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On Homogeneous Distributed Parameter Systems

Andrey Polyakov, Denis Efimov, Emilia Fridman and Wilfrid Perruquetti

Abstract—A geometric homogeneity is introduced for evolution
equations in a Banach space. Scalability property of solutions
of homogeneous evolution equations is proven. Some qualitative
characteristics of stability of trivial solution are also provided. In
particular, finite-time stability of homogeneous evolution equa-
tions is studied. Theoretical results are illustrated on important
classes of partial differential equations.

I. INTRODUCTION

The homogeneity is a sort of symmetry, when an object
remains consistent (in some sense) with respect to a scaling
operation (dilation). In the context of ordinary differential
equations and inclusions one encounters three types of ho-
mogeneity:

o the standard homogeneity (L. Euler in the 17th century, V.
Zubov [1], W. Hahn [2]) operates with uniform dilations
such as x — Az, where A\ > 0 is a real number and z is
an element of a real linear space;

o the weighted homogeneity (V. Zubov [3], H. Hermes
[4], L. Rosier [5], G. Folland [6]) uses non-uniform
(anisotropic) scalings like

(21,22, ey Tn) = (A1, AN 220, ., ATy,

where A\ and r; are positive reals, x; is an element of a
real linear space, 1 = 1,2,...,n;

o the geometric homogeneity (V. Khomenyuk [7], L. Rosier
[8], M. Kawski [9]) considers some generalized dilations
of one vector field with respect to another one.

Homogeneity is a useful tool for advanced analysis of non-
linear dynamic systems. For instance, it allows local properties
of a system (e.g. asymptotic stability) to be extended globally.
Qualitative stability analysis of homogeneous systems can be
enhanced by means of investigation of homogeneity degree
of an asymptotically stable system, for example, the negative
degree corresponds to finite-time stability [1], [10], [11], [12],
[13], [14]. The control theory applies homogeneous feedbacks
for fast robust stabilization (see, [15], [11], [13], [14], [16])
and homogeneous dynamic observers for non-asymptotic state
estimation [17], [18]. Homogeneity provides simple algorithms
for robustness analysis of nonlinear control systems (in the
context of Input-to-State Stability see, for example, [19], [20],
[21]). Local homogeneity and homogeneous approximations
[31, [4], [14], [22] are considered as a way for simplification
of qualitative analysis of the essentially nonlinear dynamic
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systems. It is worth stressing that investigations of quanti-
tative characteristics (for example, estimation of the settling
time for finite-time stable system) require conventional tools
(e.g. Lyapunov function method). However, it is well known
[3], [5] that any stable homogeneous system always has a
homogeneous Lyapunov function. This property simplifies
the construction of concrete explicit [23], [24] and implicit
Lyapunov functions [25] for homogeneous systems.

The analysis of evolution equations with homogeneous
(with respect to uniform scaling) operator was given in [26].
Some important regularizing effects of homogeneity have been
discovered in the mentioned paper. Weighted homogeneous
evolution equations have been studied in [27], [28]. The most
of results for such systems are devoted to the integrability
analysis. The elements of the theory of sub-elliptic operators
on stratified nilpotent Lie groups is developed in [6] based on a
version of the weighted homogeneity. To the best of our knowl-
edge, stability properties (in particular, finite-time stability) of
evolution equation have not been studied using homogeneity
framework. In the same time, these issues are very important
for control and estimation problems of distributed parameters
systems [29].

This technical note studies a certain analog of geometric
homogeneity, which has not been studied before for infinite
dimensional systems. It introduces d-homogeneous operators,
where d denotes a group of homogeneous dilations in a Banach
space, which must be agreed with the domain of the operator.
The paper demonstrates that the main features of the homoge-
neous systems, which are important for control design in finite-
dimensional setting (like stability and scalability properties
of solutions), hold for d-homogeneous evolution equations in
a Banach space. The paper also shows that d-homogeneity
can be established for many well-known partial differential
equations like KdV, Saint-Venant and Fast Diffusion equations
considered in the paper. The presented results can be utilized
in the future for extension of homogeneity-based feedback
control design tools to infinite dimensional system.

