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Abstract

The Laplace operator plays a fundamental role in geometry processing. Several discrete versions have been proposed for 3D
meshes and point clouds, among others. We de�ne here a discrete Laplace operator for temporally coherent mesh sequences, which
allows to process mesh animations in a simple yet e� cient way. This operator is a discretization of the Laplace-Beltrami operator
using Discrete Exterior Calculus on CW complexes embedded in a four-dimensional space. A parameter is introduced to tune the
in�uence of the motion with respect to the geometry. This enables straightforward generalization of existing Laplacian static mesh
processing works to mesh sequences. An application to spacetime editing is provided as example.

Keywords: Laplace operator, mesh animation, discrete exterior calculus

1. Introduction

The use of a discrete counterpart of the Laplace-Beltrami
operator (the divergence of the gradient) for geometry pro-
cessing has shown growing interests in the last decades. As
explained by Sorkine in the case of 3D meshes [1], such an
operator encodes the variation of a function around a given
vertex, thus giving local information about the object under
study. Possible applications include compression, watermark-
ing, editing, segmentation, matching, retrieval, parameteriza-
tion; multiple surveys review these applications in the case of
3D meshes [1, 2, 3]. Discrete Laplace operators are also widely
used on graphs, for instance for applications in chemistry [4]
and 2D images, mostly for edge detection and �ltering [5].

In this paper we are interested in de�ning a discrete Laplace-
Beltrami operator for temporal mesh sequences, that is to say
sequences of surface meshes embedded in the Euclidean 3-
dimensional space. Temporal mesh sequences, also calledmesh
animationsor 3D videos, are ubiquitous in various domains
such as computer games, 3D movies or 3D television, to rep-
resent objects evolving through time [6]. Mesh sequences can
be captured from real life scenes using multiple camera systems
or generated using modelling software or physically-based sim-
ulation. In all cases, they may require time-consuming modi�-
cations, such as editing of some part of the geometry and/or the
motion, to become usable in the production pipeline.

Although it may seem natural to process the geometry and
the motion separately, we advocate here the use of a single
operator, with a parameter to decouple time and space dimen-
sions.We show that such an operator may lead to a variety of ef-
fects with a single formulation. Our discrete Laplace-Beltrami
operator is de�ned by modelling mesh sequences as CW com-
plexes embedded in a 4-dimensional space and using the Dis-
crete Exterior Calculus (DEC) framework [7, 8]. Only one pa-

rameter� is to be chosen by the user: the one which balances
the in�uence of geometry with respect to motion. We investi-
gate the properties of this operator, in particular when� is big
or small. We also explore a problem, as-rigid-as-possible mesh
sequence editing, which can easily be expressed using this oper-
ator. Results show that a broad range of e� ects can be generated
by tuning parameter� .

2. Related work

Following seminal works by Pinkall and Polthier [9] and
Taubin [10], many discrete Laplace-Beltrami operators have
been de�ned for static 3D triangle meshes, each with di� erent
properties. A popular choice is to use cotangent weights [10,
11]. This so-calledcotangent Laplaciancan be derived from
the smooth Laplace-Beltrami operator on a 2-manifold shape
using DEC [7, 8]. Our work can be considered as the extension
of such operator with one more dimension.

Discrete Laplacians have also been de�ned on more general
simplicial surfaces [12] and polygonal meshes [13], as well as
on point clouds [14, 15, 16], volumetric models [17] and pseu-
domanifolds [18]. This last work also uses DEC. All these dis-
crete Laplacians operate on static shapes. Other works have
de�ned discrete Laplace-Beltrami operators on manifolds from
a di� erential point of view, with a particular emphasis on con-
vergence to the continuous operator [19, 20].

In the case of a moving shape, a couple of works have ex-
plicitly used a discrete Laplace operator. In the context of mo-
tion editing and retargeting, Le Naour et al. [21] propose to
use a Laplace operator with Gaussian weights on the animation
skeleton. Yang et al. [22] use a Laplacian with uniform weights
to enhance details in a mesh sequence. We compare to these
works in Section 5.5. To the best of our knowledge, our work
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is the �rst to derive a discrete Laplace operator which is both
geometry- and motion-dependent.

3. 3D+t DEC Laplacian

In this section the proposed de�nition of a Laplace operator
for temporal mesh sequences is developed. Mesh sequences
are de�ned as 3-dimensional CW complexes embedded in a 4D
space. The Laplace operator is then derived from DEC on these
complexes.

3.1. Embedding space

Let E be a 4-dimensional Riemannian manifold, equipped
with a metricg such that the matrix of the metric tensor in
any basis of vector �elds onE is a diagonal matrixG =
Diag(�; 1; 1; 1) with � > 0.

In other words, ifX1 = (t1; x1; y1; z1) andX2 = (t2; x2; y2; z2)
are two vectors inE, then theinner productof X1 and X2 is
de�ned ashX1; X2i = � t1t2 + x1x2 + y1y2 + z1z2. In particular,
the norm of a vectorX = (t; x; y; z) 2 E is de�ned askXk =p

� t2 + x2 + y2 + z2.
E represents the embedding space of our mesh sequences.

The �rst coordinatet of a vectorX = (t; x; y; z) 2 E is called
its timelike coordinate, while the three others coordinatesx, y
andz are called itsspacelike coordinates. � is a user-de�ned
parameter that describes the respective in�uence of space and
time in the metric.

Note that� should be positive forE to be a Riemannian man-
ifold. If � < 0, G is no more positive de�nite.

