Skip to Main content Skip to Navigation
Conference papers

Génération d'hypothèses de façades utilisant des critères contextuels et structurels

Antoine Fond 1, 2, 3, * Marie-Odile Berger 2, 3 Gilles Simon 1, 2, 3
* Corresponding author
3 MAGRIT - Visual Augmentation of Complex Environments
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : In that article we focus on facade detection in order to improve image/model buildings matching for pose computation in urbain environnement. We use a two-step design. First a cascade of LogitBoost classifiers using features which describe local context selects a few windows from a set of windows drawn on an a priori distribution. These facade candidates are then more internally described using their Haar-Fourier representation. Eventually they are discarded or kept by a strong classifier SVM. Results are computed from a 410-set of urban images.
Complete list of metadata

Cited literature [15 references]  Display  Hide  Download

https://hal.inria.fr/hal-01318680
Contributor : Antoine Fond <>
Submitted on : Thursday, May 19, 2016 - 6:00:17 PM
Last modification on : Tuesday, December 18, 2018 - 4:18:26 PM

File

rfia.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01318680, version 1

Collections

Citation

Antoine Fond, Marie-Odile Berger, Gilles Simon. Génération d'hypothèses de façades utilisant des critères contextuels et structurels. Reconnaissance des Formes et Intelligence Artificielle, Jun 2016, Clermont Ferrand, France. ⟨hal-01318680⟩

Share

Metrics

Record views

381

Files downloads

152