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Abstract

The Laplace operator plays a fundamental role in geometry processing. Several discrete versions have been proposed for
meshes and point clouds, among others. We de ne here a discrete Laplace operator for temporally coherent mesh sequences, w
allows to process mesh animations in a simple yetient way. This operator is a discretization of the Laplace-Beltrami operator
using Discrete Exterior Calculus on CW complexes embedded in a four-dimensional space. A parameter is introduced to tune t
in uence of the motion with respect to the geometry. This enables straightforward generalization of existing Laplacian static mes
processing works to mesh sequences. An application to spacetime editing is provided as example.

Keywords: Laplace operator, mesh animation, discrete exterior calculus

1. Introduction rameter is to be chosen by the user: the one which balances
the in uence of geometry with respect to motion. We investi-
The use of a discrete counterpart of the Laplace-Beltramgate the properties of this operator, in particular whes big
operator (the divergence of the gradient) for geometry proer small. We also explore a problem, as-rigid-as-possible mesh
cessing has shown growing interests in the last decades. Agquence editing, which can easily be expressed using this oper-
explained by Sorkine in the case of 3D meshes [1], such aator. Results show that a broad range céets can be generated
operator encodes the variation of a function around a gively tuning parameter.
vertex, thus giving local information about the object under
study. Possible applications include compression, watermark-
ing, editing, segmentation, matching, retrieval, parameteriza?. Related work
tion; multiple surveys review these applications in the case of
3D meshes[1, 2, 3]. Discrete Laplace operators are also widely Following seminal works by Pinkall and Polthier [9] and
used on graphs, for instance for applications in chemistry [4]Taubin [10], many discrete Laplace-Beltrami operators have
and 2D images, mostly for edge detection and ltering [5]. been de ned for static 3D triangle meshes, each withedént
In this paper we are interested in de ning a discrete Laplaceproperties. A popular choice is to use cotangent weights [10,
Beltrami operator for temporal mesh sequences, that is to sall]. This so-calleccotangent Laplaciarcan be derived from
sequences of surface meshes embedded in the EuclideantBe smooth Laplace-Beltrami operator on a 2-manifold shape
dimensional space. Temporal mesh sequences, also nadigil  using DEC [7, 8]. Our work can be considered as the extension
animationsor 3D videos are ubiquitous in various domains of such operator with one more dimension.
such as computer games, 3D movies or 3D television, to rep- Discrete Laplacians have also been de ned on more general
resent objects evolving through time [6]. Mesh sequences casimplicial surfaces [12] and polygonal meshes [13], as well as
be captured from real life scenes using multiple camera systenw point clouds [14, 15, 16], volumetric models [17] and pseu-
or generated using modelling software or physically-based simdomanifolds [18]. This last work also uses DEC. All these dis-
ulation. In all cases, they may require time-consuming modi -crete Laplacians operate on static shapes. Other works have
cations, such as editing of some part of the geometryoatde  de ned discrete Laplace-Beltrami operators on manifolds from
motion, to become usable in the production pipeline. a di erential point of view, with a particular emphasis on con-
Although it may seem natural to process the geometry anstergence to the continuous operator [19, 20].
the motion separately, we advocate here the use of a single In the case of a moving shape, a couple of works have ex-
operator, with a parameter to decouple time and space dimeplicitly used a discrete Laplace operator. In the context of mo-
sions.We show that such an operator may lead to a variety of efion editing and retargeting, Le Naour et al. [21] propose to
fects with a single formulation. Our discrete Laplace-Beltramiuse a Laplace operator with Gaussian weights on the animation
operator is de ned by modelling mesh sequences as CW comnskeleton. Yang et al. [22] use a Laplacian with uniform weights
plexes embedded in a 4-dimensional space and using the Dig enhance details in a mesh sequence. We compare to these
crete Exterior Calculus (DEC) framework [7, 8]. Only one pa-works in Section 5.5. To the best of our knowledge, our work
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is the rst to derive a discrete Laplace operator which is both3.3. Mesh sequence as a CW complex

geometry- and motion-dependent. We now model a temporally coherent mesh sequence as a
CW complex embedded ia.

3. 3D+t DEC Laplacian De nition 3.1 (CW complex [24]) A CW complexis a se-
quencgX) of i-dimensional spaces' ¥ductively de ned as:
In this section the proposed d_e nition of a Laplace operator 1. adiscrete set § whose points are calleg-cells
for temporal mesh sequences is developed. Mesh sequences
are de ned as 3-dimensional CW complexes embeddedina4D 2, X is the disjoint union of X! with a collection of i-
space. The Laplace operator is then derived from DEC onthese  dimensional disks, calleddells These disks are attached
complexes. to X 1 using continuous maps at their boundary.

In case the sequence is nite, tilimensionof a CW complex
is the greater dimension of its cells.

Let E be a 4-dimensional Riemannian manifold, equipped
with a metricg such that the matrix of the metric tensor in
any basis of vector elds orkE is a diagonal matrixG =
Diag(; 1;1;1) with > 0. Property 3.2. Let MS = (M?;:::;MX) be a temporally coher-

In other words, ifX; = (t1; X1;¥1;z1) andXz = (t2; X%2;¥2;2)  ent sequence of 2-manifold triangular mesh@s. 1k K,
are two vectors irg, then theinner productof X; andXz is et t 2 R be the timelike coordinate of all vertices ofMsuch

3.1. Embedding space

The following property derives directly from the de nition
of a CW complex.

de ned ashXy; Xoi = tita + X1Xp + y1y2 + z1%. In particular,  thatt' <t?< < t. Then the union of all ¥ together with:
enormof a vectorX = (t;xy;2) 2 E is de ned askxk = V(K 1) additional edges between all vertice$ and
2+ x2+y2 + 22, w1 i vl kK1,
E represents the embedding space of our mesh sequences. E(K 1) additional 2-cells between all edge#\x? and
Th [ f X = (t;xy;2) 2 E is call 1 .
e rst coordinatet of a vector t;xy;2 is called v!“l\/f”, 1 i E1 k K 1,

its timelike coordinatewhile the three others coordinatesy F(K 1) additional 3-cells between all faceéN‘vk and
andz are called itsspacelike coordinates is a user-de ned L L KL , ; 1
vy 1 i F1 k K 1,

parameter that describes the respective in uence of space and i . _ :
time in the metric. forms a 3-dimensional CW complex embeddeH.in