3.2. Mesh sequence notations

A temporal mesh sequenceis, in the most general case, a
sequence (M1; : : : ;MK) of 2-manifold meshes. In this paper,
we restrict totemporally coherent mesh sequences, that is to
say sequences with a �xed connectivity, where there is a one-
to-one correspondence between vertices (respectively, edges
and faces) of successive meshes. Most temporal mesh se-
quences used in computer graphics are temporally coherent,
since they are constructed from a single mesh that deforms over
time.Various methods have been proposed to compute a tem-
porally coherent mesh sequence which approximates a mesh
sequence without explicit temporal coherence, see e.g. Allain
et al. [23] and references therein.

In this paper, we use the following notations:
� Mk = (Vk; Ek; Fk) is thek-th mesh of the input sequence

andVk, Ek andFk are the sets of its vertices, edges and
faces, respectively;

� vk
i , vk

j andvk
l are vertices onMk;

� V, E andF are the number of vertices, edges and faces of
Mk, respectively;

� K is the number of meshes of the sequence.

Since we restrict to temporally coherent mesh sequences,
V; E, andF are the same for allMk.

3.3. Mesh sequence as a CW complex

We now model a temporally coherent mesh sequence as a
CW complex embedded inE.

De�nition 3.1 (CW complex [24]). A CW complexis a se-
quence(Xi) of i-dimensional spaces Xi inductively de�ned as:

1. a discrete set X0, whose points are called0-cells;

2. Xi is the disjoint union of Xi� 1 with a collection of i-
dimensional disks, called i-cells. These disks are attached
to Xi� 1 using continuous maps at their boundary.

In case the sequence is �nite, thedimensionof a CW complex
is the greater dimension of its cells.

The following property derives directly from the de�nition
of a CW complex.

Property 3.2. Let MS = (M1; : : : ;MK) be a temporally coher-
ent sequence of 2-manifold triangular meshes.8k � 1; k � K,
let tk 2 R be the timelike coordinate of all vertices of Mk, such
that t1 < t2 < � � � < tK . Then the union of all Mk, together with:

� V(K � 1) additional edges between all vertices vk
i and

vk+1
i ; 1 � i � V;1 � k � K � 1,

� E(K � 1) additional 2-cells between all edges vk
i v

k
j and

vk+1
i vk+1

j ; 1 � i � E;1 � k � K � 1,
� F(K � 1) additional 3-cells between all faces vk

i v
k
jv

k
l and

vk+1
i vk+1

j vk+1
l ; 1 � i � F; 1 � k � K � 1,

forms a 3-dimensional CW complex embedded inE.

In the following, we call such a CW complex atemporally
coherent mesh sequence embedded inE. Edgesvk

i v
k+1
i of a

temporally coherent mesh sequence embedded inE are sub-
sequently calledtemporal edges. Other edges are calledspatial
edges. Figure 1 (a) depicts part of a temporally coherent mesh
sequence embedded inE.

3.4. Discrete Laplace operator

A discrete Laplace operator for 0-forms on temporally co-
herent mesh sequences is now constructed. This is done using
the DEC framework [25, 7, 8]. Since in our modelling tem-
poral 2-cells are not triangles but (skew) quadrilaterals and 3-
cells are not tetrahedra, our CW complex is not a simplicial
complex. DEC can nonetheless be applied since its structure is
manifold-like by construction [18]: cutting each temporal 2-cell
into two triangles would generate a 3-manifold tetrahedrisation.
However, this cutting is non-canonical in the sense that several
tetrahedrisations could be created from the same sequence with
di� erent cuttings, leading to possibly di� erent Laplace opera-
tors. The DEC framework is thus applied directly to this CW
complex rather than to some tetrahedrisation.

3.4.1. Discrete Exterior Calculus in a 4D space
We refer to Crane et al. [8] for an introduction to the dis-

crete Laplace-Beltrami operator on triangular meshes, and its
discretisation through DEC. In short, we start with a 0-form
f , that is to say a function which associates a number to each
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(a) (b)

(c) (d)

Figure 1: (a) Modelling of a temporally coherent mesh sequence embedded in
E. In dark blue are shown spatial edges at two successive time instantstk and
tk+1 and a face ofMk+1. In light blue are shown corresponding temporal edges
and a 3-cell of the CW complex. (b,c,d) Barycentric dual cells (in red) of a
(b) vertex, (c) spatial edge and (d) temporal edge, shown in green. Only parts
of the cells with timelike coordinates betweentk andtk+1 are shown.

vertexvk
i of the input temporally coherent mesh sequenceMS

embedded inE.
Thediscrete exterior derivatived is the discrete counterpart

of the gradient. It allows to integrate the derivative off along
the edges ofMS. For an edgevk

i v
l
j with jk � lj � 1, it can be

expressed as:

d f (vk
i v

l
j) =

Z

vk
i vl

j

d f = hf; vl
j i � h f; vk

i i ; (1)

wherehf; vk
i i denotes the number associated tovk

i by the 0-form
f .

Thediscrete codi� erential� is the discrete counterpart of the
divergence. This operator can be expressed as� = � d� with �
another operator called thediscrete Hodge star. The discrete
Hodge star is a map de�ned on 0-forms (in our case) such that,
for any simplex� :

1
j� j

hf; � i =
1

j?� j
h� f ; ?� i ; (2)

where?� denotes thedualof the simplex� (see below) andj� j
denotes its volume. In our case, the simplices are the vertices
and the edges of the mesh sequence. By convention, the volume
of a vertex is equal to 1.

