B. K. Horn, Height and gradient from shading, International Journal of Computer Vision, vol.238, issue.1, pp.37-75, 1990.
DOI : 10.1007/BF00056771

R. J. Woodham, Shape from shading Photometric method for determining surface orientation from multiple images, pp.513-531, 1989.

F. Roddier, Adaptive Optics in Astronomy, 1999.

P. Pérez, M. Gangnet, and A. Blake, Poisson image editing, ACM SIGGRAPH 2003 Papers, ser. SIGGRAPH '03, pp.313-318, 2003.

R. Fattal, D. Lischinski, and M. Werman, Gradient domain high dynamic range compression, ACM Trans. Graph, vol.21, issue.3, pp.249-256, 2002.

A. Levin, A. Zomet, S. Peleg, and Y. Weiss, Seamless Image Stitching in the Gradient Domain, Proceedings of ECCV, 2006.
DOI : 10.1007/978-3-540-24673-2_31

W. Dong, G. Shi, and X. Li, Nonlocal Image Restoration With Bilateral Variance Estimation: A Low-Rank Approach, IEEE Transactions on Image Processing, vol.22, issue.2, 2013.
DOI : 10.1109/TIP.2012.2221729

S. Gu, L. Zhang, W. Zuo, and X. Feng, Weighted Nuclear Norm Minimization with Application to Image Denoising, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.
DOI : 10.1109/CVPR.2014.366

T. Simchony, R. Chellappa, and M. Shao, Direct analytical methods for solving Poisson equations in computer vision problems, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.5, pp.435-446, 1990.
DOI : 10.1109/34.55103

P. Kovesi, Shapelets correlated with surface normals produce surfaces, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, 2005.
DOI : 10.1109/ICCV.2005.224

. Fig, Photometric stereo on real corrupted images. The proposed method is able to recover a high-quality surface even when the input PS images are heavily corrupted

N. Petrovic, I. Cohen, B. J. Frey, R. Koetter, and T. S. Huang, Enforcing integrability for surface reconstruction algorithms using belief propagation in graphical models, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, 2001.
DOI : 10.1109/CVPR.2001.990550

A. Agrawal, R. Raskar, and R. Chellappa, What Is the Range of Surface Reconstructions from a Gradient Field?, Proceedings of ECCV, 2006.
DOI : 10.1007/11744023_45

A. Agrawal, R. Chellappa, and R. Raskar, An algebraic approach to surface reconstruction from gradient fields, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, 2005.
DOI : 10.1109/ICCV.2005.31

M. Harker and P. O. Leary, Least squares surface reconstruction from gradients: Direct algebraic methods with spectral, Tikhonov, and constrained regularization, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995427

Z. Du, A. Robles-kelly, and F. Lu, Robust surface reconstruction from gradient field using the l1 norm, " ser. DICTA '07, pp.203-209, 2007.

D. Reddy, A. K. Agrawal, and R. Chellappa, Enforcing integrability by error correction using l 1 -minimization, Proceedings of CVPR, 2009.

M. Rostami, O. V. Michailovich, and Z. Wang, Surface Reconstruction in Gradient-Field Domain Using Compressed Sensing, IEEE Transactions on Image Processing, vol.24, issue.5, pp.1628-1638, 2015.
DOI : 10.1109/TIP.2015.2409565

H. Badri, H. Yahia, and D. Aboutajdine, Robust Surface Reconstruction via Triple Sparsity, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.
DOI : 10.1109/CVPR.2014.293

URL : https://hal.archives-ouvertes.fr/hal-00951627

T. Wu, J. Sun, C. Tang, and H. Shum, Interactive normal reconstruction from a single image, ACM SIGGRAPH Asia, 2008.

W. Xie, Y. Zhang, C. C. Whang, and R. C. Chung, Surface-fromgradients: An approach based on discrete geometry processing, Proceedings of CVPR, 2014.

C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkelstein, The Generalized PatchMatch Correspondence Algorithm, Proceedings of ECCV, 2010.
DOI : 10.1007/978-3-642-15558-1_3

A. Buades, B. Coll, and J. Morel, A Non-Local Algorithm for Image Denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005.
DOI : 10.1109/CVPR.2005.38

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse 3d transform-domain collaborative filtering, IEEE Trans. Image Processing, vol.16, issue.8, 2007.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, Non-local sparse models for image restoration, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459452

A. Danielyan, V. Katkovnik, and K. Egiazarian, BM3D Frames and Variational Image Deblurring, IEEE Transactions on Image Processing, vol.21, issue.4, 2012.
DOI : 10.1109/TIP.2011.2176954

X. H. Dong, G. Shi, and Y. Ma, Nonlocal Sparse and Low-Rank Regularization for Optical Flow Estimation, IEEE Transactions on Image Processing, vol.23, issue.10, 2014.
DOI : 10.1109/TIP.2014.2352497

H. Talebi and P. Milanfar, Nonlocal Image Editing, IEEE Transactions on Image Processing, vol.23, issue.10, 2014.
DOI : 10.1109/TIP.2014.2348870

Z. Zhang, A. Ganesh, X. Liang, and Y. Ma, Tilt: Transform invariant low-rank textures, International Journal of Computer Vision, vol.99, issue.1, 2012.

D. Zhang, Y. Hu, J. Ye, and X. Li, Matrix completion by truncated nuclear norm regularization, Proceedings of CVPR, 2012.

H. Ji, C. Liu, Z. Shen, and Y. Xu, Robust video denoising using low rank matrix completion, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5539849

L. Wu, A. Ganesh, B. Shi, Y. Matsushita, Y. Wang et al., Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery, Proceedings of Asian Conference on Computer Vision (ACCV)
DOI : 10.1145/965161.806819

R. Chartrand, Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009.
DOI : 10.1109/ISBI.2009.5193034

D. Krishnan and R. Fergus, Fast image deconvolution using hyperlaplacian priors, Proceedings of the Neural Information Processing Systems Conference (NIPS), 2009.

J. Wright, A. Ganesh, S. Rao, and Y. Ma, Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization, Proceedings of NIPS, 2009.

D. Geman and G. Reynolds, Constrained restoration and the recovery of discontinuities, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.14, issue.3, pp.367-383, 1992.
DOI : 10.1109/34.120331

C. Lu, J. Tang, S. Yan, and Z. Lin, Generalized Nonconvex Nonsmooth Low-Rank Minimization, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.
DOI : 10.1109/CVPR.2014.526

R. T. Frankot and R. Chellappa, A method for enforcing integrability in shape from shading algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.10, issue.4, pp.439-451, 1988.
DOI : 10.1109/34.3909

N. Parikh and S. Boyd, Proximal Algorithms, Foundations and Trends?? in Optimization, vol.1, issue.3, 2013.
DOI : 10.1561/2400000003

H. Badri, H. Yahia, and D. Aboutajdine, Fast Edge-Aware Processing via First Order Proximal Approximation, IEEE Transactions on Visualization and Computer Graphics, vol.21, issue.6, 2015.
DOI : 10.1109/TVCG.2015.2396064

URL : https://hal.archives-ouvertes.fr/hal-01118542