Note that should be positive foE to be a Riemannian man- | the following, we call such a CW complextamporally
ifold. If < 0, G is no more positive de nite. coherent mesh sequence embedde&.inEdgesvivi*? of a
temporally coherent mesh sequence embedddd ame sub-

3.2. Mesh sequence notations sequently calletemporal edgesOther edges are callepatial

edges Figure 1 (a) depicts part of a temporally coherent mesh
A temporal mesh sequencg in the most general case, a sequence embeddedin

sequenceNI?; : ::;MK) of 2-manifold meshes. In this paper,
we restrict totemporally coherent mesh sequencit is to 3.4, Discrete Laplace operator
say sequences with a xed connectivity, where there is a one- A discrete Laplace operator for 0-forms on temporally co-

to-one correspondence_ between vertices (respectively, edgfg ent mesh sequences is now constructed. This is done using
and faces) of successive meshes_. Most temporal mesh Sffie DEC framework [25, 7, 8]. Since in our modelling tem-
quences used in computer graph!cs are temporally cohere oral 2-cells are not triangles but (skew) quadrilaterals and 3-
since thgy are constructed from a single mesh that deforms ov Blis are not tetrahedra, our CW complex is not a simplicial
tlme.l?/arlotjls metthodshhave been prﬁp (r)]sed to co mp:ute a ter‘(%mplex. DEC can nonetheless be applied since its structure is
porally conerent mesh sequence which approximates a me.#l'anifold-like by construction [18]: cutting each temporal 2-cell

sequence without explicit temporal coherence, see e.g. A"a'ﬂ]to two triangles would generate a 3-manifold tetrahedrisation.

etal. [23] and references therein. _ However, this cutting is non-canonical in the sense that several
In this paper, we use the following notations: tetrahedrisations could be created from the same sequence with
MK = (VX EX;FX) is thek-th mesh of the input sequence g erent cuttings, leading to possibly dirent Laplace opera-
andV¥, E andF* are the sets of its vertices, edges andiors. The DEC framework is thus applied directly to this CW

faces, respectively; complex rather than to some tetrahedrisation.
Vi, Vicandvf are vertices oM

V, E andF are the number of vertices, edges and faces 0§ 4 1. Discrete Exterior Calculus in a 4D space
MK, respectively;

i We refer to Crane et al. [8] for an introduction to the dis-
K is the number of meshes of the sequence.

crete Laplace-Beltrami operator on triangular meshes, and its
Since we restrict to temporally coherent mesh sequencesljscretisation through DEC. In short, we start with a 0-form
V:E, andF are the same for aM¥. f, that is to say a function which associates a number to each



where?V¥ denotes the dual of verteX,v?viv, is the dual of

edge WJ- (thusjk 1j 1), andjcj denotes the oriented volume
of any cell ¢, whatever its dimension.

By de nition, the dual? v of a vertexv¥ is a 3-cell whose
vertices are the centres of incident (spatial and temporal) edges,
> time » time (Spatial) triangles, (temporal) quadrilaterals and 3-cells. The
(@) (b) dual ?\}v; of an edgevV} is a 2-cell whose vertices are the

centres of incident triang'es or quadrilaterals and 3-cells.
Figure 1 shows the dual cells of a vertex, a spatial edge and a
temporal edge. Note that the dual of a spatial edge (Figure 1 (c))
is a set of four temporal quadrilaterals (two only for the rstand
the last meshes of the sequence). The dual of a temporal edge
(Figure 1 (c)) is a set of triangles sharing the same timelike
- time - Gme coordinate. The dual of a vertex (Figure 1 (b)) is a set of 3-cells
© d) Wlth 6 vertices, de ned by temporal quadrilaterals and spatial
triangles.
Figure 1: (a) Modelling of a temporally coherent mesh sequence embedded in The centre of &-cell is chosen to be the isobarycentre (i.e.,
E. In dark blue are shown spatial edges at two successive time ingtaard centroid) of the cell, as in prior works [26, ]_8]_ Note that in
t*1 and a face oML, In light blue are shown corresponding temporal edges general it is not possible to de ne circumcentres, thus circum-
and a 3-cell of the CW complex. (b,c,d) Barycentric dual cells (in red) of a . . .
(b) vertex, (c) spatial edge and (d) temporal edge, shown in green. Only par§€Ntric duals as in some previous works [25, 7], because of the
of the cells with timelike coordinates betwegrandt“*1 are shown. quadrangular temporal 2-cells.

The area of a temporal quadrilateral is not properly de ned
since this quadrilateral is skew: its four points are not neces-
embedded ilE. sarily coplanar. In our case, we only consider quadrilaterals

Thediscrete exterior derivative is the discrete counterpart expressing the motion of an edglglj from timelike coordinate

of the gradient. It allows to integrate the derivativefolong ~ t = t* to timelike coordinate = t"*. As a consequence, we can
the edges oMS. For an edgeXVi with jk 1j 1, it can be de ne the area of the corresponding 2-cell as the integral of the
expressed as: t length of this edge over time, frothto t<*1:
Z
df (V) = df = hf-vii h f i (1) De nition 3.4 (Area of a temporal 2-cell)Let \}|<;\,lj<;vlj<+1 and
o “ I Vi1 be the ordered vertices of a temporal quadrilaterdl;Q

. . . +1 '
wherehf; Vi denotes the number associatedtby the 0-form €t ¥ be the timelike coordinate of and \, and ¢** be the
f timelike coordinate of #* and 1. Let all vertices be inter-

