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ABSTRACT
We address the question of linear convergence of evolution strate-
gies on constrained optimization problems. In particular, we ana-
lyze a (1 + 1)-ES with an augmented Lagrangian constraint han-
dling approach on functions defined on a continuous domain, sub-
ject to a single linear inequality constraint. We identify a class
of functions for which it is possible to construct a homogeneous
Markov chain whose stability implies linear convergence. This
class includes all functions such that the augmented Lagrangian of
the problem, centered with respect to its value at the optimum and
the corresponding Lagrange multiplier, is positive homogeneous of
degree 2 (thus including convex quadratic functions as a particu-
lar case). The stability of the constructed Markov chain is em-
pirically investigated on the sphere function and on a moderately
ill-conditioned ellipsoid function.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]; G.1.6
[Optimization]: Constrained Optimization

Keywords
Augmented Lagrangian, constrained optimization, evolution strate-
gies, Markov chains

1. INTRODUCTION
Linear convergence is central in the study of evolution strate-

gies (ESs). Ideally, we want an ES to converge linearly on the
widest possible range of optimization problems. As illustrated in
[5] for unconstrained optimization, linear convergence can be de-
rived on scaling-invariant functions by exploiting invariance prop-
erties of the algorithm at hand on this class of functions: invari-
ance allows to exhibit a Markov chain whose stability leads to
linear convergence. In this context, stability is defined as pos-
itivity and Harris-recurrence, and is usually obtained by proving
ϕ-irreducibility, aperiodicity, and the existence of a drift function
on a small set [10, 5]. Linear convergence then follows from the
application of a Law of Large Numbers (LLN). To see how this
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methodology is applied in practice, one can refer to [4] where lin-
ear convergence is proven for the (1, λ)-ES with self-adaptation
on the sphere function, or [6] where the authors show linear con-
vergence of the (1 + 1)-ES with 1/5th success rule on the class
of positive homogeneous functions. Stability is generally difficult
to prove “manually”. In an attempt to reduce this difficulty, the
authors in [7] propose a set of sufficient conditions for a Markov
chain to be irreducible and aperiodic.

Linear convergence is also desired on constrained optimization
problems [3]. However, little is known about how it can be achieved.
Most theoretical works on ESs in the constrained case deal with lin-
ear problems with a single linear constraint, as in [2, 1] where the
single-step behavior of the (1 + 1)-ES and the (1, λ)-σSA-ES is
analyzed on the linear function with a single linear constraint. In
[3], linearly constrained convex quadratic problems are studied for
the first time. The authors present an inequality constraint handling
method for the (1+1)-ES based on augmented Lagrangian and an-
alyze the single-step behavior of the algorithm on the sphere func-
tion with one linear inequality constraint. Based on this analysis,
they design an update rule for the penalty parameter of the aug-
mented Lagrangian so that the algorithm is empirically observed to
converge linearly on sphere and moderately ill-conditioned ellip-
soid problems.

In this work, we go one step further into understanding theoret-
ically how linear convergence can be achieved for ESs implement-
ing an augmented Lagrangian constraint handling approach. We
introduce a variant of the algorithm presented in [3] and analyze
its behavior on the problem of minimizing a function defined on a
continuous domain, subject to a single linear inequality constraint.
We show that for objective functions such that the corresponding
augmented Lagrangian minus its value at the optimum and the cor-
responding Lagrange multiplier is positive homogeneous of degree
2, one can construct a homogeneous Markov chain and prove linear
convergence assuming its stability. Similarly to the unconstrained
case, invariance is a key element for constructing the Markov chain.
However, invariance alone is not sufficient and another key element
is how the parameters of the augmented Lagrangian are updated.
Assuming the Markov chain is stable, we prove linear convergence
of the solution at a given iteration towards the optimum of the prob-
lem, as well as linear convergence of both the Lagrange factor and
the step-size towards the Lagrange multiplier associated to the op-
timum and zero respectively. Then, we empirically investigate the
stability of the constructed Markov chain.

The rest of this paper is organized as follows: we formally de-
fine the optimization problem we consider in Section 2 and discuss
the augmented Lagrangian method in Section 3. We present our
algorithm and discuss its invariance properties in Section 4. In Sec-
tion 5, we present the Markov chain and prove linear convergence



assuming its stability. We present our empirical results in Section 6
and conclude with a discussion on the main result of this paper in
Section 7.

