutations. All these 2n (signed) permutations are equivalent as they represent
different viewpoints of a chromosome represented by a (signed) circular permutation.

In order to formalize the discussion of the last paragraph, we define two operations
on (signed) permutations: rotations and reflections. A rotation, denoted by r, is an
operation that moves the elements of a (signed) permutation one position to the right,
that is, 7 - 7 = (7 71 ..., Tn—2, Tn-1). We define r* for every i € Z as follows. For
i > 0, r* is the composition of r ¢ times and r~¢ is the inverse of r*. Moreover, r°
is the identity. Note that r* = r® r=¢ = 9" and r* - v/ = ¢ forall i,j € Z. A
reflection, denoted by s, is an operation that reverses the order of the elements of a
(signed) permutation. Besides, it also flips the signs of the elements if the permutation
is signed. For instance, if 7 is an unsigned permutation, then 7 - s = (7w -1 ... T2
m1). On the other hand, if 7 is signed, then 7 - s = (=7, —7p—1 ... —m2 —m1). We
define s* for every i € Z as follows. For i > 0, s° is the composition of s i times and
s~ % is the inverse of s. Moreover, s° is the identity. Note that s~* 2 = §% and
$2 = sl for all i € Z.

Given two (signed) permutations 7w and o, we define a binary relation ~ between
them as follows: = ~ o if, and only if, there are i,j € Z such that 7 = o - 7' - &7.
It is not hard to see that the binary relation ~ is an equivalence relation (note that
rt .57 = s . r7%). For this reason, given a permutation 7 that represents a circular
permutation, we can define the equivalence class of 7, denoted by [r], as [7] = {0 €
Sp @ ™ ~ o}. This equivalence class defines a circular permutation. Similarly, given
a signed permutation 7 that represents a signed circular permutation, we can define
the equivalence class of 7 as [1] = {0 € S : © ~ ¢}. This equivalence class defines
a signed circular permutation.

Since a (signed) circular permutation is defined by the equivalence class of a
(signed) permutation that represents it and a (signed) super short reversal corre-
sponds to a (signed) cyclic super short reversal, the problem of sorting a (signed)
circular permutation by (signed) super short reversals can be stated as follows: given
a (signed) permutation 7 that represents a (signed) circular permutation, find the
minimum number of (signed) cyclic super short reversals that transform a permuta-
tion in [r] into a permutation in [t,]. This number is referred to as the (signed) super
short reversal distance of the (signed) circular permutation represented by 7 and it is
denoted by d°([x]).

=3s' s

Lemma 8. Let m be an unsigned permutation that represents a circular permutation.
Then, d°([r]) = min,e( {d(0)}.

Proof. 1t is not hard to see that d°([n]) < minge[-{d(co)}, so let us see why d°([r]) >
min,e(j{d(c)}. Assume that d°([n]) = ¢t and let S = p1, ..., p: be a minimum-length
sequence of cyclic super short reversals that transforms a permutation o € [7] into a
permutation v € [tn]. Then, we have that

opL o pr=1 '
O—.pl...pt:Ln.rz.s]
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O"pl'""pt'sj"riizbn
o-8 -r7tph o pl=
The last equality comes from the fact that

pi,i®1l) - r=r-pid®l,id?2),
p(t,1®1)-s=s-pnGi,noid1).

Therefore, there exists a minimum-length sequence S’ = p}, ..., p; that sorts the
permutation o - s’ - r7* € [x], and the lemma follows. O

Lemma 9. Let w be a signed permutation that represents a signed circular permuta-
tion. Then, d°([r]) = ming e {d* (o)}

Proof. The proof is analogous to the proof of Lemma 8 by observing that

pE(, ) r=r pTGE®1,i®1),
pr(, i) -s=s-pt(lei, 1610),
pti,idl) - r=r-ptial,i®2),
pt(i,i®1)-s=s-pT(noi,noidl).