Thediscrete codierential is the discrete counterpart of the polated linearly8t 2 [t¥;t<*1] as\ = tkﬁltktk(vf‘” v'i<) + Vlk
divergence. This operator can be expressedas d with Then,
another operator called ttdiscrete Hodge star The discrete Z vt
Hodge star is a map de ned on 0-forms (in our case) such that, jQkji= ki Vi kdvi 4)
for any simplex : w

vertexv}‘ of the input temporally coherent mesh sequeht®

RyaP———
T iz Lheo @ This integral can be expressed BSA1+A u2 + C2du with
I | A and B two constantsC = kv VWi, and kk, the
where? denotes thelualof the simplex (see below)ani j  Euclidean distance in the 3D Euclidean space (not in the 4D
denotes its volume. In our case, the simplices are the vertic&dpaceE). This in turn can be expressed in a closed form. See
and the edges of the mesh sequence. By convention, the volurA@pendix (a) for the details.
of a vertex is equal to 1. Similarly, the duaf v of a vertexv can be expressed as the

The discrete Laplace-Beltrami operatby of f on the ver-  union of several 3-cell&;, = vivivivi* 1yt expressing

ticesvf of MS is nally de ned as the divergence of the gradi- the displacement of tri::mglez?‘v‘jvlt from timelike coordinate
ent:4,= d= d d[7,8]. Thisleads to: t = t to timelike coordinate = t<*1. We can thus de ne the
De nition 3.3 (Unsymmetrised discrete Laplace operator [7,volume of such a 3-cell as the integral of the area of the triangle
8]). Theunsymmetrised discrete Laplace operdtgof a func- ~ ViV,Vj over time:

tion f de ned on the vertice‘#\of a temporally coherent mesh

sequence MS embeddedHiis de ned by: De nition 3.5 (Volume of a temporal 3-cell)Let VWvj and
o VIvie vt be the triangles de ning a temporal 3-cell; .

._]'_h4uf;\/%<i =1 J:_i.jj(f(v:() f(4)) (3 Lett be the timelike coordinate of v and \f, and t** be
M 2vil v 2ms MVl the timelike coordinate of%, v** and **. Let all vertices be



interpolated linearly8t 2 [t t“*1] as \ = %(vﬁ‘*l VE)+ VK. Proof. Operator4 is local since for any functiorf and any

Then, vertex V¥, haf;\&i only depends on the values 6fon v and
e Z g A neighbouring vertices, .
SRl = « AreaViviv)dy, (®) The matrix expression derives from Equation (7). Diagonal
i coe cients of matrice®® are given by:
We give a detailed expressmnjﬁi’fj;lj in Appendix (b). oo 1 j?Vf‘V!‘*lj_ o
E

T -
3.4.2. Symmetrisation J2 VKRV MY

Following Vallet and levy [27], it can be noticed that the _ © _ ) _ _
operator4,, is not symmetric but can be symmetrised. The in-The coe cientsL;; of matricesL!) are equal to zero if there is
ner product on O-forms is de ned by the diagonal matix  no spatial edge iMS between verticeg* andv'j‘. Otherwise,

with elementé%?, that is to say the volumes of the vertex dual

2 VW]
cells since for any vertex; jv&j = 1. The following symmetric Li(!‘j) = 4 1 ]_ ! f]; (10)
Laplace operator can thus be de ned. ' P2V VA MV
De nition 3.6 (Discrete Laplace operator on mesh sequencesbiagonm coe cients are given by:
Let MS be a temporally coherent mesh sequence embedded in X
E. The operato# on0-forms on MS de ned as L= p% pk? |_i(_kj); (11)

N
4=224,2 (6)
where the term®" and D * are omitted when not de ned

is called theLaplace operatoon MS. (i.e. for the rst and last frames). O

From Equation (3) and Equation (6) the following expression Note that this matrix is very sparse, since all sub-matri¢gs
is derived. are sparse and sub-matrid@® are diagonal. If we expect a
vertex to have 6 spatial neighbours on average, the total number
Property 3.7. Let f be a function de ned on Vertice$ of a of non-zero coe cients is about VK + 2V(K ]_) (each row

temporally coherent mesh sequence MS. Then: of the matrix has the following non-zero entries: the diagonal
X T coe cient, plus a coecient for each spatial neighbour, and a
haf; ki = ﬁl_J'_‘iJ(f(Vr) f(v'j)) (7)y  coe cient for each temporal neighbour). The overhead with

ViVij respect to using a purely static Laplacian matrix on each mesh

of the sequence is thus onlWgK 1), corresponding to each

use of thek diagonal sub-matrice3®. Moreover, the structure

4. Properties of matrix L allows e cient pre-allocation of memory. Since

all meshes of the sequend4S share the same connectivity,

We now investigate properties of the previously de nedthe numbeilN,, of non-zero coe cients is the same for all sub-

Laplace operator on mesh sequences. We rst show that suaghatricesL®. We can thus computi,, for the rst sub-matrix

operator can be expressed as a sparse and easy to handle matrfk.and then pre-allocate exactly a 1-by,K+2V(K 1) block

We then study its behaviour for small and large values.of of memory. A simple algorithm enables then to map this block

to the non-zero matrix coecients. Finally, e cient solvers

exist for block tridiagonal matrices, see e.g. Terekhov [28].

W 2msik 1j 1 Vi v ]

4.1. Matrix representation

Property 4.1. Let MS be a temporally coherent mesh se-4.2. Matrix inversion

quence. The operatot on O-forms on MS as expressed in  Bjock tridiagonal matrices (also known as block Jacobi ma-
Equation (7) is local, and can be encoded by a sparse WK trices) have been extensively studied in the literature, see
symme_tric block tridiagonal matrix L which can be written e.g. Meurant [29], Salkuyeh [30], Molinari [31]. In particular,
blockwise as: it is easy to show that admits a block LDLT decomposition,

O N which is a variant of a Cholesky decomposition into a lower

L D o ) . i
© L@ p® un;trlangular matrix, a diagonal matrix and the transpose of the
rst.