1.1 Notations
We define here all the notations which are not explicitly pre-

sented in the paper. We denote R+ the set of positive real numbers
and R+

> the set of strictly positive real numbers. x 2 Rn is a col-
umn vector, xT is its transpose, and 0 2 Rn is the zero vector. kxk
denotes the Euclidean norm of x, � equality in distribution, and �
the function composition operator. The notation (1 + 1) represents
the “one-plus-one” selection scheme. In�n 2 Rn�ndenotes the
identity matrix and N (0, In�n) the multivariate standard normal
distribution. [x]i is the ith component of vector x and [M]ij is the
element in the ith row and jth column of matrix M. The derivative
with respect to x is denoted rx and the expectation of a random
variable X � π is denoted Eπ . Finally, 1fAg returns 1 if A is true
and 0 otherwise.

2. OPTIMIZATION PROBLEM
We consider the problem of minimizing a function f : Rn !

R, n is the dimension of the search space, subject to one linear
constraint g(x) � 0, where g : Rn ! R. More formally, we write

min
x
f(x) subject to g(x) = bT x + c � 0 , (1)

where b 2 Rn and c 2 R. We assume the problem to admit a
unique global minimum xopt and the constraint to be active at xopt,
that is, g(xopt) = 0.

We consider throughout this paper an ES based on the so-called
augmented Lagrangian approach for handling constraints to seek
the minimum of this problem. In the next section, we give general
notions about the augmented Lagrangian approach.

Since we consider only minimization problems, we will some-
times refer to the minimum as the optimum in the rest of this paper.

3. AUGMENTED LAGRANGIAN APPROACH
The augmented Lagrangian approach for handling constraints

is a combination of the Karush-Kuhn-Tucker (KKT) and penalty
function methods. It was introduced for the first time in [8] and
[12]. The KKT method defines first-order optimality conditions,
referred to as KKT conditions. It introduces the Lagrangian L :
Rn+1 ! R defined as

L(x, λ) = f(x) + λg(x) , (2)

x 2 Rn, λ 2 R, for an objective function f subject to one inequal-
ity constraint g(x) � 0. Given some regularity conditions - or
constraint qualifications - are satisfied, if x� 2 Rn is a local mini-
mum of the constrained problem such that f and g are continuously
differentiable at x�, then there exists a non-negative constant λ�,
called the Lagrange multiplier, such thatrxL(x�, λ�) = 0, that is,
x� is a stationary point for L(x, λ�) (stationarity KKT condition).
Put differently, given the “right” λ, the optimum of the constrained
problem is a stationary point of the Lagrangian.

Considering the optimization problem in (1) and ellipsoid func-
tions f(x) = 1

2
xTHx , where H 2 Rn�n is a diagonal matrix

with diagonal elements [H]ii = α
i�1
n�1 , α > 0, KKT conditions are

satisfied for the unique minimum of the problem

xopt = � c

bTH�1b
H�1b (3)
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Figure 1: Graphs of L(x, λ) (green), L(x, λopt) (dashed green),
µ
2
g2(x) (red), h(x, λ, µ) (blue), and h(x, λopt, µ) (dashed blue)

for λ = 10 and µ = 10 in n = 1. f(x) = 1
2
x2 and g(x) =

�x+ 1. xopt = 1 and λopt = 1.

and the Lagrange multiplier

λopt =
c

bTH�1b
. (4)

In augmented Lagrangian approaches, the Lagrangian in (2) is
combined with a penalty term, resulting in the augmented Lagrangian
function h. The motivation for using the augmented Lagrangian is
to overcome the shortcomings of quadratic penalty function meth-
ods, where the penalty factor needs to tend to infinity to achieve
convergence [11]. This results in an ill-conditioned problem.