The discrete Laplace-Beltrami operator4u of f on the ver-
ticesvk

i of MS is �nally de�ned as the divergence of the gradi-
ent: 4u = � d = � d � d [7, 8]. This leads to:

De�nition 3.3 (Unsymmetrised discrete Laplace operator [7,
8]). Theunsymmetrised discrete Laplace operator4u of a func-
tion f de�ned on the vertices vk

i of a temporally coherent mesh
sequence MS embedded inE is de�ned by:

1

jvk
i j

h4u f ; vk
i i =

1

j?vk
i j

X

vk
i vl

j2MS

j?vk
i v

l
j j

jvk
i v

l
j j

( f (vk
i ) � f (vl

j)) (3)

where?vk
i denotes the dual of vertex vk

i , ?vk
i v

l
j is the dual of

edge vki v
l
j (thusjk � lj � 1), andjcj denotes the oriented volume

of any cell c, whatever its dimension.

By de�nition, the dual?vk
i of a vertexvk

i is a 3-cell whose
vertices are the centres of incident (spatial and temporal) edges,
(spatial) triangles, (temporal) quadrilaterals and 3-cells. The
dual ?vk

i v
l
j of an edgevk

i v
l
j is a 2-cell whose vertices are the

centres of incident triangles or quadrilaterals and 3-cells.
Figure 1 shows the dual cells of a vertex, a spatial edge and a

temporal edge. Note that the dual of a spatial edge (Figure 1 (c))
is a set of four temporal quadrilaterals (two only for the �rst and
the last meshes of the sequence). The dual of a temporal edge
(Figure 1 (c)) is a set of triangles sharing the same timelike
coordinate. The dual of a vertex (Figure 1 (b)) is a set of 3-cells
with 6 vertices, de�ned by temporal quadrilaterals and spatial
triangles.

The centre of ak-cell is chosen to be the isobarycentre (i.e.,
centroid) of the cell, as in prior works [26, 18]. Note that in
general it is not possible to de�ne circumcentres, thus circum-
centric duals as in some previous works [25, 7], because of the
quadrangular temporal 2-cells.

The area of a temporal quadrilateral is not properly de�ned
since this quadrilateral is skew: its four points are not neces-
sarily coplanar. In our case, we only consider quadrilaterals
expressing the motion of an edgevt

iv
t
j from timelike coordinate

t = tk to timelike coordinatet = tk+1. As a consequence, we can
de�ne the area of the corresponding 2-cell as the integral of the
length of this edge over time, fromtk to tk+1:

De�nition 3.4 (Area of a temporal 2-cell). Let vk
i ; v

k
j ; v

k+1
j and

vk+1
i be the ordered vertices of a temporal quadrilateral Qk

i; j .
Let tk be the timelike coordinate of vk

i and vkj , and tk+1 be the
timelike coordinate of vk+1

j and vk+1
i . Let all vertices be inter-

polated linearly8t 2 [tk; tk+1] as vti = t� tk

tk+1� tk (vk+1
i � vk

i ) + vk
i .

Then,

jQk
i; j j =

Z vk+1
i

vk
i

kvt
iv

t
jkdvt

i (4)

This integral can be expressed asB
R1+A

A

p
u2 + C2du with

A and B two constants,C = kvk
i v

k
j � vk+1

i vk+1
j k2 and k:k2 the

Euclidean distance in the 3D Euclidean space (not in the 4D
spaceE). This in turn can be expressed in a closed form. See
Appendix (a) for the details.

Similarly, the dual?vk
i of a vertexvk

i can be expressed as the
union of several 3-cellsFk

i; j;l = vk
i v

k
jv

k
l v

k+1
i vk+1

j vk+1
l expressing

the displacement of trianglesvt
iv

t
jv

t
l from timelike coordinate

t = tk to timelike coordinatet = tk+1. We can thus de�ne the
volume of such a 3-cell as the integral of the area of the triangle
vt

iv
t
jv

t
l over time:

De�nition 3.5 (Volume of a temporal 3-cell). Let vk
i v

k
jv

k
l and

vk+1
i vk+1

j vk+1
l be the triangles de�ning a temporal 3-cell Fi; j;l .

Let tk be the timelike coordinate of vk
i , vk

j and vkl , and tk+1 be
the timelike coordinate of vk+1

i , vk+1
j and vk+1

l . Let all vertices be

3



interpolated linearly8t 2 [tk; tk+1] as vti = t� tk

tk+1� tk (vk+1
i � vk

i ) + vk
i .

Then,

jFk
i; j;l j =

Z vk+1
i

vk
i

Area(vt
iv

t
jv

t
l )dvt

i (5)

We give a detailed expression ofjFk
i; j;l j in Appendix (b).

3.4.2. Symmetrisation
Following Vallet and Ĺevy [27], it can be noticed that the

operator4u is not symmetric but can be symmetrised. The in-
ner product on 0-forms is de�ned by the diagonal matrix?0

with elementsj?vk
i j

jvk
i j

, that is to say the volumes of the vertex dual

cells since for any vertexvk
i ; jv

k
i j = 1. The following symmetric

Laplace operator can thus be de�ned.

De�nition 3.6 (Discrete Laplace operator on mesh sequences).
Let MS be a temporally coherent mesh sequence embedded in
E. The operator4 on0-forms on MS de�ned as

4 = ?1=2
0 4u? � 1=2

0 (6)

is called theLaplace operatoron MS .

From Equation (3) and Equation (6) the following expression
is derived.