L= o s (8)
DK 2 (K1) pkKI De nition 4.2 ([29, 30]). Let MS be a temporally coherent
DK D LK mesh sequence. Let L be its associated Laplacian matrix as
de nedin Property 4.1. Let ®:1 k KgbeV V matrices

withl k K 1,theV V matrices ¥ being diagonal and de ned recursively as:

the V.V matrices Y being symmetric. M= L;



8k 2 ®W=|® pky &y *

Dk 1), Proof. Let A¢ denote the area of the spatial dual celivfin
the meshMk. If 1, the di erence between successive
Letf ®;1 k KgbeV V matrices de ned recursively as: areasAf 1; A and A*! is negligible with respect to. As a
) = K- consequence, the volume of any vertex dual eaff can be
: approximated by —(t“*!  t<)AX.
8k K 1 W=LK® pK & 1 DK For the same reason, for an spat|al edbe, the area of the
dual cell?v/\¥ is equivalent to” (1" tk) times the length

Prop.erty_4 3 ([29])(1)_|T?F_ (E)e the VK VK block diagonal j? V¥V of the spatial dual cell of ¥V in meshM¥. We then
matrix = diag( )and be the VK VK block PV i?
S /LN 2 Thus, theV V matrix L®

diagonal matrix = d|ag( @;::0; K Let Ly be the block haveqj'h/.‘jj?v‘fj WA Tam W
2V

lower part of L: ) . i i
is equivalent to the spatial Laplacian matrix for mégh

0 The length ofpany temporal edglk"—_vr*l of the mesh sequence
@ 0 is equivalent to’ — (t“*1  tX), and the area of its dual is small
Lo = . . . (12) with respect to . Thus, any coe cient Di(;l? of the diagonal
' D(K. 2) O. matrix DX is close to zero. O
DK D 0 This property proves that, if is large, our 4D Laplacian acts

as a standard static Laplacian on each frame.
Then L can be decomposed as: P

N . o1 Property 4.6. Suppose the motion of each vertex is small
L=(+ L) (+ L)=(+ L) (+ L) (13) with respect to the tessellation8k;8i;8] such that jv& 2
k. +1 .
These LDLT decompositions df lead to a simple way to  E+K4V"'k k ik Then, when tends to zero, the motion

invert this matrix. coe cients O are dominating over the geometry cagients
(k)

Property 4.4 ([29]). LetfU:1 k fgandfvigl k fg  Lii-

be two sequences of nn matrices such as: Proof. If 8k: 8i:8] such thavaljg 2 EX: kvikvik+lk K Vrvlfk’ then

the di erence between successive ardés'; A< and A*! is
negligible with respect ttwkvkk As a consequence, the volume
with | the n  n identity matrix anBk 2, of any vertex dual cefP vk can be approximated bykvk"lkgAk
For the same reason, the area of the dual 2 |s for
Ue=( 1f P DED &0 p® T @ (15)  any spatial edgekvk, equivalent tokvk I, times the length

j? iV of the spatialdual cell ofivi in meshM¥. As the mo-

V= (1Kt @ Tpw @ f..pkdy ® o (1p) v
tion is small with respect to the tesselatloam: T

U=lvi= ® (14)

Then8j i, the(i; j) block of L * can be expressed as\. I

A L . (k) ]
ﬂ—k—Ak i\/‘vkjj , which implies that th&/ V matrix L™ is equiv-

Note that in Meurant [29] it is requested thatis proper,
. . k) . . .
that is to say that submatric@®" are nonsingular. This is our alent to the spatial Laplacian matrix for melst,

case since these matrices are diagonal with non zero d|agonalThe area of the dual of any temporal edgé&l of the mesh

elements. sequence is equivalentlkf. As a consequence, the coeient

The inverse oflL can thus be computed only by computing _ . L) . 1 .
the inverse oK V  V matrices, namely the inverse of th& Dii of the diagonal matrbD™ is equivalent t kivietig Since

matrices. the motion is small with respect to the tessellatiD .) Li(;"j)
for any spatial edgv,fv'j‘: the temporal coe cients are dominat-
4.3. Behaviour for large and small time steps ing. O

Let us now investigate the behaviour of our Laplace operator
when tends to in nity or to zero. Remember from Section 3.1 This property shows that, if is small, and the motion
that is the parameter which scales the temporal dimension 0'15 small with respect to the geometric discretisation, our 4D
the embedding spade with respect to the spatial dimensions. Laplacian enables to recover the motion of each vertex of the
Alarge decreases the in uence of the temporal neighbouréﬂeSh independently.
v{‘ 1 andv:‘+1 over a given verten}‘, with respect to its spatial
neighbours sharing the same timelike coordinates. Converselg, Application to spacetime editing

asmall increases their in uence. S ) )
We now present an application in which we can directly use

Property 4.5. When tends to in nity, L tends to a block diag- the previously de ned discrete 38 Laplace operator to gen-

onal matrix DiagL®;:::;L®)), where each matrix ® is the  erate a variety of eects. This application deals with mesh se-
spatial DEC Laplacian matrlx with cotangent coordinates. quence editing.



5.1. Background All existing methods decouple motion editing from geometry
In a mesh sequence editing application the user interactivelgditing. As a consequence, several parameters are required to
deforms one or several meshes, calledkeframesChanges tune the modi cation of the animation. On the contrary, our
must then be propagated to other frames of the sequence sudiscrete Laplace operator can be used to edit a mesh sequence
that the resulting motion remains smooth, and each intermedin space and time in a simple yet exible manner.
ate frame remains visually plausible. Editing can be useful to To this aim, we build over the simple formulation presented
reuse or correct captured data, preserving the acquired detally Sorkine and Alexa [36] for detail-preserving mesh deforma-
and the nonrigid surface deformation involved. tion. Our framework results from a relatively direct extension
The problem of adapting existing animations has been widelyf this work into four-dimensional space.
studied in the case of skeletal motion, see e.g. Ho et al. [32] and
references therein. The work of Le Naour et al. [21] is particu5.2. As-rigid-as-possible surface deformation
larly close to ours in that they also use a3 aplace operator
for the propagation of changes, and we compare our framewor
to this work. Our results indicate that while skeleton-base
approaches provide intuitive control over the animation and
simpli ed editing process, they are limited in scope and are nog,

applicable to arbitrary surfaces. because its explicit energy formulation makes the extension to

Fewer works approach this problem in the context of mesqn S : ;
. esh animations straightforward. This work handles large ro-
sequences. The work of Kircher and Garland [33] was one o{ g g

o . : : ations by asking for local rigidity to be maintained: the mesh
the rst to address it, introducing a multi-resolution approach y g dictty