Different formulations of the augmented Lagrangian are possi-
ble depending on the optimization problem at hand. A broader
discussion on augmented Lagrangians is provided in [11]. In our
optimization problem, the constraint is active at the optimum xopt.
Therefore, we use the following augmented Lagrangian

h(x, λ, µ) = f(x) + λg(x) +
µ

2
g2(x) , (5)

where a quadratic penalty term µ
2
g2(x) is added to penalize points

lying outside the boundary of the constraint, µ is a positive penalty
factor. At each iteration, h is minimized with respect to x. The
parameters λ and µ are updated in such a way that λ approaches the
Lagrange multiplier while µ guides the search towards solutions on
the constraint boundary. Note that the optimum xopt (which is also
a KKT point) satisfies rxh(xopt, λopt, µ) = 0, for all µ 2 R+

>,
where λopt is the Lagrange multiplier associated to xopt.

Figure 1 shows graphs of the penalty function µ
2
g2, the Lagrangian

L, and the augmented Lagrangian h associated to the sphere func-
tion f(x) = 1

2
x2 in dimension n = 1, with g(x) = �x+ 1. KKT

conditions are satisfied for the optimum xopt = 1 and the Lagrange
multiplier λopt = 1. L and h are plotted for λ = 10, λopt, and
µ = 10. For λ = λopt, the minimum of both L and h (dashed
green and blue graphs) correspond to xopt. However, for λ = 10,
the minimum of L is different (green graph). By adding a penalty
term (red graph) to the Lagrangian, the minimum of the augmented
Lagrangian (blue graph) moves closer to xopt.

Remark 1. The augmented Lagrangian in (5) is designed for the
very specific case of an active constraint (g(xopt) = 0). This choice
is motivated by theoretical considerations–mainly the construction
of a homogeneous Markov chain. Note that for problems where
xopt is inside the feasible domain, i.e. g(xopt) 6= 0 and λopt = 0,
rxh(xopt, λopt, µ) 6= 0. Hence, in practice where such an informa-



tion about the optimum is not provided, the augmented Lagrangian
used in [3] is the appropriate choice.

4. ALGORITHM
In this section, we present a (1+1)-ES for solving the optimiza-

tion problem described in (1), based on the augmented Lagrangian
approach described above. The algorithm, summarized in Algo-
rithm 1, iteratively minimizes the augmented Lagrangian function
h (5) and adapts the Lagrange and penalty factors λ and µ. It is
largely based on the (1 + 1)-ES presented in [3]. Indeed, we use
the same update for µ. For λ, however, we modify the update used
in [3]. This modification indeed seems to be necessary to be able to
exhibit a Markov chain whose stability leads to linear convergence.

Algorithm 1 is a randomized adaptive algorithm. A general ran-
domized adaptive algorithm optimizing a function f : Rn ! R
subject to a constraint g(x) � 0, g : Rn ! R, is a sequence
(st)t2N of states, where st 2 Ω is the state of the algorithm at
iteration t. The sequence is defined recursively as

st+1 = F (f,g)(st,Ut+1) , (6)

where F (f,g) : Ω � Up ! Ω is the transition function of the
algorithm and (Ut+1)t2N is a sequence of independent identically
distributed (i.i.d.) random vectors Ut 2 Up [5]. For Algorithm 1,
the state at iteration t is given by (Xt, σt, λt, µt) where Xt 2 Rn
is the current solution, σt 2 R+ is the current step-size, λt 2 R
is the current Lagrange factor, and µt 2 R+

> is the current penalty
factor. In fact, Algorithm 1 is based on the (1 + 1)-ES with 1/5th
success rule designed for unconstrained optimization where two
additional state variables, λt and µt, are added to the original state
(Xt, σt). Indeed, the fitness (the augmented Lagrangian here) in
the constrained case is dynamic and is determined by λt and µt,
which are adapted besides Xt and σt.

Given the current state (Xt, σt, λt, µt), a standard normally dis-
tributed vector Zt+1 2 Rn is sampled. It is then multiplied by
the step-size σt and added to the current solution Xt to create the
first candidate solution X1

t+1, according to Line 3 of Algorithm 1.
The second candidate solution is Xt. X1

t+1 and Xt are then ranked
according to their fitness values, where the fitness at iteration t is
defined by h(x, λt, µt) for a given x 2 Rn. The best point becomes
the solution Xt+1 at the next iteration. This is done in Lines 4 and
8 by computing the fitness difference ∆h.

The step-size σt is adapted with the 1/5th success rule [9]. It
is multiplied by 21/n when X1

t+1 is better than Xt fitness-wise
(Line 9) and by 2�1/(4n) otherwise (Line 11). The idea behind
this update is to increase (respectively decrease) the step-size if the
success probability is larger (respectively smaller) than 1/5.