The paper is organized as follows. Model description and
basic assumptions are given in the section 2. The section 3
introduces the notion of homogeneous evolution equation in
Banach space. It presents the generalized dilation group, the
homogeneous set and the homogeneous operator, and studies
their properties. Finally, some concluding remarks are given
at the end of the paper.

Notation. The paper uses the following standard notation:
R is the field of real numbers and R, = [0, +00); B is a real
Banach space with a norm || - ||; S = {v € B: |ju|| =1} is
the unit sphere in B; Q denotes the closure of the set ) C B;
0% denotes the boundary of the set 2 C B.



II. MODEL DESCRIPTION

Let us consider the nonlinear evolution equation

a(t) = f(u(t), tER,, u(l)eQCB ()
with the initial condition
u(0) = ¢ € Q, (2)

where the dot denotes a time derivative, the operator f : D C
B — B has the domain D and Q2 C D.

Recall that evolution equation may describe finite or infinite
dimensional dynamic system. The set {2 restricts admissible
solutions. For example, if it is a positive cone (i.e. {2 = R"}),
the evolution equation must describe a positive system. In the
case of a partial differential equation the set €2 can be utilized
in order to possess boundary conditions.

We assume that the Cauchy problem (1), (2) has a solution
for any ¢ € (), i.e. there exists a continuous function
u : [0,T) — Q defined at least locally (0 < T < +400),
which satisfies (in some sense) the equation (1) and the initial
condition (2). We do not specify the type of solution. It can be
classical (C1), strong, weak or mild solution. Proofs of main
results are given for mild solutions. The extension to other
types of solutions is straightforward. The same results can be
provided for evolution inclusions.

In general, we do not assume that the Cauchy problem is
well-posed, i.e. the solutions may be non-unique and/or they
may depend discontinuously on the initial condition. Certainly,
the results to be obtained also hold for well-posed models.
Existence of solutions and well-posedness of the Cauchy
problem like (1), (2) are discussed in literature for different
types of operators f and Banach spaces B, see e.g. [30], [31],
[32]. These problems go out of the scope of this paper. The
main aim is to extend the concept of homogeneous systems to
the general evolution equations and to transfer some useful
properties and tools, which are derived for homogeneous
ordinary differential equations, to a more general disturbed
dynamical models.

III. HOMOGENEOUS EVOLUTION EQUATIONS

The evolution equation (1) is uniquely identified by the
operator f and the set 2. Having the same operator f :
D c B — B for different sets 2, € D and Q5 C D,
Q1 # Q9 we may obtain different behaviors of solutions of
evolution equations. Therefore, in the context of the evolution
equation the homogeneity properties must be studied for both
the operator f and the set €.

A. Homogeneous Sets in Banach Spaces
Let £(B) be the space of linear bounded operators B — B
equipped with the norm: ||g||z = sup ||g(u)|| for g € L(B).
ucsS
Definition 1: A map d : R — L(B) is called dilation in
the space B if it satisfies
« the semigroup property: d(0) =1 € £(B) and d(¢t +
s) =d(t)d(s) for t,s € R;
« the strong continuity property: the mapd(-)u:R — B
is continuous for any u € B;

o the limit property: hm ld(s)u]| = 0 and

Sgin l[d(s)ul] = oo unlformly onu€S.

The dilation d is a strongly continuous group, since the
limit property implies uniqueness of the identity element
(see, Proposition 1 given below). The group d has similar
topological characterization as a dilation mappings in Banach
(or Frechet) spaces. Indeed, the limit property given above can
be interpreted as a version of the Teresaka’s condition (see,
for example, [33]).

Proposition 1: 1If d is a dilation then

1) ||d(s)||z # 0 for s € R;

2) irelg ld(s)ul] < 1 for s

sup ||d(s)ul| > 1 for s > 0;

uesS

3) d?s) # 1 € L(B) for s # 0.

Proof: 1) The positivity of the operator norm of the
dilation immediately follows from the semigroup property.
Indeed, if there exists so € R such that ||d(so)llz = O
then d(SO) =0 € ,C(B) and [ = d(O) = d(S() — 8()) 75
d(—s0)d(so) = 0.