Property 3.7. Let f be a function de�ned on vertices vk
i of a

temporally coherent mesh sequence MS . Then:

h4f; vk
i i =

X

vk
i vl

j 2MS;jk� lj� 1

1
q

j?vk
i jj?vl

j j

j?vk
i v

l
j j

jvk
i v

l
j j

( f (vk
i ) � f (vl

j)) (7)

4. Properties

We now investigate properties of the previously de�ned
Laplace operator on mesh sequences. We �rst show that such
operator can be expressed as a sparse and easy to handle matrix.
We then study its behaviour for small and large values of� .

4.1. Matrix representation

Property 4.1. Let MS be a temporally coherent mesh se-
quence. The operator4 on 0-forms on MS as expressed in
Equation (7) is local, and can be encoded by a sparse VK� VK
symmetric block tridiagonal matrix L which can be written
blockwise as:

L =

2
666666666666666666664

L(1) D(1)

D(1) L(2) D(2)

:::
:::

:::
D(K� 2) L(K� 1) D(K� 1)

D(K� 1) L(K)

3
777777777777777777775

(8)

with 1 � k � K � 1, the V� V matrices D(k) being diagonal and
the V� V matrices L(k) being symmetric.

Proof. Operator4 is local since for any functionf and any
vertexvk

i , h4f; vk
i i only depends on the values off on vk

i and
neighbouring verticesvl

j .
The matrix expression derives from Equation (7). Diagonal

coe� cients of matricesD(k) are given by:

D(k)
i;i = �

1
q

j?vk
i jj?vk+1

i j

j?vk
i v

k+1
i j

jvk
i v

k+1
i j

: (9)

The coe� cientsL(k)
i; j of matricesL(k) are equal to zero if there is

no spatial edge inMS between verticesvk
i andvk

j . Otherwise,

L(k)
i; j = �

1
q

j?vk
i jj?vk

j j

j?vk
i v

k
j j

jvk
i v

k
j j

: (10)

Diagonal coe� cients are given by:

L(k)
i;i = � D(k)

i;i � D(k� 1)
i;i �

X

j, i

L(k)
i; j ; (11)

where the termsD(k)
i;i andD(k� 1)

i;i are omitted when not de�ned
(i.e. for the �rst and last frames).

Note that this matrix is very sparse, since all sub-matricesL(k)

are sparse and sub-matricesD(k) are diagonal. If we expect a
vertex to have 6 spatial neighbours on average, the total number
of non-zero coe� cients is about 7VK + 2V(K � 1) (each row
of the matrix has the following non-zero entries: the diagonal
coe� cient, plus a coe� cient for each spatial neighbour, and a
coe� cient for each temporal neighbour). The overhead with
respect to using a purely static Laplacian matrix on each mesh
of the sequence is thus only 2V(K � 1), corresponding to each
use of theK diagonal sub-matricesD(k). Moreover, the structure
of matrix L allows e� cient pre-allocation of memory. Since
all meshes of the sequenceMS share the same connectivity,
the numberNnz of non-zero coe� cients is the same for all sub-
matricesL(k). We can thus computeNnz for the �rst sub-matrix
L(1) and then pre-allocate exactly a 1-by-NnzK+2V(K� 1) block
of memory. A simple algorithm enables then to map this block
to the non-zero matrix coe� cients. Finally, e� cient solvers
exist for block tridiagonal matrices, see e.g. Terekhov [28].

4.2. Matrix inversion

Block tridiagonal matrices (also known as block Jacobi ma-
trices) have been extensively studied in the literature, see
e.g. Meurant [29], Salkuyeh [30], Molinari [31]. In particular,
it is easy to show thatL admits a block LDLT decomposition,
which is a variant of a Cholesky decomposition into a lower
unitriangular matrix, a diagonal matrix and the transpose of the
�rst.

De�nition 4.2 ([29, 30]). Let MS be a temporally coherent
mesh sequence. Let L be its associated Laplacian matrix as
de�ned in Property 4.1. Letf� (k); 1 � k � Kgbe V� V matrices
de�ned recursively as:

� � (1) = L(1);
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� 8 k � 2; � (k) = L(k) � D(k� 1)
�
� (k� 1)

� � 1
D(k� 1).

Let f� (k); 1 � k � Kgbe V� V matrices de�ned recursively as:

� � (K) = L(K);

� 8 k � K � 1; � (k) = L(k) � D(k)
�
� (k+1)

� � 1
D(k).

Property 4.3 ([29]). Let � be the VK� VK block diagonal
matrix � = diag(� (1); : : : ;� (K)) and � be the VK� VK block
diagonal matrix� = diag(� (1); : : : ;� (K)). Let Lo be the block
lower part of L:

Lo =

2
666666666666666666664

0
D(1) 0

:::
:::

:::
D(K� 2) 0

D(K� 1) 0

3
777777777777777777775

(12)

Then L can be decomposed as:

L = (� + Lo)� � 1(� + Lt
o) = (� + Lt

o)� � 1(� + Lo) (13)

These LDLT decompositions ofL lead to a simple way to
invert this matrix.

Property 4.4 ([29]). Let fUk; 1 � k � f gand fVk; 1 � k � f g
be two sequences of n� n matrices such as:

U1 = I;V1 =
�
� (1)

� � 1
; (14)

with I the n� n identity matrix and8k � 2,

Uk = (� 1)k� 1
�
D(k� 1)

� � 1
� (k� 1) : : :

�
D(1)

� � 1
� (1); (15)

Vk = (� 1)k� 1
�
� (1)

� � 1
D(1)

�
� (2)

� � 1
: : :D(k� 1)

�
� (k)

� � 1
: (16)

Then8 j � i, the(i; j) block of L� 1 can be expressed as UiV j .