The Lagrange factor λt is updated (Line 6) if X1
t+1 is accepted:

it increases (implying a higher penalization of unfeasible candidate
solutions) when X1

t+1 is unfeasible and decreases otherwise. Our
update of the Lagrange factor differs from the one in [3] in that it
does not restrict λt to positive values. This modification appeared
to be necessary for us to construct a homogeneous Markov chain
whose stability implies linear convergence of the algorithm.

Similarly to the Lagrange factor, the penalty factor µt is up-
dated when X1

t+1 is accepted (Line 7), where χ, k1, k2 2 R+
>.

The factor is increased when (i) the penalty term corresponding
to X1

t+1 is smaller than the change in h value (first inequality in
Line 7). This corresponds to the situation where the Lagrangian
part, f(x) + λg(x), appears to dominate h(x). In this case we in-
crease the penalization so that also the augmenting part, µtg2(x)/2,
becomes visible to selection. The other situation where the penalty
factor is increased is (ii) when the change in the distance to the

constraint boundary j∆gj (Line 4) is significantly smaller than the
distance to the constraint boundary of the current solution jg(Xt)j
(second inequality in Line 7). In this case, the penalization is in-
creased to avoid premature stagnation when the search process is
still far from the constraint boundary, as large values of µt guide
the search more quickly towards g(x) = 0. When conditions (i)
and (ii) are not satisfied, µt is decreased to avoid an unnecessary
ill-conditioning of the problem.

The updates of Xt and σt depend only on the ranking of h values
of the candidate solutions. For λt and µt however, the algorithm
explicitly uses h and g values of Xt and Xt+1.

Algorithm 1 The (1 + 1)-ES with Augmented Lagrangian Con-
straint Handling

0 given n 2 N>, χ, k1, k2 2 R+
>

1 initialize X0 2 Rn, σ0 2 R+
>, λ0 2 R, µ0 2 R+

>, t = 0

2 while not happy
3 Compute X1

t+1 = Xt + σtZt+1, where Zt+1 � N (0, In�n)

4 Compute ∆g = g(X1
t+1)� g(Xt)

and ∆h = h(X1
t+1, λt, µt)� h(Xt, λt, µt)

5 if ∆h�0 then
6 λt+1 = λt + µtg(X1

t+1)

7 µt+1 =

8><>:
µtχ

1/4 if µtg2(X1
t+1) < k1

j∆hj
n

or k2j∆gj < jg(Xt)j
µtχ

�1 otherwise

8 Xt+1 = X1
t+1

9 σt+1 = σt2
1/n

10 else
11 σt+1 = σt2

�1/(4n)

12 t = t+ 1

Referring to (6), the transition function F (f,g) of Algorithm 1
can be expressed as

F (f,g)((Xt, σt, λt, µt),Ut+1) =
�
G1((Xt, σt), ς � Ut+1),

G2(σt, ς � Ut+1),G(f,g)
3 (λt, µt,Xt,G1((Xt, σt), ς � Ut+1)),

G(f,g)
4 (µt, λt,Xt,G1((Xt, σt), ς � Ut+1))

�
, (7)

where Ut+1 = (Zt+1,0) 2 Rn�2 and

ς = Ord(h(Xt + σt[Ut+1]i, λt, µt)i=1,2) (8)

is the permutation of indices of candidate solutions ordered accord-
ing to h. Where relevant, we will explicitly write the dependence
of ς on the variables used to compute candidate solutions and the
fitness used to rank them (here, this would read ςh(x,λt,µt)

(Xt,σt) ). The
operator � applies the permutation ς to Ut+1 and returns the ranked
vector ς � Ut+1 = ([Ut+1][ς]1 , [Ut+1][ς]2 ). Functions G1, G2, G3,
and G4 compute the new state variables of the algorithm by updat-
ing the current state variables Xt, σt, λt, and µt respectively. They
are given by

Xt+1 = G1((Xt, σt), ς � Ut+1) = Xt + σt[ς � Ut+1]1 , (9)

σt+1 = G2(σt, ς � Ut+1) = σt 2
� 1

4n
+ 5

4n
1f[&�Ut+1]1 6=0g| {z }

η�(ς�Ut+1)