2) Let us consider, initially, the case s € Ry. Suppose the
contrary, i.e. there exists so € Ry such that ||d(sp)]lz <
1. On the one hand, due to the limit property we have
nEIEOOHd(nSO)u”L = +oo for any v € S . On the other

hand,
ld(nso)ull = [|d(so+(n—1)so)ul| = [[d(so)d((n—1)so)ul| <
[d(s0)llz - [[A((n = D)so)ul| < ...

i.e. the sequence ||d(nsp)ul| is bounded for any n and we
obtain the contradiction.

Consider the case s < 0 and suppose the contrary, i.e. there
exists so € Ry such that ||[d(—sg)u| > 1 for any u € S. If
ug € S then

< 0 and [d(s)]z =

<lull =1,

d(— "
= dEsuna ooy
[d(=s0)upn—1]l
So, we have
280 Up—1 ’
1 < ||[d(—s0)un —§d72$un,§
< a0yl = | 2=t | < a-2s0),l
.. < Hd —(n+ 1)80 UOH

Therefore, ||d(—(n + 1)sp)ug|| > 1 for any n > 1 and we
derive the contradiction to the limit property.

3) Suppose the contrary, i.e. there exists s’ € R\{0} such
that d(s’) = I. Then the semigroup property implies d(ns’) =
I and ||d(ns’)u|| = 1 for any n = 1,2, ... and any u € S. This
contradicts the limit property. [ ]

The next definition introduces domains of evolution opera-
tors to be studied in this paper. The domain should be invariant
with respect to dilation.

Definition 2: A nonempty set 2 is said to be d-
homogeneous iff d(s)Q2 C 2 for any s € R, where d : R —
L(B) is a dilation in B.

A d-homogeneous set {2 becomes a homogeneous space
[34], if the dilation d is a transitive group on €). The operators
d(s) for s € R are called symmetries in this case.



Let us give some examples of d-homogeneous sets and their
dilations.

o Uniform dilation (L. Euler):
Q=R", d(s) = e”.
o Weighted dilation (V. Zubov [3]):

Q =R", d(s) = diag{e"*}, r; > 0,i=1,2,...,n.
e Geometric dilation (L. Rosier [8], M. Kawski [9])

Q =R", d is the flow of an Euler vector field'.

e Generalized dilation in a Banach space:

Q = {u e C(0.pLR) : u(0) = u(p)} and
(d(s)u)(z) = e570-552/Py(z), where x € [0, p]. Indeed,
(d(s)u)(0) = e*u(0) and (d(s)u)(p) = e>*5u(p) imply
(d(s)u)(0) = [(d(s)u)(p)]® for any u € Q and any
s € R. Such dilations have never been studied before
in the context of homogeneous systems.

Note that d-homogeneity can be considered as an analog
of geometric homogeneity known for finite-dimensional vector
fields. Indeed, in a particular case, a group d may be generated
by some evolution operator in the Banach space B.

The set

Sa(r) ={ueQ:|d(n(r)u|=1}, >0 (@3

is called the homogeneous sphere of the radius .
Homogeneous sets and spheres have some useful properties

to be utilized below for analysis of evolution equation (1).
Proposition 2: If d-homogeneous set €2 is non-trivial® then

1) the set Sq(1) is non-empty and for any u € Q\{0} there
exists ug € Sq(1) such that u = d(s)ug for some s € R;
2) Sa(r) =d(In(1/r))Sa(1) for r > 0;
3) sup |yl >0asr—0;
yESa(r)

4 N{0} = U Sa(r).

r>0
Proof: 1) Let u be an arbitrary element of the nonempty
set Q\{0}. If |lu]| = 1 then u € Sq4(1). Since the group d
is strongly continuous then the limit property implies that for
|lu|| > 1 there exists s < 0 : ||d(s)u|| = 1, and for 0 < |Ju| <
1 there exists s > 0 : ||d(s)u|| = 1. Since d(s)u € © for any
s € R then d(s)u € Sa(1), i.e. Sa(1) # 0.

2) On the one hand, y € Sq(r) means that there exists
u € Sg(1) C S such that y = d(In(r))u. On the other hand,
u € Sq(1) means that 1 = |ju|| = |[d(0)u| = ||[d(In(r) —
In(r))ul| = ||d(In(r))d(In(1/r))ul, i.e. d(In(1/r))u € Sa(r).