O

According to lemmas 8 and 9, the problem of computing the (signed) super short
reversal distance of a (signed) circular permutation represented by a (signed) per-
mutation 7 can be reduced to the problem of finding a (signed) permutation in [7]
with minimum (signed) cyclic super short reversal distance. This a precisely what
algorithms 3 and 4 do. In order to compute the (signed) cyclic super short reversal
distance, these algorithms have to execute algorithms 1 and 2 O(n) times. Therefore,
the overall complexity of algorithms 3 and 4 is O(n?).

Algorithm 3: Algorithm for computing the super short reversal distance
of a circular permutation.

Data: A permutation © € S,.
Result: Super short reversal distance of the circular permutation
represented by 7.

d + o0
for o € [n] do
| d + min{d, d(o)}
end
return d

Gk W N =

5 Experimental Results and Discussion

We implemented the algorithms for computing the (signed) super short reversal dis-
tance of (signed) circular permutations (the implementation is available for down-
load') and performed experiments for inferring distances and phylogenies of two dif-
ferent groups of bacterial species. The first group is composed of 8 bacteria from the

Ihttps://github.com/chrbaudet/SuperShortReversals
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Algorithm 4: Algorithm for computing the super short reversal distance
of a signed circular permutation.

Data: A permutation 7 € S.
Result: Signed super short reversal distance of the signed circular
permutation represented by 7.

d + o0
for o € [n] do
| d + min{d, d*(0)}
end
return d

Gk W N =

Yersinia genus (Section 5.1) and the second group is composed of 28 y-proteobacteria
(Section 5.2). In all experiments, we used PHYLIP package [17] to build the phyloge-
netic trees.

In order to facilitate phylogenetic studies based on the methods studied in this
paper, we have implemented a web tool. Section 5.3 describes it in more detail.

5.1 Dataset 1 : Yersinia genomes

Table 1 shows a list of 8 Yersinia bacteria which were first explored in the work of
Darling et al. [7]. Starting from the complete genome sequence of these organisms,
the authors constructed a multiple alignment using Mauve [18] software to identify
conserved blocks. Based on the alignment, they performed phylogenetic studies of
the Yersinia using Bayesian statistical methods. More recently, Egri-Nagy et al. [9]
performed phylogenetic studies of this same group of bacteria using distance-based
methods. More precisely, they computed the super short reversal distance between
the permutations obtained from Darling et al. [7] and constructed a phylogenetic tree
using Neighbor-Joining.

Table 1: List of Yersinia bacteria
Code | Species
YPK Yersinia pestis Kim
YPA Yersinia pestis Antiqua
YPM Yersinia pestis Microtus 91001
YPC Yersinia pestis CO92
YPN Yersinia pestis Nepal516
YPP Yersinia pestis Pestoides F' 15-70
YT1 Yersinia pseudotuberculosis IP31758
YT2 Yersinia pseudotuberculosis IP32953

We reproduced the experiment performed by Egri-Nagy et al., but we also con-
sidered the signed super short reversal distance. Moreover, differently from them, we
considered that each permutation has 78 elements rather than 79. It is due to Dar-
ling et al. [7], who claimed that they could identify 78 conserved segments (or blocks)
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using Mauve, but they provided permutations with elements ranging from 0 to 78. In
a personal communication, Darling confirmed that there are actually 78 blocks, with
0 and 78 being part of the same block (see Supplementary Material File 1 to obtain
the 8 signed permutations for this group of species). The computed distance matrices
are shown in tables 2 and 3. We also constructed phylogenetic trees from each matrix
using Neighbor-Joining. The resulting topologies are illustrated by figures 1 and 2.
As we can see, the topology of both trees is the same.