, (10)

where η�(ς�Ut+1) is the step-size change (we will sometimes omit



the dependence on ς � Ut+1 for the sake of simplicity),

λt+1 = G(f,g)
3 (λt, µt,Xt,Xt+1) = λt + µtg(Xt+1)

� 1f[ς�Ut+1]1 6=0g , (11)

µt+1 = G(f,g)
4 (µt, λt,Xt,Xt+1) =

(
µtβt if [ς � Ut+1]1 6= 0

µt otherwise
(12)

with

βt =

8><>:
χ1/4 if µtg2(Xt+1) < k1

jh(Xt+1,λt,µt)�h(Xt,λt,µt)j
n

or k2jg(Xt+1)� g(Xt)j < jg(Xt)j
χ�1 otherwise .

(13)

4.1 Invariance
We discuss here invariance with respect to transformations of

the search space. We distinguish translation-invariance and scale-
invariance.

Before giving the formal definitions of translation and scale-
invariance, we remind the definition of a group homomorphism.

Definition 1. Let (G, .) and (H, �) be two groups. A function
Φ : G ! H is a group homomorphism if for all x, y 2 G,
Φ(x.y) = Φ(x) � Φ(y).

Let S(Ω) be the set of all bijective transformations from the state
space Ω to itself and let Homo((Rn,+), (S(Ω), �)) (respectively
Homo((R+

>, .), (S(Ω), �))) be the set of group homomorphisms
from (Rn,+) (respectively from (R+

>, .)) to (S(Ω), �).

Definition 2. A randomized adaptive algorithm with transition
function F (f,g), where f is the objective function being minimized
and g is the constraint function, is translation-invariant if there ex-
ists a group homomorphism Φ 2 Homo((Rn,+), (S(Ω), �)) such
that for any objective function f , for any constraint g, for any
x0 2 Rn, for any state s 2 Ω, and for any u 2 Up,

F (f(x),g(x))(s,u) = Φ(�x0)
�
F (f(x�x0),g(x�x0))(Φ(x0)(s),u)

�
.

Informally, the previous definition means that if we transform the
current state st of the algorithm via Φ(x0), perform one iteration to
optimize f(x� x0) subject to g(x� x0) � 0, and apply the inverse
transformation Φ(�x0) to the resulting state, then we will recover
the same state st+1 as when starting from st and performing one
iteration of the algorithm to optimize f(x) subject to g(x).

Definition 3. A randomized adaptive algorithm with transition
function F (f,g), where f is the objective function being minimized
and g is the constraint, is scale-invariant if there exists a group ho-
momorphism Φ 2 Homo((R+

>, .), (S(Ω), �)) such that for any ob-
jective function f , for any constraint g, for any α > 0, for any state
s 2 Ω, and for any u 2 Up,

F (f(x),g(x))(s,u) = Φ(1/α)
�
F (f(αx),g(αx))(Φ(α)(s),u)

�
.

In the sequel, we prove that Algorithm 1 is translation and scale-
invariant.

PROPOSITION 1. Algorithm 1 is translation-invariant and the
associated group homomorphism Φ is defined as

Φ(x0)(x, σ, λ, µ) = (x + x0, σ, λ, µ) , (14)

for all x0, x 2 Rn and for all σ, λ, µ 2 R.

PROOF. Consider the homomorphism defined in (14) and let
st = (Xt, σt, λt, µt) and Φ(x0)(st) = (X0t, σ0t, λ0t, µ0t). We have

h(Xt + σt[Ut+1]i, λt, µt) = h(X0t + σ0t[Ut+1]i � x0, λ
0
t, µ
0
t) ,

where Ut+1 = (Zt+1,0). Consequently, the same permutation
ς is obtained when ranking candidate solutions X0t + σ0t[Ut+1]i,
i = 1, 2, on h(x� x0, λ, µ) than when ranking candidate solutions
Xt + σt[Ut+1]i, i = 1, 2, on h(x, λ, µ). Therefore, according to
(7), F (f(x�x0),g(x�x0))(Φ(x0)(st),Ut+1) writes

X0t+1 = G1((X0t, σ
0
t), ς � Ut+1) = G1((Xt, σt), ς � Ut+1) + x0 ,

(15)

σ0t+1 = G2(σ0t, ς � Ut+1) = G2(σt, ς � Ut+1) ,

λ0t+1 = G(f(x�x0),g(x�x0))
3 (λ0t, µ

0
t,X
0
t,X
0
t+1)

= G(f(x),g(x))
3 (λt, µt,Xt,Xt+1) ,

µ0t+1 = G(f(x�x0),g(x�x0))
4 (µ0t, λ

0
t,X
0
t,X
0
t+1)

= G(f(x),g(x))
4 (µt, λt,Xt,Xt+1) .