3) The limit property guarantees ||d(In(r))u|| — 0 asr — 0
uniformly on S. This immediately implies the third claim.

4) If uw € Q\{0} and ug € Sq(1) is such that d(s)u = ug
for some s € R then the semigroup property guarantees

d(—s)d(s)u = d(—s)ug or equivalently u = d(—s)ug.
Therefore, u € Sq(r) with r = e~*, i.e. each element from
O\{0} belongs to a homogeneous sphere. [ |

B. Homogeneous Operators and Equations

The definition given below presents the class of operators
to be studied in this paper. It utilizes the conventional identity

'A C? vector field v : R™ — R™ is called Euler if it is complete and —v
is globally asymptotically stable.
2The set €2 is non-trivial if it contains some elements different from 0.

(4) in order to introduce the homogeneity relation (see, for
example, [35]).

Definition 3: An operator f : D C B — B is said to be
d-homogeneous of degree v on the set 2 C D if Q is d-
homogeneous and

fld(s)u) = e”*d(s) f(u)

where d is a dilation in B and v € R.

The evolution equation (1) is said to be d-homogeneous
on () iff the corresponding operator f : D C B — B is d-
homogeneous on ().

Homogeneity can be discovered in many physical models.
Examples of homogeneous ordinary differential equations can
be found in the literature, see e.g. [3], [12], [17], [13]. Let
us consider two examples of homogeneous partial differential
equations, which appear in mathematical physics.

o Korteweg-de Vries equation (KdV equation) is the
homogeneous partial differential equation ([36], [28]):

ou Pu  Ou

ot~ 0a3 ox
where u is a scalar function of time ¢ € Ry and space
x € R, variables. KdV equation describes waves on shallow
water surfaces. Let the boundary condition has the form
u|,_o = 0. The operator f : C*(R;,R) — C(R4,R) defined
by f(u) = —u"" —uu’ for u € C3*(R,,R) is d-homogeneous
of degree v =3 on Q = {z € C*(R4,R) : 2/(0) = 0} with
the dilation group defined by (d(s)u)(z) = e?**u(e®z), where
z € Ry, u e C(R4,R) and s € R is the dilation argument.
Obviously, d(s)Q2 C Q. Due to (d(s)u’)(z) = eQSu’(y)|y:eSr
and [d(s)u]'(z) = [e**u(e’x)] = egsu'(y)|y:eSz for z € Ry
we derive

seR, ueq, 4)

[f(d(s)w))(x) = — [e*u(e’n)]” — e u(ez)[e*u(e’z))
= —eu"(y) — S uly)' (v)], ., = [**d(s) f(w))(@),
for any s € R.

e The Saint-Venant equation is an example of a system of
conservation laws studied in [37]. In the field of hydraulics, it
represents the flow in open-channels by the following model

OH 0

ot = o V)
ov o )
o5 = os OV ),

where H and V are scalar functions of time and space
variables. The quantity H (¢, x) is the water level at the instant
of time ¢t € R in the point € R, and V (¢, z) is the water
velocity in the same position. The parameter g denotes the
gravitation constant. Let us consider the case when the water
channel is supported by two overflow spillways (Figure 1),
which adjust an input and output flows in a pool (between
spillways). The space argument is restricted on the segment
[0, 1], where =0 and x =1 are positions of spillways, and the
equation (5) is supported with the boundary conditions [37]:

H(t,0)V(t,0) — (Zo — Lo)*/? = 0,
H(t, )V (t,1) = (H(t,1) — L1)*/? = 0,

where Z; is the water level above the pool and Ly, L, are
spillways.



(=)

0 1

Fig. 1. Water channel with two spillways

Let us show that for Lj, = Zy and L; = 0 the corre-
sponding evolution equation is homogeneous. Let us consider
the operator f : D — C([0,1],R) x C([0,1],R) defined on
D = C*([0,1],Ry) x C([0,1],R) by

s = (g )

4 (g + 3u3)
where u = (ug,uz) € D. The operator f is d-homogeneous
of degree v =1 on the set
u1(0)uz(0) = 0; }
3/
ur(Duz(l) = uy""(1)
with respect to the weighted dilation d(s)u = (€?*uq, e*usy),

where u = (u1,u2) € C([0,1],R) x C([0,1],R) and s € R.
Indeed,

( ssaal(um%) 2) ) = e%d(s) f(u).