Table 2: Yersinia dataset — Super short reversal distance matrix

YPK | YPA | YPM | YPC | YPN | YPP | YT1 | YT2
YPK | 0000 | 0216 | 0728 | 0179 | 0319 | 0502 | 0740 | 0728
YPA | 0216 | 0000 | 0736 | 0313 | 0255 | 0470 | 0691 | 0730
YPM | 0728 | 0736 | 0000 | 0697 | 0729 | 0596 | 0327 | 0345
YPC | 0179 | 0313 | 0697 | 0000 | 0358 | 0617 | 0746 | 0734
YPN | 0319 | 0255 | 0729 | 0358 | 0000 | 0507 | 0590 | 0591
YPP | 0502 | 0470 | 0596 | 0617 | 0507 | 0000 | 0399 | 0418
YT1 | 0740 | 0691 | 0327 | 0746 | 0590 | 0399 | 0000 | 0157
YT2 | 0728 | 0730 | 0345 | 0734 | 0591 | 0418 | 0157 | 0000

Table 3: Yersinia dataset — Signed super short reversal distance matrix

YPK | YPA | YPM | YPC | YPN | YPP | YT1 | YT2
YPK | 0000 | 0243 | 0752 | 0205 | 0338 | 0533 | 0764 | 0760
YPA | 0243 | 0000 | 0772 | 0352 | 0279 | 0510 | 0724 | 0773
YPM | 0752 | 0772 | 0000 | 0728 | 0747 | 0643 | 0361 | 0385
YPC | 0205 | 0352 | 0728 | 0000 | 0381 | 0656 | 0776 | 0760
YPN | 0338 | 0279 | 0747 | 0381 | 0000 | 0547 | 0617 | 0624
YPP | 0533 | 0510 | 0643 | 0656 | 0547 | 0000 | 0434 | 0457
YT1 | 0764 | 0724 | 0361 | 0776 | 0617 | 0434 | 0000 | 0189
YT2 | 0760 | 0773 | 0385 | 0760 | 0624 | 0457 | 0189 | 0000

For comparison purposes, we computed the pairwise super short reversal distance
between (unsigned) permutations with 79 elements, but our results differed from the
ones of Egri-Nagy et al. After personal communications with one of the authors,
we found a small bug in the script they used to compute the distance matrix. The
corrected script, which is available for download,? generates the same results as ours.

Despite the observed differences regarding the distance matrices, we remark that
the topology of the phylogenetic tree obtained by Egri-Nagy et al. (Figure 3) is almost
the same as of the trees we obtained. Considering the pair of Y. pseudotuberculosis
(YT1 and YT2) as outgroup, our trees show that YPM was the first to diverge, followed by
the divergences of YPP, YPN, YPA, and the final divergence of YPK and YPC. In their tree,
the divergence of YPN happened before the divergence of YPC, which occurred previous
to the divergence of YPK and YPA. This slight difference does not invalidate Egri-Nagy

2https://bitbucket.org/egri-nagy/biogap
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et al. analysis that the tree produced using super short reversal distance is consistent
with the tree of Bos et al. [19], which was produced using sequence variation.

201.88

&
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S

Figure 1: Yersinia dataset — Super short reversal distance phylogeny

We can also compare our trees with the consensus phylogenetic network presented
by Darling et al. [7], who used reversal information without length restriction. As for
the similarities, the pair of Y. pseudotuberculosis groups together. Moreover, consider-
ing this pair as an outgroup, YPP and YPM were the first to diverge, and the remaining
bacteria group together. As for the differences, we can observe that YPP diverged be-
fore YPM in Darling et al. phylogeny. We can also observe that YPN is sibling of YPK,
that YPC is sibling of YPA. Additionally, these four bacteria have a common ancestor
that is a descendant of the least common ancestor of these four bacteria and YPM.

5.2 Dataset 2 : y-proteobacteria genomes

The list of 30 -proteobacteria shown in Table 4 was extracted from the work of
Belda et al. [13]. In their work, the authors provided a table containing a list of 244
orthologous genes found within these species. However, as we will further explain
below, we could not reconstruct the original signed permutations.