Note that in Meurant [29] it is requested thatL is proper,
that is to say that submatricesD(k) are nonsingular. This is our
case since these matrices are diagonal with non zero diagonal
elements.

The inverse ofL can thus be computed only by computing
the inverse ofK V � V matrices, namely the inverse of the� (k)

matrices.

4.3. Behaviour for large and small time steps

Let us now investigate the behaviour of our Laplace operator
when� tends to in�nity or to zero. Remember from Section 3.1
that� is the parameter which scales the temporal dimension of
the embedding spaceE with respect to the spatial dimensions.
A large � decreases the in�uence of the temporal neighbours
vk� 1

i andvk+1
i over a given vertexvk

i , with respect to its spatial
neighbours sharing the same timelike coordinates. Conversely,
a small� increases their in�uence.

Property 4.5. When� tends to in�nity, L tends to a block diag-
onal matrix Diag(L(1); : : : ;L(K)), where each matrix L(k) is the
spatial DEC Laplacian matrix with cotangent coordinates.

Proof. Let Ak
i denote the area of the spatial dual cell ofvk

i in
the meshMk. If � � 1, the di� erence between successive
areasAk� 1

i ; Ak
i and Ak+1

i is negligible with respect to� . As a
consequence, the volume of any vertex dual cell?vk

i can be
approximated by

p
� (tk+1 � tk)Ak

i .
For the same reason, for any spatial edgevk

i v
k
j , the area of the

dual cell?vk
i v

k
j is equivalent to

p
� (tk+1 � tk) times the length

j? svk
i v

k
j j of the spatial dual cell ofvk

i v
k
j in meshMk. We then

have 1q
j?vk

i jj?vk
j j

j?vk
i vk

j j

jvk
i vk

j j
� 1q

Ak
i Ak

j

j? svk
i vk

j j

jvk
i vk

j j
. Thus, theV � V matrix L(k)

is equivalent to the spatial Laplacian matrix for meshMk.
The length of any temporal edgevk

i v
k+1
i of the mesh sequence

is equivalent to
p

� (tk+1 � tk), and the area of its dual is small
with respect to� . Thus, any coe� cient D(k)

i;i of the diagonal
matrix D(k) is close to zero.

This property proves that, if� is large, our 4D Laplacian acts
as a standard static Laplacian on each frame.

Property 4.6. Suppose the motion of each vertex is small
with respect to the tessellation:8k;8i; 8 j such that vki v

k
j 2

Ek; kvk
i v

k+1
i k � k vk

i v
k
jk. Then, when� tends to zero, the motion

coe� cients D(k)
i;i are dominating over the geometry coe� cients

L(k)
i; j .

Proof. If 8k;8i; 8 j such thatvk
i v

k
j 2 Ek; kvk

i v
k+1
i k � k vk

i v
k
jk, then

the di� erence between successive areasAk� 1
i ; Ak

i and Ak+1
i is

negligible with respect tokvk
i v

k
jk. As a consequence, the volume

of any vertex dual cell?vk
i can be approximated bykvk

i v
k+1
i k2Ak

i .
For the same reason, the area of the dual cell?vk

i v
k
j is, for

any spatial edgevk
i v

k
j , equivalent tokvk

i v
k+1
i k2 times the length

j? svk
i v

k
j j of thespatialdual cell ofvk

i v
k
j in meshMk. As the mo-

tion is small with respect to the tesselation, 1q
j?vk

i jj?vk
j j

j?vk
i vk

j j

jvk
i vk

j j
�

1q
Ak

i Ak
j

j? svk
i vk

j j

jvk
i vk

j j
, which implies that theV � V matrix L(k) is equiv-

alent to the spatial Laplacian matrix for meshMk.
The area of the dual of any temporal edgevk

i v
k+1
i of the mesh

sequence is equivalent toAk
i . As a consequence, the coe� cient

D(k)
i;i of the diagonal matrixD(k) is equivalent to 1

kvk
i vk+1

i k2
2
. Since

the motion is small with respect to the tessellation,D(k)
i;i � L(k)

i; j

for any spatial edgevk
i v

k
j : the temporal coe� cients are dominat-

ing.

This property shows that, if� is small, and the motion
is small with respect to the geometric discretisation, our 4D
Laplacian enables to recover the motion of each vertex of the
mesh independently.

5. Application to spacetime editing

We now present an application in which we can directly use
the previously de�ned discrete 3D+t Laplace operator to gen-
erate a variety of e� ects. This application deals with mesh se-
quence editing.
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5.1. Background
In a mesh sequence editing application the user interactively

deforms one or several meshes, called thekey-frames. Changes
must then be propagated to other frames of the sequence such
that the resulting motion remains smooth, and each intermedi-
ate frame remains visually plausible. Editing can be useful to
reuse or correct captured data, preserving the acquired details
and the nonrigid surface deformation involved.

The problem of adapting existing animations has been widely
studied in the case of skeletal motion, see e.g. Ho et al. [32] and
references therein. The work of Le Naour et al. [21] is particu-
larly close to ours in that they also use a 3D+t Laplace operator
for the propagation of changes, and we compare our framework
to this work. Our results indicate that while skeleton-based
approaches provide intuitive control over the animation and a
simpli�ed editing process, they are limited in scope and are not
applicable to arbitrary surfaces.