—e2s o (gu1 + UL

Q{u(ul,uQ)ED:

o)

e = (g (i, iy

Finally, the equality (d(s)u)(x) = (e®*uy(z), e*us(x)),z € R
implies that for any « €  one has d(s)u € , i.e. the set
is d-homogeneous.

Remark 1: If the operator g D Cc B — B is d-
homogeneous, then the set Ker(g) = {u € D : g(u) =0} is
d-homogeneous. Indeed, if u € Ker(g) then g(d(s)u) =
e’*d(s)g(u) = 0, i.e. d(s)u € Ker(g). So, the kernel of
homogeneous operator is d-homogeneous set.

C. Properties of Solutions to Homogeneous Evolution Equa-
tions

Homogeneity may simplify a qualitative analysis of partial
differential equations. This subsection studies some properties
of solutions to homogeneous evolution equations. The next
theorem provides the most important scalability property of
solutions. Its proof is given for mild solutions of (1), (2), i.e.
u(t, ) = 11_1% u(t, ) uniformly on ¢, where u®(¢,¢) is a
so-called &-solution:

u(0,) = ug = @, u(t,p) =u; € Q for t € [t;,t;y1)

uH—l

= f(u;) for i=0,1....k =1, t, =T,

tz+1 - t
where t;11 —t; < e for ¢ = 0,...,k — 1. The proof can be
repeated for classical solutions, strong or weak solutions.

Theorem 1 (On Homogeneous Dilation of Solutions): Let
an operator f : 2 C B — B be d-homogeneous of degree
v € R and u(-,¢) : [0,T) — Q be a solution of the Cauchy
problem (1), (2).

Then for any s € R the function u, : [0, Z;) — Q defined
by the equality us(7) = d(s)u(e”*1,¢) is a solution of the
evolution equation (1) with the initial condition u(0) = d(s)ep.

Proof: Let u®(-,) be an arbitrary e-solution of the
Cauchy problem (1), (2). For an arbitrary s € R let us
construct a function u : [O, I5) — Q using the following
relation u$(7) = d(s)u®(e”*7,¢), where 7 € [0, L-).

Let us denote 7; = e~ ¥¢; and us; = d(s)u; € Q. On the
one hand, we have === = e”*d(s) 2 =*. On the other
hand, the homogeneity of the operator f prov1des fld(s)u;) =
flus ;) = e”*d(s) f(u;). Hence, we derive

Ug 41 — _ f(us Z)

i.e. the function uf is e-solution of the evolution equation (1)
with the initial condition «(0) = d(s)e.

Finally, since ||d(s)|| < oo for any s € R, then the
inequality [|us(7) — us(r)l| < d(s)]z - [(u(t) — u(t))]
implies that u,(7) = lim._,o ©5(7) uniformly on 7.

Note that under conditions of Theorem 1 the function u”" :
LO, T-T") 5 Q defined by u” (1) = d(s)u(T’ + e”*7, ) is
the solution of the evolution equation (1) with the initial value
d(s)u(T’, ). If T = 400 then uT" (-) is defined on [0, +00).

Theorem 1 yields several corollaries, which expand the local
properties of the solutions making them global. For instance,
Theorem 1 and Proposition 2 immediately imply the following

Corollary 1 (On Existence and Prolongation of Solutions):
Let the operator f : @ C B — B be a d-homogeneous operator
on a set 0 C B. If there exists a set M C € such that

U d(s)M = Q and the Cauchy problem (1), (2) has a
seR
solution u(-,¢) : [0,T,) — B for any ¢ € M then it has

a solution for any ¢ € Q. Moreover, if T, = +oo for all
solutions with ¢ € M then all solutions of the evolution (1)
with ¢ € ) exist on R.