Belda et al. adopted the nomenclature of the Microbial Genome Database for
Comparative Analysis (MGBD) [20,21] for the gene names. For this reason, we down-
loaded the MBGD tables (release 2014-02) and we tried to match the names found in
the orthology table produced by Belda et al. to obtain gene directions. During this
process, we observed that the orthology information had significant changes for two
species (wgl and sfl), therefore we removed them from our study.

In the orthology table provided by Belda et al., each entry is composed of a list
of orthologous genes (one gene for each species). Most of the 244 entries in this table
were correct and we could retrieve the missing gene directions by looking for the
correspondent genes in the MBGD database. On the other hand, some of the entries
had incorrect or outdated names, so we updated the ones whose correspondence could
be found without ambiguity. After doing this, we discarded a total of 15 entries of the
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Table 4: List of y-proteobacteria

MBGD 3-letter code | Species
buc Buchnera aphidicola APS
Buchnera aphidicola Bp
bab . . . .
(Baizongia pistaciae)
bas Buchnera aphidicola Sg
bfl Blochmannia floridanus
ecc Escherichia coli CFT073
eco Escherichia coli K-12 MG1655
ecs Escherichia coli Sakai
ece Escherichia coli EDL933
hdu Haemophilus ducreyi 35000HP
hin Haemophilus influenzae Rd KW20
pae Pseudomonas aeruginosa PAO1
ppu Pseudomonas putida KT2440
pst Pseudomonas syringae DC3000
pmu Pasteurella multocida PM70
sfx Shigella flexneri 2457T
son Shewanella oneidensis MR-1
stm Salmonella typhimurium LT2
SGSC 1412; ATCC 700720
stt Salmonella enterica Ty2
sty Salmonella enterica CT18
vch Vibrio cholerae N16961
vpa Vibrio parahaemolyticus O3:K6
RIMD 2210633
vvu Vibrio vulnificus CMCP6
xac Xanthomonas axonopodis 306
xcc Xanthomonas campestris ATCC 33913
xfa Xylella fastidiosa 9a5c
xft Xuylella fastidiosa Temeculal
ype Yersinia pestis CO92
ypk Yersinia pestis KIM
Excluded species
Wigglesworthia glossinidia endosymbiont
wgl ) .
of Glossina morsitan
sfl Shigella flexneri 301
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Figure 2: Yersinia dataset — Signed super short reversal distance phylogeny

table of orthologous genes because they had at least one gene whose name could not
be updated. Furthermore, a total of 17 entries of the table were discarded because the
current release of the MBGD database does not mark their listed genes as orthologous
genes. Thus, at the end of this process, we obtained permutations composed of 212
genes. Supplementary Material File 2 contains the list of orthologous genes of the 28
species and Supplementary Material File 3 contains the resulting signed permutations.

Similarly to what we have done in Section 5.1, we computed the (signed) super
short reversal distance between every permutation pair and used the Neighbor-Joining
to produce the phylogenetic trees. The obtained distance matrices can be found in
the Supplementary Material File 4. The resulting phylogenetic trees are illustrated by
figures 4 and 5.

In the work of Belda et al., the species xcc and xac (Xanthomonas genus) and xfa
and xf1 (Xylella genus) are used as outgroup. We could not define this species as an
outgroup in any of the trees we obtained. For comparison purposes, we rooted our
trees in the branch that leads to the least common ancestor of that four bacteria.

Differently from the Yersinia, the phylogenetic trees obtained for the y-proteobacteria
using super short reversal distance for unsigned and signed permutations (Figures 4
and 5) show a slight difference in the topology. In both trees, we can define three groups
of species: A = {son,hdu,xfl,xfa,pmu,hin}, B = {bas,bab,buc,stt,sty,sfx,stm,ecc,ecs,eco,ece},
and C = {vvu,vpa,vch,ypk,ype,bfl,pae,xcc,xac,pst,ppu}. Taking this groups into ac-
count, the tree inferred with super short reversal distance shows a topology of the type
(B,(A,C)) while the tree inferred with signed super short reversal distance shows a
topology of the type (A,(B,C)).