Fewer works approach this problem in the context of mesh
sequences. The work of Kircher and Garland [33] was one of
the �rst to address it, introducing a multi-resolution approach
that allows for automatic transfer of a static mesh edit onto the
other frames. In a follow-up work [34] they develop a dif-
ferential representation which is invariant under rotation and
translation, and can be used both for static editing and motion
processing. To the best of our knowledge, the work of Xu et
al. [35] was the �rst to extend Laplacian mesh processing [1]
to mesh sequences. Their method requires the construction of
a coarse control mesh, called acage, which must then be trans-
ferred to other frames. For the static deformation process a
non-linear energy formulation closely related to Sorkine and
Alexa [36], thus to our work, is used. Changes on handle ver-
tices are propagated in order to get suitable positional and ro-
tational constraints on each frame; these are used to obtain in-
termediate meshes by applying the static deformation scheme
on each. Pushing further the idea of embedding the animation
into a coarse representation while preserving the details, Sum-
ner et al. [37] propose a framework to directly deform the space.
In this work, space a� ne transformations are represented as a
graph. Computing the �nal deformation is then formulated as
an optimisation problem on this graph with positional and detail
preservation constraints. More recent works are the ones of de
Aguiar and Ukita [38] and Tejera et al. [39]. In de Aguiar and
Ukita [38] a kinematic skeleton is constructed to represent the
coarse deformation of the sequence. This skeleton can then be
edited using previously mentioned methods. Tejera et al. [39]
develop a spacetime editing framework based also on di� eren-
tial coordinates. Static deformation on the key-frame is handled
by a new Laplacian editing approach which incorporates infor-
mation of deformations seen throughout the sequence. As in
our work, this implies that all meshes comprised in a tempo-
ral window must be simultaneously considered while editing.
Their approach yields good results, but it does not perform well
when the target deformation is far from the examples. To prop-
agate changes they propose three methods, of which the most
satisfying one requires the use of their new static editing ap-
proach on each frame. We compare the results using our frame-
work to this work in Section 5.6.

All existing methods decouple motion editing from geometry
editing. As a consequence, several parameters are required to
tune the modi�cation of the animation. On the contrary, our
discrete Laplace operator can be used to edit a mesh sequence
in space and time in a simple yet �exible manner.

To this aim, we build over the simple formulation presented
by Sorkine and Alexa [36] for detail-preserving mesh deforma-
tion. Our framework results from a relatively direct extension
of this work into four-dimensional space.

5.2. As-rigid-as-possible surface deformation

Since di� erential coordinates encode local information,
many applications have been proposed that make use of this
property for detail-preserving mesh editing [40, 41]. As an
application example of our 3D+t discrete Laplace operator we
have chosen to build over the work of Sorkine and Alexa [36]
because its explicit energy formulation makes the extension to
mesh animations straightforward. This work handles large ro-
tations by asking for local rigidity to be maintained: the mesh
is divided into overlappingcellswhose transformation must be
close to rigid. One cellC(vi) is de�ned for each vertexvi , and
includesvi as well as its one-ring neighbourhood. De�ning cells
in this way allows later to �nd new vertex positions using a dis-
crete static Laplace operator.

Let us �rst consider astaticmeshM with vertex coordinates
fvi 2 R3g, and its deformed versionM0 with new vertex coordi-
natesfv0

i 2 R3g. If the deformation is rigid, for each cellC(vi)
there exists a rotation matrixRi 2 S O(3) such that:

v0
i � v0

j = Ri(vi � v j); 8viv j 2 M (17)

If the deformation is not rigid,Ri can be approximated by a
rotation matrix that minimises the as-rigid-as possible (ARAP)
energy de�ned as follows:

X

viv j2M

wi j jj
�
v0

i � v0
j

�
� Ri

�
vi � v j

�
jj2; (18)

wherewi j are per-edge weights. Both rotation matricesRi and
positionsv0

i are unknown. This non-linear energy formulation
is minimised using a two-step iterative approach, in which a
�rst step searches for optimal rotations based on current ver-
tex positions, and a second step �nds optimal vertex positions
based on previously found rotations. Finding new vertex po-
sitions amounts to solving a linear Poisson systemLx = b,
with L being the Laplace-Beltrami operator based on cotangent
weights [9, 11].

5.3. Space-time editing using the ARAP formulation

When a keyframe is modi�ed we want it to deform in an as-
rigid-as-possible manner. We also want other frames to closely
follow this deformation, preserving the original structure as
much as possible. Since we are treating a mesh sequence as
a CW complex (see Section 3.3), it is natural to ask for theen-
tire animationto be deformed in an as-rigid-as-possible way.

When deforming the CW complex –as it is in the static case–
a neighbourvl

j of an edited vertexvk
i will only be subtly a� ected
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if the deformation is small with respect to the length of the edge
vk

i v
l
j . Conversely, close neighbours tovk

i will move accordingly
to vk

i in space-time, thus propagating user changes. With our
de�nition of the embedded space, the length of temporal edges
is e� ectively controlled by parameter� . Tuning � allows the
user to control the extent of the propagation and achieve several
e� ects like slow/subtle to abrupt transitions.