. . i is divided into overlappingellswhose transformation must be
that allows for automatic transfer of a static mesh edit onto th

Tlose to rigid. One celC(v) is de ned f h vertex;, and
other frames. In a follow-up work [34] they develop a dif- . ose 1o Nyl ne celC(v) is de ned for each vertex;, an

. . e | . ncludesy; as well as its one-ring neighbourhood. De ning cells
ferential representation which is invariant under rotation an4

) . . ._1In this way allows later to nd new vertex positions using a dis-
translation, and can be used both for static editing and MOMION, o static Laplace operator

p|r003e535|ng. t-;o the; E)est ?f c:ju[knlow!edge, tr;]e work Of, Xu 1et Let us rst consider astaticmeshM with vertex coordinates
al. [35] was the rst to exiend Lapiacian mesh processing [ ]fv- 2 R%g and its deformed versiol® with new vertex coordi-
to mesh sequences. Their method requires the construction Qb tesf0 2 R3g If the deformation is rigid, for each celi(v;)

- _ | b
a coarse control mesh, calle¢age whl_ch must the_n be trans there exists a rotation matr®, 2 S Q(3) such that:
ferred to other frames. For the static deformation process a
non-linear energy formulation closely related to Sorkine and WP = Ri(v vj);8vv; 2 M (17)
Alexa [36], thus to our work, is used. Changes on handle ver- b

tices are propagated in order to get suitable positional and ro- |f the deformation is not rigidR; can be approximated by a

tational constraints on each frame; these are used to obtain ifotation matrix that minimises the as-rigid-as possible (ARAP)
termediate meshes by applying the static deformation schemgnergy de ned as follows:

Since di erential coordinates encode local information,
any applications have been proposed that make use of this
roperty for detail-preserving mesh editing [40, 41]. As an
pplication example of our 3 discrete Laplace operator we
ave chosen to build over the work of Sorkine and Alexa [36]

on each. Pushing further the idea of embedding the animation X
into a coarse representation while preserving the details, Sum- Wi i VP v? Rivi v P (18)
ner et al. [37] propose a framework to directly deform the space. iv;2M

In this work, space ane transformations are represented as a h ) q iahts. Both rotati i q
graph. Computing the nal deformation is then formulated as\/Nerew; are per-ecdge weignts. both rotation ma riggsan .
osmonsvi0 are unknown. This non-linear energy formulation

an optimisation problem on this graph with positional and detaiPOS!tons d usi i tep iterati h in which
preservation constraints. More recent works are the ones of da minimised using a two-step iterative approach, n which a
Aguiar and Ukita [38] and Tejera et al. [39]. In de Aguiar and rst step.searches for optimal rotations b‘.”‘sed on currenF ver
Ukita [38] a kinematic skeleton is constructed to represent théex positions, and a second step nds optimal vertex positions

coarse deformation of the sequence. This skeleton can then gsed on previously found rotations. Finding new vertex po-

edited using previously mentioned methods. Tejera et al. [3 |f[|ons amounts 1o solving a Imgar Poisson system= b,
develop a spacetime editing framework based also oarein- |th L being the Laplace-Beltrami operator based on cotangent
tial coordinates. Static deformation on the key-frame is handled’ eights [9, 11].

by a new Laplacian editing approach which incorporates infor- ) . . )

mation of deformations seen throughout the sequence. As i3 Space-time editing using the ARAP formulation

our work, this implies that all meshes comprised in a tempo- When a keyframe is modi ed we want it to deform in an as-
ral window must be simultaneously considered while editingrigid-as-possible manner. We also want other frames to closely
Their approach yields good results, but it does not perform welfollow this deformation, preserving the original structure as
when the target deformation is far from the examples. To propmuch as possible. Since we are treating a mesh sequence as
agate changes they propose three methods, of which the masCW complex (see Section 3.3), it is natural to ask forahe
satisfying one requires the use of their new static editing aptire animationto be deformed in an as-rigid-as-possible way.
proach on each frame. We compare the results using our frame- When deforming the CW complex —as it is in the static case—
work to this work in Section 5.6. a neighbouw‘j of an edited vertex%‘ will only be subtly a ected



if the deformation is small with respect to the length of the edgeb.3.2. Initialisation
V:(V',-- Conversely, close neighbourswbwill move accordingly Our iterative framework requires proper initialisation for fast
to V¥ in space-time, thus propagating user changes. With ougonvergence. An initial guess can be obtained by solving Equa-
de nition of the embedded space, the length of temporal edgetion (19) using the identity as rotation matrix. Since editing of
is e ectively controlled by parameter. Tuning allows the the key-frame must be done at interactive rates, we rst allow
user to control the extent of the propagation and achieve severtdr static editing to be performed on this frame. The result is
e ects like slovisubtle to abrupt transitions. used for the initial guess, along with Equation (19).

Now that we have cells in @ with spatial and temporal An advantage of this is that the full mesh can be anchored
edges, vertices are de ned in the 4D sp&eThe energy to afterwards, thus forcing the user edits to be always ful lled. A

minimise is extended as follows: second advantage is that any method can be used for key-frame
editing. The ARAP formulation has its limitations; among them
X . " failure to preserve the volume of the original mesh. The SR-
e wili ¥ RV (19)  ARAP method by Levi and Gotsman [42] is an extension to the
ww

ARAP framework that gives much better results in terms of vol-

wherev;;v;;\2 and\? 2 E, andR; 2 SQ4) denotes the opti- Ume preservation. Further, it does not require a volumetric dis-
mal rotation of cellC(v;), now in 4D space. Optimal rotations cretisation of the interior of each mesh. Our experiments (Fig-
can still be derived as in Sorkine and Alexa [36], because thé&re 2) show that using Levi and Gotsman [42] for key-frame
derivation is not dependent on the dimension of the data. Givegditing yields better volume preservation for all the in uenced
optimal rotations, dierentiating the energy in Equation (19) frames than the original ARAP method of Sorkine and Alexa
w.r.t. V2 and setting partial derivatives to zero leads to the fol-[36]. Note that we are only changing how we initialise the iter-
lowing system of equations: ative process; our formulation for the entire sequence remains

X wy the same.
wi (W V) = 7J(Ri +RIM V) (20)
Vivj2MS Vivj2MS

The left-hand side is the 38 Laplace operator, and we can
get optimal positions by solving a sparse linear system of equa-
tions Lv®= b in the least-squares sense. Note that, as in the
static case, the matrix remains unchanged during the iterative
process, and thus once pre-factorized, it can be reused to solve
using direct methods.