Figure 6 shows the tree produced by Belda et al. using Maximum Likelihood [13,
Figure 2] and Figure 7 shows the tree produced by Belda et al. using Neighbor-Joining
applied to a reversal distance matrix [13, Figure 3b)]. We assigned colors to the groups
of species for helping in the comparison. Although both trees have many similarities,
two big differences can be observed: a) in the Maximum Likelihood tree, the first group
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Figure 3: Phylogenetic tree obtained by Egri-Nagy et al. [9]
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Figure 4: y-proteobacteria dataset — Super short reversal distance phylogeny
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Figure 6: Phylogenetic tree obtained by Belda et al. [13] through Maximum
Likelihood. The authors used Tree-Puzzle 5.2 and performed an alignment of
concatenated amino acid sequences from the proteins encoded by mpoC, rpoB,
rho, rpoA, rpsC, rpsD, nusG, rpsG, rplK, and rpsK genes. The colors identify
groups of species to facilitate comparison among different phylogenetic trees.
The bacteria wgl and sfl (colored in red) were excluded from our study. The
bacteria ecc and ece were not considered by Belda et al. in the construction of
this tree.
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Figure 7: Phylogenetic tree obtained by Belda et al. [13] using Neighbor-Joining
applied to a reversal distance matrix. The colors identify groups of species to
facilitate comparison among different phylogenetic trees. The bacteria wgl and
sfl (colored in red) were excluded from our study.
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to diverge (after the root) is composed of Pseudomonas bacteria (pae, pst, and ppu)
while in the reversal distance tree the first group to diverge is composed of pmu, hdu,
and hin; and b) in the reversal distance tree, the pair of Yersinia bacteria appears as
an inner-group among the bacteria of the genus Buchnera (buc, bab, and bas).

In order to compare our inferred phylogeny with the ones inferred by Belda et al.,
we also colored the tree we produced using Neighbor-Joining applied to the signed
super short reversal distance matrix (Figure 8). As we pointed out before, in our tree
there is an absence of the outgroup composed of Xanthomonas and Xylella bacteria:
between this two pairs of species, our tree shows many speciation events that give rise
to other groups of species. A similar case can be observed among the bacteria of the
genus Buchnera (buc, bab, and bas) and the species bfl (Blochmannia floridanus):
while these species are grouped together in the Maximum Likelihood tree, they are
separated by many speciation events in our tree.
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Figure 8: Phylogenetic tree obtained by us using Neighbor-Joining applied to
the signed super short reversal distance matrix. The colors identify groups of
species to facilitate comparison among different phylogenetic trees.

For most of the groups of species, we can observe that the internal relationships of
our tree are consistent with the internal relationships of the trees produced by Belda
et al. On the other hand, the ancestry relationships among different groups of species
are distinct. We believe that these observed differences indicate that the super short
reversal distance may be not enough to explain the evolutionary history of different
groups of species. One could say that this was expected because considering only
super short reversals is a very stringent requirement when we compare genomes of not
closely related species.
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5.3 ShortPhy: Rearrangement-Based Phylogeny Using Short
Operations

ShortPhy® is a web tool for rearrangement-based phylogenetic inference using short
operations. The phylogenies are inferred by ShortPhy as usual: first, a pairwise dis-
tance matrix is calculated from the input data; then, a phylogenetic tree is constructed
from this matrix using Neighbor-Joining. The input data is a file containing the per-
mutations that represent the genomes. The distances are computed by finding the
rearrangement distance between every permutation pair.

The computed rearrangement distances may vary according to three parameters:
(i) flag to consider, or not, the gene orientation, (ii) the type of the genomes (linear
or circular), and (iii) the type of the operations. Combining these parameters, we
can derive a specific variant of the problem of sorting a permutation. The variants
supported by ShortPhy are:

1. Sorting Unsigned Linear Permutations by Super Short Reversals;
2. Sorting Signed Linear Permutations by Super Short Reversals;

3. Sorting Signed Linear Permutations by Super Short Reversals and Super Short
Transpositions;

4. Sorting Unsigned Circular Permutations by Super Short Reversals;
5. Sorting Signed Circular Permutations by Super Short Reversals;

These variants are the only ones for which exact polynomial-time solutions are known,
considering the special case of short operations. Moreover, we have used the solutions
presented by Jerrum [8] for variant 1, the solutions presented by Galvao et al. [11] for
variants 2 and 3, and the solutions presented in sections 2 and 3 for variants 4 and 5,
respectively.