Now that we have cells in 4D with spatial and temporal
edges, vertices are de�ned in the 4D spaceE. The energy to
minimise is extended as follows:

X

viv j2MS

wi j jj
�
v0

i � v0
j

�
� Ri

�
vi � v j

�
jj2 (19)

wherevi ; v j ; v0
i andv0

j 2 E, andRi 2 S O(4) denotes the opti-
mal rotation of cellC(vi), now in 4D space. Optimal rotations
can still be derived as in Sorkine and Alexa [36], because the
derivation is not dependent on the dimension of the data. Given
optimal rotations, di� erentiating the energy in Equation (19)
w.r.t. v0

i and setting partial derivatives to zero leads to the fol-
lowing system of equations:

X

vi v j 2MS

wi j (v0
i � v0

j) =
X

vi v j 2MS

wi j

2
(Ri + R j)(vi � vj) (20)

The left-hand side is the 3D+t Laplace operator, and we can
get optimal positions by solving a sparse linear system of equa-
tions Lv0 = b in the least-squares sense. Note that, as in the
static case, the matrixL remains unchanged during the iterative
process, and thus once pre-factorized, it can be reused to solve
using direct methods.

With enough positional constraints, and preserved edge
lengths, in general each mesh will remain close to its origi-
nal time frame. Nevertheless, some of the modi�ed vertices
will have time coordinates which are not placed exactly on the
corresponding frame. In this case, simply correcting the time
coordinate to its closest frame is su� cient.

5.3.1. Constraints
Deformation in 4D requires two types of constraints: (1) new

positions of handle vertices, for the key-frame (2) constraints
on the spatio-temporal boundary of the ROI, that is to say the
geometric boundary of the ROI for each frame along with the
�rst and last meshes of the temporal window. Anchoring the
handle vertices to the user-speci�ed positions allows the defor-
mation to reach the desired target. Putting constraints on the
boundary of the ROI creates a smooth transition between the
edited submesh and the remaining mesh sequence. All of these
constraints are speci�ed as soft-constraints.

Anchoring the temporal boundary can be avoided if the de-
formation is expected to be propagated equally in all frames, see
Figure 7 for an example. It is worth noting that constraints over
the spatial boundary of the ROI can also be avoided, if� is suf-
�ciently small. As opposed to static Laplacian editing on each
frame, which requires at least one anchored vertex in order for
the matrix to be non-singular, our 3D+t operator remains non-
singular even if no constraints are set on intermediate frames,
providing that the temporal in�uence is signi�cant.

5.3.2. Initialisation
Our iterative framework requires proper initialisation for fast

convergence. An initial guess can be obtained by solving Equa-
tion (19) using the identity as rotation matrix. Since editing of
the key-frame must be done at interactive rates, we �rst allow
for static editing to be performed on this frame. The result is
used for the initial guess, along with Equation (19).

An advantage of this is that the full mesh can be anchored
afterwards, thus forcing the user edits to be always ful�lled. A
second advantage is that any method can be used for key-frame
editing. The ARAP formulation has its limitations; among them
failure to preserve the volume of the original mesh. The SR-
ARAP method by Levi and Gotsman [42] is an extension to the
ARAP framework that gives much better results in terms of vol-
ume preservation. Further, it does not require a volumetric dis-
cretisation of the interior of each mesh. Our experiments (Fig-
ure 2) show that using Levi and Gotsman [42] for key-frame
editing yields better volume preservation for all the in�uenced
frames than the original ARAP method of Sorkine and Alexa
[36]. Note that we are only changing how we initialise the iter-
ative process; our formulation for the entire sequence remains
the same.

(a)

(b)

Figure 2: Spacetime editing using, for key-frame editing: (a) the original ARAP
formulation [36] (b) the SR-ARAP method [42]. The second method avoids
shrinkage of the upper leg not only on the key-frame but also on the other
frames, even though the original ARAP formulation is used in 4D. Each row,
from left to right: previous frame, key frame, next frame.

5.3.3. In�uence of�
Figure 3 shows a simple example of how the� parameter can

be tuned to change the editing e� ect. Deformation is done over
a sequence with no motion consisting of 5 repetitions of a bar
(Figure 3a). As� grows bigger, the e� ect is close to statically
deforming the key-frame only. This is coherent with the theo-
retical analysis in Section 4.3, since a large value for� tends
to modify only the key-frame. On the contrary, as� goes to
zero, the temporal coe� cients dominate, and vertices are inde-
pendently, smoothly displaced along the temporal window.
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(a) Original model (left), deformed target model (right).

(b) Editing a sequence of 5 repetitions of the original model with de-
formed target in last frame. From left to right:� = 0:1;10;100;1000.

Figure 3: E� ect of parameter� when deforming a sequence with no motion.

Sequence # vertices # frames� # iterations
per frame

Bar (Figure 3) 172 5 0:1 33
1 74

Girl (Figure 7) 1215 7 0:01 12
0:1 11
1 5

Capoeira (Figures 9a, 9b) 6571 9 10 39
1000 11

Capoeira (Figure 9c) 10788 19 0:5 10

Horse (Figure 5) 7135 9 0:1 157
1 377
10 400

Table 1: Number of iterations for the mesh sequences shown in the paper.

Note that the e� ect of a given value for� depends both on
the geometric and the temporal discretisations. Similar e� ects
on two mesh sequences require di� erent values for� if their
number of frames or number of vertices di� er.

5.4. Implementation

The 3D+t Laplacian and the ARAP framework have been im-
plemented in Python 2.7, with sparse Cholesky decomposition
handled by a wrapper for the CHOLMOD library [43]. We stop
the iterative process when the di� erence in mesh coordinates
between consecutive iterations is below 10� 3, for all frames.

Computational times depend on the number of iterations,
which itself depends not only on the initial guess but also on
the value of� . Table 1 shows the number of iterations for the
animations shown on this paper. The step with the highest com-
putational complexity is the pre-factorisation of the Laplacian,
and our running times for this range from 20msin the case of
the bar, to 75s for the capoeira sequence.