Ti+1 — T4

D. Stability of Homogeneous Evolution Equations

Homogeneity is a supporting tool for analysis of the quali-
tative behavior of the system. For example, it helps to classify
the convergence rate. However, the homogeneity arguments
cannot be used without some conventional stability analysis.

Recall that the solution ug : Ry — € of the evolution
equation (1) is said to be Lyapunov stable if there exists
a monotone increasing function ¢ : [0,+00) — [0,400),
0(0) = 0 and a number h € R, such that ||u(t,p) —
u(®)|| < o(lle — up(0)|]) for all ¢ € Ry and for any
@ €Q:lo—u(0)] <h.

For asymptotic stability of the solution uy we need to ask
additionally the local attractivity of wg, i.e. u(t,¢) — uo(t)
as t — 400 if o € Q: |l — up(0)|| < h, where the number
h € R, defines the domain of attraction.

The solution uy : Ry — Q of the evolution equation (1)
is said to be uniformly asymptotically stable if it is asymp-
totically stable and, in addition, for any r € (0, k) and any



e € (0,r) there exists T € R, such that ||u(t, ©) —uo(t)| < e
for all ¢ > T and all solutions of the Cauchy problem (1), (2)
with p € Q : [ — ug(0)|| < r.

We refer the reader to [38] for more explanations of different
stability properties of evolution equations in Banach spaces.

Below we study the stability property of the zero solution
(i.e up(-) = 0) of the equation (1). Note that the conditions
0 € Q and f(0) = 0 guarantee existence of the zero solution.

Corollary 2 (On Expansion of Attraction Domain): Let f :
) C B — B be d-homogeneous operator and 0 € 2, f(0) = 0.
If the zero solution of the evolution equation (1) is locally
attractive, then it is globally attractive (i.e. h = 4o00). If,
in addition, the zero solution is Lyapunov stable then it is
globally asymptotically stable.

The presented corollary can be easily extended to the case
of uniform asymptotic stability. Homogeneity also simplifies
a finite-time stability [39], [40] analysis of the zero solution
of evolution equations. Finite-time stability (also known as
Super-Stability [41] for infinite dimensional systems) is the
version of the asymptotic stability with a finite reaching time
of the stable solution, i.e. for any ¢ € Q\{0} : ||¢—uo(0)|| <h
there exists 7' € Ry such |Ju(t, ) —ug(t)|| =0 forall ¢ > T.

To the best of our knowledge, the next property of ho-
mogeneous systems has been discovered by V. I. Zubov in
1957 for ordinary differential equations and standard (Euler)
homogeneity [1, Corollary 3, Page 110].

Theorem 2 (On finite-time stability): Let f : Q C B — B
be d-homogeneous operator of negative degree v < 0 and
0 € Q, f(0) = 0. If the zero solution of the evolution equation
(1) is uniformly asymptotically stable then it is globally finite-
time stable.

Proof: By Corollary 2 the local uniform asymptotic
stability of homogeneous evolution equation implies the global
one and we have |u(t, )| < 1 for t > T, where a finite non-
negative number 7' exists for each ¢ € €.

Proposition 1 implies existence of a number s > 0 such
that ||d(s)||z = ¢ > 1. Since the zero solution is uniformly
asymptotically stable then there exists 77 > 0 such that
lu(t,@)|] < 1/c for all t > T" and any ¢ € Q : ||| < 1,
where u(t, ¢) is a solution of (1), (2).

Let us introduce the following notation:

. ATO =T’ and AT; = €DSATi_1 for ¢ = 1,2, ey

e To=0and T; =T;_1 + AT;_4 fori =1,2,...;

o x; =u(T;, ) fori =1,2,.