With enough positional constraints, and preserved edge
lengths, in general each mesh will remain close to its origi-
nal time frame. Nevertheless, some of the modi ed vertices
will have time coordinates which are not placed exactly on the
corresponding frame. In this case, simply correcting the time
coordinate to its closest frame is saient.

5.3.1. Constraints

Deformation in 4D requires two types of constraints: (1) new
positions of handle vertices, for the key-frame (2) constraints (b)
on the spatio-temporal boundary of the ROI, that is to say the
geometric boundary of the ROI for each frame along with theFigure 25 Spacetime editing using, for key-frame editing: (a) the original ARAP
st and last meshes of the temporal window. Anchoring thel(y1200n 31 e SEARAP et (420 Tre second method ot
handle vertices to the user-speci ed positions allows the deforframes, even though the original ARAP formulation is used in 4D. Each row,
mation to reach the desired target. Putting constraints on thieom left to right: previous frame, key frame, next frame.
boundary of the ROI creates a smooth transition between the
edited submesh and the remaining mesh sequence. All of these
constraints are speci ed as soft-constraints. 5.3.3. In uence of

Anchoring the temporal boundary can be avoided if the de- Figure 3 shows a simple example of how thparameter can
formation is expected to be propagated equally in all frames, sdge tuned to change the editingext. Deformation is done over
Figure 7 for an example. It is worth noting that constraints overm sequence with no motion consisting of 5 repetitions of a bar
the spatial boundary of the ROI can also be avoided,#suf-  (Figure 3a). As grows bigger, the eect is close to statically
ciently small. As opposed to static Laplacian editing on eachdeforming the key-frame only. This is coherent with the theo-
frame, which requires at least one anchored vertex in order faretical analysis in Section 4.3, since a large value fdends
the matrix to be non-singular, our 3D operator remains non- to modify only the key-frame. On the contrary, agjoes to
singular even if no constraints are set on intermediate frameggro, the temporal coecients dominate, and vertices are inde-
providing that the temporal in uence is signi cant. pendently, smoothly displaced along the temporal window.




(a) Original model (left), deformed target model (right).

B B

L

Figure 6: Horse sequence [44]. Zoom on frames 5 to 7 showing that results
using Tejera et al. [39] (top) and our method witks 0:5 (bottom) are visually

(b) Editing a sequence of 5 repetitions of the original model with de- similar

formed target in last frame. From left to right:= 0:1; 10; 100, 1000.

Figure 3: E ect of parameter when deforming a sequence with no motion. .
that solves for each frame on a éirent processor core could

Sequence #vertices  # frames # iterations be devised.
per frame
Bar (Figure 3) 172 5 a 33 5.5. Comparison to existing spacetime Laplace operators
! “ We compare our method to the discrete spacetime Laplace
Girl (Figure 7) 1215 7 m1 12 operators proposed by Yang et al. Yang et al. [22] and Le Naour
221 151 et al. LeNaour et al. [21] in Figure 4. Both methods use uni-
form weights for the spatial edges, which is not the case of our
Capoeira (Figures 9a, 9b) 6571 9 10 39 method. Consequently, they introduce severe artifacts in areas
1000 11 where the tessellation is non-uniform. Using Gaussian tempo-
- ral weights as in LeNaour et al. [21] rather than uniform tem-
Capoeira (Figure 9c) 10788 19 50 10 . . . .
poral weights only slightly improves the results. Our weights
Horse (Figure 5) 7135 9 0 157 better preserve the relative motion of each vertex with respect
io %Z) to its neighbours. Comparison with a static Laplacian editing

framework are shown in the next section.

Table 1: Number of iterations for the mesh sequences shown in the paper.
5.6. Results

Evaluation was performed using both synthetic (Figures 5
Note that the eect of a given value for depends both on  and 6) and captured animations (Figures 7, 8 and 9) obtained
the geometric and the temporal discretisations. Simil@ces  from publicly available databases [44, 45, 46]. For a better vi-
on two mesh sequences require efient values for if their  syalisation of the results, refer to the supplementary video.

number of frames or number of vertices dir. Figures 7, 8, 5 and 6 show that our extension of as-rigid-
) as-possible editing to mesh sequences achieves simiéate
5.4. Implementation to Tejera et al. [39], while allowing the user to have control over

The 3D+t Laplacian and the ARAP framework have been im-the propagation of changes.
plemented in Python 2.7, with sparse Cholesky decomposition Figures 7 and 8 provide a comparison with the method
handled by a wrapper for the CHOLMOD library [43]. We stop of Tejera et al. [39], while showing over a simple deformation
the iterative process when the érence in mesh coordinates the types eect that can be achieved by tuning Rows 3 to 6
between consecutive iterations is below 3,dor all frames. show how di erent kinds of propagation can be achieved, rang-

Computational times depend on the number of iterationsing from an abrupt change on the sequence (using 1) to
which itself depends not only on the initial guess but also ora smoother interpolation using = 0:01. The last row was
the value of . Table 1 shows the number of iterations for the obtained without setting constraints on the temporal boundary,
animations shown on this paper. The step with the highest conwhich as mentioned, is not necessary if the key-frame edits are
putational complexity is the pre-factorisation of the Laplacianto be propagated equally throughout the window. Notice that
and our running times for this range fromr@8in the case of by using a very small value of stretches all meshes in the
the bar, to 75for the capoeira sequence. window. These kinds of escts could be used for correcting

It is worth noting that the algorithm is highly parallelizable. reconstruction errors over a time window. Similareets can
The construction of our 3Bt Laplacian only requiresocal  be observed in Figure 5, this time performing a more complex
temporal information, i.e. a frame and one or two consecudeformation.
tive meshes. Because of the matrix structure, solving the sparseExamples of detail-preserving deformations can be seen in
linear system can be done blockwise, and a parallel algorithririgure 9. Note how the wrinkles in the cloth are preserved in

8



Original Edited sequence showing frames 3, 4, 5 and 8.