It is worth noting that the algorithm is highly parallelizable.
The construction of our 3D+t Laplacian only requireslocal
temporal information, i.e. a frame and one or two consecu-
tive meshes. Because of the matrix structure, solving the sparse
linear system can be done blockwise, and a parallel algorithm

Figure 6: Horse sequence [44]. Zoom on frames 5 to 7 showing that results
using Tejera et al. [39] (top) and our method with� = 0:5 (bottom) are visually
similar.

that solves for each frame on a di� erent processor core could
be devised.

5.5. Comparison to existing spacetime Laplace operators

We compare our method to the discrete spacetime Laplace
operators proposed by Yang et al. Yang et al. [22] and Le Naour
et al. LeNaour et al. [21] in Figure 4. Both methods use uni-
form weights for the spatial edges, which is not the case of our
method. Consequently, they introduce severe artifacts in areas
where the tessellation is non-uniform. Using Gaussian tempo-
ral weights as in LeNaour et al. [21] rather than uniform tem-
poral weights only slightly improves the results. Our weights
better preserve the relative motion of each vertex with respect
to its neighbours. Comparison with a static Laplacian editing
framework are shown in the next section.

5.6. Results

Evaluation was performed using both synthetic (Figures 5
and 6) and captured animations (Figures 7, 8 and 9) obtained
from publicly available databases [44, 45, 46]. For a better vi-
sualisation of the results, refer to the supplementary video.

Figures 7, 8, 5 and 6 show that our extension of as-rigid-
as-possible editing to mesh sequences achieves similar e� ects
to Tejera et al. [39], while allowing the user to have control over
the propagation of changes.

Figures 7 and 8 provide a comparison with the method
of Tejera et al. [39], while showing over a simple deformation
the types e� ect that can be achieved by tuning� . Rows 3 to 6
show how di� erent kinds of propagation can be achieved, rang-
ing from an abrupt change on the sequence (using� = 1) to
a smoother interpolation using� = 0:01. The last row was
obtained without setting constraints on the temporal boundary,
which as mentioned, is not necessary if the key-frame edits are
to be propagated equally throughout the window. Notice that
by using a very small value of� stretches all meshes in the
window. These kinds of e� ects could be used for correcting
reconstruction errors over a time window. Similar e� ects can
be observed in Figure 5, this time performing a more complex
deformation.

Examples of detail-preserving deformations can be seen in
Figure 9. Note how the wrinkles in the cloth are preserved in
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Original Edited sequence showing frames 3, 4, 5 and 8.

Figure 4: Editing the bending bar sequence using di� erent weighting schemes. Frame 6 was rotated and translated towards the right. The results using our method
with � = 1 are shown in green, using Yang et al. [22] in brown, and using Le Naour et al. [21] with� = 1 in blue. In this last case several values for the� parameter
were tested. All of them yield similar results.

Figure 5: From top to bottom: original sequence; results using Tejera et al. [39]; our results using� = 0:5, � = 5 and� = 0:1, the latter without constraint on the
temporal window. Key-frame in light blue (frame number 5).

the edited version, while achieving natural motions. This also
holds for the case of a rotational edit shown in the last row.

6. Conclusion

In this paper we have introduced a discrete Laplace oper-
ator for temporally coherent mesh sequences. This operator
is de�ned by modelling the sequences as CW complexes in a
4-dimensional Riemaniann space and using Discrete Exterior
Calculus. A user-de�ned parameter� is associated to the 4D
space to control the in�uence of motion with respect to the ge-
ometry. We have shown that this operator can be expressed
by a sparse blockwise tridiagonal matrix, with a linear number
of non zero coe� cients with respect to the number of vertices
in the sequence. The storage overhead with respect to frame-
by-frame mesh processing is limited. We have also shown an
application example, as-rigid-as-possible editing, for which it
is relatively easy to extend the classical static Laplacian frame-
work to mesh sequences with this matrix. Similar results to
state-of-the-art methods can be reached with a simple, global
formulation.

This opens the possibility of many other problems in anima-
tion processing to be tackled the same way by taking advan-

tage of the existing literature on the Laplacian operator for 3D
meshes [1, 2, 3]. In the future, we are in particular interested in
studying the spectral properties of the de�ned discrete Laplace
operator.
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cian surface editing. In: Symposium on Geometry Processing. 2004, p.
175–84.

[41] Au OKC, Tai CL, Liu L, Fu H. Dual Laplacian editing for meshes. Trans-
action on Visualization and Computer Graphics 2006;12(3):386–95.

[42] Levi Z, Gotsman C. Smooth rotation enhanced as-rigid-as-possible
mesh animation. Transactions on Visualization and Computer Graphics
2015;21(2):264–77.

[43] Chen Y, Davis TA, Hager WW, Rajamanickam S. Algorithm 887:
Cholmod, supernodal sparse cholesky factorization and update/downdate.
Transactions on Mathematical Software 2008;35(3):1–14.
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Appendix: volumes of temporal cells

(a). Area of a temporal 2-cell

For all t 2 [tk; tk+1]; vt
iv

t
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i vk+1
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� )vk
i v

k
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i vt
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i k
. 8k, let us denote the coordinates of
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This integral can be solved and gives
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(b). Volume of a temporal 3-cell

Using the same notations as above, it is
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and hence
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with
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Solving this integral in an exact manner would require �nding
the root of 4th degree polynomials. In practice, we choose to
integrate numerically.
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