ShortPhy comprises its algorithms and the web server. They were implemented in
Java. The web server runs on a machine featuring an Intel Core 2 Quad CPU at 3.0
GHz and 16GB of RAM running GNU/Linux 2.6.32 and Apache Tomcat 6.0.26.

In order to generate a phylogeny, the user has to fill a form with six fields:

e Permutations file. This file must contain permutations representing the genomes.
Each line of this file must begin with a string, which uniquely identifies the
genome, followed by the elements of the permutation separated by commas.
Circular genomes must be represented by linear permutations, just as described
in Section 4.

e Gene orientation. This field indicates whether the orientation of genes must
be considered. If the orientation is considered, then the permutations are treated
as signed. Otherwise, they are treated as unsigned.

e Type of the genomes. This field indicates whether the genomes are circular
or linear.

e Type of the operations. This field indicates which types of operations must
be considered. Note that the available types of operations may vary according
to the other fields.

e Tree building method. This field indicates which Neighbor-Joining ver-
sion/implementation must be used.

3http://mirza.ic.unicamp.br:8080/shortphy
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e E-mail. This field is optional. If it is filled, an e-mail is sent to the user after
the phylogeny has been generated.

In addition to the phylogeny, ShortPhy generates three output files:

e a file containing the pairwise distance matrix in CSV (Comma-Separated Values)
format;

e a file containing the phylogenetic tree in NEXUS file format [22];
e and a file containing the phyloXML [23] description of the phylogenetic tree.

We recommend the users to download these files because they are temporary.

6 Conclusion

In this paper, we presented a polynomial-time solution to the problem of sorting a
signed circular permutation by super short reversals. From a theoretical perspective,
this solution is important because it closes a gap in the literature. From a biological
perspective, it is important because signed permutations constitute a more suitable
model for genomes. Moreover, we performed experiments to infer distances and phy-
logenies of two distinct groups of bacterial species: one group composed of 8 bacteria
from the Yersinia genus and the other composed of 28 ~-proteobacteria. The ex-
perimental results indicate that, while producing consistent results for closely related
species, the super short reversal distance may not be suitable to explain the evolution-
ary history of more distant species. Finally, we presented ShortPhy, the first web tool
for rearrangement-based phylogenetic inference using short operations.

Even if the model of super short reversals does not reflect the evolution of a group
of species, we think that the super short reversal distance can be used to measure the
degree of difference between their genomes with respect to the order and the orientation
of their genes. For instance, suppose that we have three bacterial species: A, B, and
C. Besides, suppose that we can observe the occurrence of two super short reversals
between A and B, and the occurrence of a single but very long reversal between A
and C. Using the reversal distance, one would consider A closer to C than to B
because a single reversal can transform A into C' while two reversals are necessary to
transform A into B. On the other hand, using super short reversal distance, we have
the opposite scenario: one would consider A closer to B than to C. It reflects the
fact that A and B have much more genes whose order and orientation are the same
than A and C. In this sense, the super short reversal distance is closely related to
the shuffling distance [24,25], which is one of the first measures proposed to compare
whole genomes.

We see some possible directions for future work. One is to improve the time
complexity of the algorithms that compute the (signed) cyclic super short reversal
distance. As we have discussed, the time complexity of these algorithms is limited
by the time complexity of computing the crossing number. Therefore, all one has
to do is to find a faster way to compute it. Another possibility is to consider other
rearrangement operations, such as super short transpositions, for sorting a circular
permutation.
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