Figure 4: Editing the bending bar sequence usingtint weighting schemes. Frame 6 was rotated and translated towards the right. The results using our method
with = 1 are shown in green, using Yang et al. [22] in brown, and using Le Naour et al. [21] with in blue. In this last case several values for thEarameter
were tested. All of them yield similar results.

Figure 5: From top to bottom: original sequence; results using Tejera et al. [39]; our results usi@®, = 5and = 0:1, the latter without constraint on the
temporal window. Key-frame in light blue (frame number 5).

the edited version, while achieving natural motions. This alsdage of the existing literature on the Laplacian operator for 3D
holds for the case of a rotational edit shown in the last row. meshes [1, 2, 3]. In the future, we are in particular interested in
studying the spectral properties of the de ned discrete Laplace

. operator.
6. Conclusion

In this paper we have introduced a discrete Laplace opefacknowledgements
ator for temporally coherent mesh sequences. This operator
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in the sequence. The storage overhead with respect to framgi AN-0206) and by Inria through the Inria Internship pro-
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work to mesh sequences with this matrix. Similar results tdReferences

state-of-the-art methods can be reached with a simple, global _ _ _ ) _
formulation [1] Sorkine O. Di erential representations for mesh processing. Computer
. ) I . . Graphics Forum 2006;25(4):789-807.
This opens the possibility of many other problems in anima- 2] |evy B, zhang RH. Spectral geometry processing. SIGGRAPH Asia

tion processing to be tackled the same way by taking advan-  Course Notes; 2009.
9



Figure 8: Editing a capture walk sequence [45]. Zoom on frames 5 to 11 show-
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(right) are visually similar.

(& =10.
(b) =100.
(c) =0s5.

Figure 9: Modifying Capoeira sequence [46]. First two rows: performing
a higher kick. Last row: bending forward while dancing; showing frames
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yellow and light blue. Frames not in green are the ones allowed to deforpfuence 1S In white, while the modi ed one is shown in purple.
(frames 5 to 11 for the yellow deformation, 13 to 19 for the blue deformation).
First row: original sequence. Second row: results using Tejera et al. [39]. Rows
3to5: = 1;0:1;0:01, with constraints on the temporal boundary. Row 6: [12] Bobenko Al, Springborn BA. A discrete Laplace-Beltrami opera-
= 10 5 without constraints on the temporal boundary. tor for simplicial surfaces. Discrete and Computational Geometry
2007;38(4):740-56.
[13] Alexa M, Wardetzky M. Discrete Laplacians on general polygonal
meshes. Transactions on Graphics 2011;30(4):102:1-10.
[3] Zhang RH, van Kaick O, Dyer R. Spectral mesh processing. Computef14] Belkin M, Sun J, Wan Y. Constructing laplace operator from point clouds
Graphics Forum 2010;29(6):1865-94. in Rd. In: Symposium on Discrete Algorithms. 2009, p. 1031-40.
[4] Merris R. Laplacian matrices of graphs: a survey. Linear Algebra and its[15] Liu Y, Prabhakaran B, Guo X. Point-based manifold harmonics. Trans-
Applications 1994;197-198:143-76. actions on Visualization and Computer Graphics 2012;18(10):1693-703.
[5] YoungIT, Gerbrands JJ, Van Vliet LJ. Fundamentals of image processing[16] Petronetto F, Paiva A, Helou ES, Stewart D, Nonato LG. Mesh-
Delft University of Technology, The Netherlands; 1998. free discrete Laplace-Beltrami operator. Computer Graphics Forum
[6] Collet A, Chuang M, Sweeney P, Gillett D, Evseev D, Calabrese D, et al. 2013;32(6):214-26.
High-quality streamable free-viewpoint video. Transactions on Graphicg17] Zhou K, Huang J, Snyder J, Liu X, Bao H, Guo B, et al. Large mesh de-

2015;34(4):69:1-13. formation using the volumetric graph laplacian. Transactions on Graphics
[7] Desbrun M, Hirani AN, Leok M, Marsden JE. Discrete exterior calculus. 2005;24(3):496-503.
Tech. Rep.; arXiv:ma#9508341; 2005. [18] Calcagni G, Oriti D, Thirigen J. Laplacians on discrete and quantum
[8] CraneK, de Goes F, Desbrun M, Soter P. Digital geometry processing geometries. Classical and Quantum Gravity 2013;30(12):125006:1-36.
with discrete exterior calculus. SIGGRAPH Course Notes; 2013. [19] Wang R, Yang Z, Liu L, Chen Q. Discretizing LaplaceBeltrami operator
[9] Pinkall U, Polthier K. Computing discrete minimal surfaces and their from di erential quantities. Communications in Mathematics and Statis-
conjugates. Experimental Mathematics 1993;2(1):15-36. tics 2013;1(3):331-50.
[10] Taubin G. A signal processing approach to fair surface design. In: SIG{20] Xu G. Consistent approximations of several geometrieténtial opera-
GRAPH. 1995, p. 351-8. tors and their convergence. Applied Numerical Mathematics 2013;69:1—
[11] Meyer M, Desbrun M, Sclider P, Barr AH. Discrete derential- 12.
geometry operators for triangulated 2-manifolds. In: Visualization and[21] LeNaour T, Courty N, Gibet S. Spatio-temporal coupling with thet3d
mathematics IIl. 2003, p. 35-57. motion Laplacian. Computer Animation and Virtual Worlds 2013;24(3-

10



[22]
(23]
[24]
[25]
(26]
(27]

(28]

[29]

(30]

(31]
(32]
(33]
(34]

(35]

(36]
(37]

(38]

(39]

[40]

[41]

(42]

(43]

[44]
[45]

[46]