Obviously, since u(T1,) = 1 then ||z1|| < 1/c. By
Theorem 1 we have that ui(t) = d(s)u(Ty + €"%t, ) is
also solution of (1) defined on Ry;. Moreover, u;(0) =
d(s)u(T1,0) = d(s)a1 and [[us (0)]] < [d(s)]|z - [l ]| < 1.
In this case, the uniform asymptotic stability implies

lurn ()] = lld(s)u(Ty + € T", @)|| =
[d(s)u(Ty + ATy, @)|| = [|d(s)z2]| < 1/c

and [|d(2s)z2| < [ld(s)[[c[|d(s)z2]l < 1.
Repeating the same consideration by induction we obtain
[[d(és)z;]| <1 and

[u(Ti; )| = lld(—is)d(is)z]| < [[d(=is)llc — 0

as ¢ — oo due to the limit property of the dilation.
Evidently, AT; = T’ s and for v < 0 we obtain

T, = T’Ze"“S %asz%oo

In other words, u( ,<p) —~0ast —> T+ T e”, where
s € Ry is such that ||d(s)||z =c¢>1 and ¢ € Q. [ |

This theorem is very useful for qualitative stability analysis
of homogeneous systems. Indeed, finite-time stability can be
predicted by means of negative degree of homogeneity. More-
over, finite-time stabilizing control design can done using ho-
mogeneous feedback design with negative degree. The related
problems appear in control theory (for models represented by
ordinary differential equations see, for example, [11], [12],
[13], [16]).

Remark 2: Note that finite-time blow-up of all solutions of
homogeneous evolution equation (1) with positive degree can
be proven by analogy with Theorem 2 under some additional
condition on uniform divergence of solutions.

Let us present some examples of finite-time stable evolution
equations, which are homogeneous with negative degree.

e Fast Diffusion Equation. The equation of the form

ou

where A is the Laplace operator, v is a scalar nonnegative
function of time ¢ € Ry and the space variables x € R",
is known as fast diffusion equation [42], [43], [44], which
occurs in modeling of plasmas. The considered equation is
studied with the homogeneous Dirichlet conditions u(t,x) =
0 forx € OM, where M € R"™ is a bounded connected
domain with a smooth boundary. The considered system was
studied in [44] under the assumption [nn fg* < a < 1,
where [-]; is the projector to R U {0}, which was required
for existence of a weak solution for any nonnegative initial
condition u(0,z) = ug(x), x € M, where ug € LP(M,R),
p > 1. Finite-time stability of fast diffusion equation has been
proven in [44].

Let us show that the system is d-homogeneous of negative
degree. Indeed, it has an operator f : D C L'(M,R) —
L'(M,R) defined by f(u) = A (u®) using weak derivatives,
where D = L*(M, R, ). The operator f is d-homogeneous of
negative degree o — 1 on L!(M,R) with the uniform dilation
d(s) = e, where s € R. Indeed, f(d(s)u) = A((e®u)*) =
e A(u®) = el®=%d(s) f(u) for any s € R.

e Finite-time Stabilization of Heat Equation on Semi-
Axis. The simplest example of distributed homogeneous con-
trol design can be presented for heat equation

ou  9%u

ot a2
where v is a scalar function of time ¢ > 0 and space
x > 0 variables, g is a distributed control input. The heat
equation is studied with the homogeneous Dirichlet condi-
tions u(¢,0) = 0. The simplest finite-time stabilizing ho-
mogeneous distributed feedback can be designed as follows

g=—ul/3.

In the paper [45] the finite-time stability of the consid-
ered system has been proven. Let us show that the corre-

sponding evolution equation (1) with f(u) = g% — ul/3

€ (0,1),

+9,



is d-homogeneous for the dilation group (d(s)u)(z) =

e3*u(e=*x). Indeed, [f(d(s)u)](z) = [e3su(e’sx)]" —
esu'/3(e*z) = e=2%[d(s) f(u)](x). Since homogeneity degree
is negative, then uniform asymptotic stability of the zero

solution will imply its finite-time stability.

IV. CONCLUSIONS

The notion of d-homogeneous evolution equation intro-
duced in this paper can be considered as a certain analog
of geometric homogeneity well-known for finite-dimensional
vector fields. The obtained results about stability and scala-
bility properties of homogeneous evolution equations provide
a background required for expansion of homogeneous meth-
ods (like Input-to-State Stability) to evolution equations in a
Banach space. The d-homogeneity in this case will play an
important role in the analysis and design of fast (finite-time)
and robust control and observation algorithms for distributed
parameter systems. In particular, Implicit Lyapunov Function
method for finite-time stabilizing control design [25] can be
extended to homogeneous evolution equations. We consider
this as an important problem for future research.
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