Analysis of Linear Convergence of a (1 + 1)-ES with Augmented Lagrangian Constraint Handling

Asma Atamna 1 Anne Auger 1 Nikolaus Hansen 1
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : We address the question of linear convergence of evolution strategies on constrained optimization problems. In particular, we analyze a (1 + 1)-ES with an augmented Lagrangian constraint handling approach on functions defined on a continuous domain, subject to a single linear inequality constraint. We identify a class of functions for which it is possible to construct a homogeneous Markov chain whose stability implies linear convergence. This class includes all functions such that the augmented Lagrangian of the problem, centered with respect to its value at the optimum and the corresponding Lagrange multiplier, is positive homogeneous of degree 2 (thus including convex quadratic functions as a particular case). The stability of the constructed Markov chain is empirically investigated on the sphere function and on a moderately ill-conditioned ellipsoid function.
Type de document :
Communication dans un congrès
T. Friedrich and F. Neumann. GECCO 2016 - Genetic and Evolutionary Computation Conference, Jul 2016, Denver, United States. Proc. ACM-GECCO'16, pp.213-220
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01318807
Contributeur : Asma Atamna <>
Soumis le : vendredi 20 mai 2016 - 08:52:34
Dernière modification le : vendredi 1 juin 2018 - 01:16:07
Document(s) archivé(s) le : dimanche 21 août 2016 - 10:27:06

Fichier

GECCO-2016.pdf
Accord explicite pour ce dépôt

Identifiants

  • HAL Id : hal-01318807, version 1

Citation

Asma Atamna, Anne Auger, Nikolaus Hansen. Analysis of Linear Convergence of a (1 + 1)-ES with Augmented Lagrangian Constraint Handling. T. Friedrich and F. Neumann. GECCO 2016 - Genetic and Evolutionary Computation Conference, Jul 2016, Denver, United States. Proc. ACM-GECCO'16, pp.213-220. 〈hal-01318807〉

Partager

Métriques

Consultations de la notice

323

Téléchargements de fichiers

213