4):419-28. vectorvivk by (£ x«; Yi; z). Using these notations, it is

Yang L, Xiao C, Fang J. Multi-scale geometric detail enhancement for

time-varying surfaces. Graphical Models 2014;76(5):413-25. 12
Allain B, Franco JS, Boyer E. An ecient volumetric framework for vk (Xart (D 02 ( Yert (@ )P+ Zert(T )a)
shape tracking. In: Conference on Computer Vision and Pattern Recog- o, ) ) )

nition. 2015, p. 268-76. =7 (e X)TF Ve YT+ (21 %)

Hatcher A. Algebraic topology. Cambridge University Press; 2002. 12
Hirani A. Discrete exterior calculus. Ph.D. thesis; Caltech; 2003. +2 %0 X)HYWie1 Y)TZ(Bar Z) HEHVEHZ
Grady L, Polimeni JR. Discrete calculus: applied analysis on graphs for

(21)

computational science. Springer; 2010. In casevkk = vk+1vk+1 thenvtvt Vkvk and]Q J = kS Kk
€ i i i i 1] ] 1]

Vallet B, Lévy B. Spectral geometry processing with manifold harmonics.
Computer Graphics Forum 2008;27(2):251-60. kv'.‘v!"'lk

Terekhov AV. A fast parallel algorithm for solving block-tridiagonal OtherW|se letA = Xe(Kier1 Xi)+VkWher Vid+ (@ 2 andu =

systems of linear equations including the domain decomposition method. (Xer1 %)%+ Wierr Yi)*+ (@1 2)?
Parallel Computing 2013;39(6):245-58. NOW]Q ]j can be rewritten as

Meurant G. A review on the inverse of symmetric tridiagonal and

block tridiagonal matrices. Journal on Matrix Analysis and Applications R+1

1992;13(3):707-28. Qi kvikddt

Salkuyeh DK. Comments on “A note on a three-term recurrence : 1=
for a triadiagonal matrix”. Applied Mathematics and Computation SRR (1 X002+ (Ve Y2+ (Zrr )2
2006;176(2):442—4. R ) 12
Molinari LG. Determinants of block tridiagonal matrices. Linear Algebra A2 A2+ e du
and its Applications 2008;429(8-9):2221-6. A Oer1 X902 Ohers WOP* Bt 207

Ho ES, Komura T, Tai CL. Spatial relationship preserving character mo-
tion adaptation. Transactions on Graphics 2010;29(4):33:1-8.

Kircher S, Garland M. Editing arbitrarily deforming surface animations. Ria 2 2
Transactions on Graphics 2006;25(3):1098—107. A UKL o)™ Oer YieaZd

Kircher S, Garland M. Free-form motion processing. Transactions on 12

Graphics 2008;27(2):12:1-13. +(@Me1 Zeix)?  du

XuW, Zhou K, Yu Y, Tan Q, Peng Q, Guo B. Gradient domain editing of

deforming mesh sequences. Transactions on Graphics 2007;26(3):84:1— Ry =2
10. kALK LKL v.kvjkk R N e s R T
Sorkine O, Alexa M. As-rigid-as-possible surface modeling. In: Sympo-

sium on Geometry Processing. 2007, p. 109-16.

Sumner RW, Schmid J, Pauly M. Embedded deformation for shape maNoting B = kV:(V%(Jrlk W:(HV?I VI,(V‘J(k andC =
nipulation. Transactions on Graphics 2007;26(3):80:1-8. v!<+1vl_<+1k2 we have:

de Aguiar E, Ukita N. Representing and manipulating mesh-based char-! ’

acter animations. In: SIBGRAPI Conference on Graphics, Patterns and

Images. 2012, p. 198-204. . Ryn
Tejera M, Casas D, Hilton A. Animation control of surface motion cap- IQi=B 4
ture. Transactions on Cybernetics 2013;43(6):1532—45.

Sorkine O, Cohen-Or D, Lipman Y, Alexa M@sl C, Seidel HP. Lapla-
cian surface editing. In: Symposium on Geometry Processing. 2004, p
175-84. p p

Au OKC, Tai CL, Liu L, Fu H. Dual Laplacian editing for meshes. Trans- Q=S (@A) (1+A)2+C2 A AZ+C2
action on Visualization and Computer Graphics 2006;12(3):386—95. —_—

Levi Z, Gotsman C. Smooth rotation enhanced as-rigid-as-possible +3C?log iw
mesh animation. Transactions on Visualization and Computer Graphics ATHCTA
2015;21(2):264-77.

Chen Y, Davis TA, Hager WW, Rajamanickam S. Algorithm 887: (b) Volume of atemporal 3-cell

Cholmod, supernodal sparse cholesky factorization and ujddatedate.

Transactions on Mathematical Software 2008;35(3):1-14. Using the same notations as above, it is
Sumner RW, PopotiJ. Deformation transfer for triangle meshes. Trans-
actions on Graphics 2004;23(3):399-405.

Starck J, Hilton A. Surface capture for performance-based animation. Area("!v!vl):% M vvike

Computer Graphics and Applications 2007;27(3):21-31. =1k v V‘,‘ Ly )\/<\,1< VIRLE(L R g
De Aguiar E, Stoll C, Theobalt C, Ahmed N, Seidel HP, Thrun S. Perfor-

mance capture from sparse multi-view video. Transactions on Graphics =gk 2 V'T byt

2008;27(3):98:1-10. FLOT R el

1MV ke
=3k 2RIV V) (T v

1=2
AR (1 X602+ (Ve Y2+ (Zrn 2)?

1=2
w+C?  du

Th|s integral can be solved and gives

Appendix: volumes of temporal cells VT V)RR (BTG v

().

For allt 2 [t t“'];VjV\ can be written asvi*1vi** + (1

A Wl

Area of a temporal 2-cell
and hence

vk P Areavvivit

MV, with = i 8K, let us denote the coordinates of _1k\,kvk+1kR K 2A+ B+Clod
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with
A:(vf”lv‘l‘*l "NJ() (V:<+1vr+l V.k‘/f)
B= (I V) MVHVE (T v (27)
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Solving this integral in an exact manner would require nding
the root of 4th degree polynomials. In practice, we choose to
integrate numerically.
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