We recover F (f(x),g(x))((Xt, σt, λt, µt),Ut+1) by applying the in-
verse transformation Φ(�x0) to (X0t+1, σ

0
t+1, λ

0
t+1, µ

0
t+1).

PROPOSITION 2. Algorithm 1 is scale-invariant and the asso-
ciated group homomorphism Φ is defined as

Φ(α)(x, σ, λ, µ) = (x/α, σ/α, λ, µ) , (16)

for all α 2 R+
>, for all x 2 Rn, and for all σ, λ, µ 2 R.

PROOF. Let st = (Xt, σt, λt, µt) and Φ(α)(st) = (X0t, σ0t, λ0t, µ0t).
We use the same idea as in the previous proof to show that the
same permutation ς is obtained when ranking candidate solutions
X0t +σ0t[Ut+1]i, i = 1, 2, on h(αx, λ, µ) than when ranking candi-
date solutions Xt + σt[Ut+1]i, i = 1, 2, on h(x, λ, µ). Therefore,
according to (7), F (f(αx),g(αx))(Φ(st),Ut+1) writes

X0t+1 = G1((X0t, σ
0
t), ς � Ut+1) =

1

α
G1((Xt, σt), ς � Ut+1) ,

(17)

σ0t+1 = G2(σ0t, ς � Ut+1) =
1

α
G2(σt, ς � Ut+1) , (18)

λ0t+1 = G(f(αx),g(αx))
3 (λ0t, µ

0
t,X
0
t,X
0
t+1)

= G(f(x),g(x))
3 (λt, µt,Xt,Xt+1) ,

µ0t+1 = G(f(αx),g(αx))
4 (µ0t, λ

0
t,X
0
t,X
0
t+1)

= G(f(x),g(x))
4 (µt, λt,Xt,Xt+1) .

We recover F (f(x),g(x))(st,Ut+1) by applying the inverse transfor-
mation Φ(1/α) to (X0t+1, σ

0
t+1, λ

0
t+1, µ

0
t+1).

5. ANALYSIS
In this section, we investigate the behavior of Algorithm 1 on the

augmented Lagrangian h. We start by showing that given a partic-
ular condition is satisfied by h, we can construct a homogeneous
Markov chain from the state variables of the algorithm, by exploit-
ing its invariance properties as well as the updates of λt and µt. In
the second part, we illustrate how the stability of the constructed
Markov chain results in linear convergence of Xt towards the opti-
mum xopt, as well as linear convergence of λt and σt towards λopt

and 0 respectively.



5.1 Homogeneous Markov Chain
Before presenting the Markov chain, we extend the definition of

positive homogeneity with respect to zero to any vector x�.

Definition 4. A function p : X ! Y is positive homogeneous
of degree k > 0 with respect to x� 2 X if for all α > 0 and for all
x 2 X ,

p(x� + αx) = αkp(x� + x) . (19)

By taking x� = 0, we recover the standard definition of positive
homogeneity.

Our linear constraint function g(x) = bT x + c is positive ho-
mogeneous of degree 1 with respect to any x� 2 Rn such that
g(x�) = 0. The sphere function psphere(x) = (x� x�)T (x� x�) is
also positive homogeneous of degree 2 with respect to x�.

We will now define two random variables, Yt and Λt, and prove
that if the augmented Lagrangian h satisfies the condition stated
below in (21), then (Yt,Λt, µt)t2N is a Markov chain. For the
proof, we use transition and scale-invariance along with the updates
of λt and µt.

PROPOSITION 3. Consider the (1 + 1)-ES with augmented La-
grangian constraint handling optimizing the augmented Lagrangian
h defined in (5). Let (Xt, σt, λt, µt)t2N be the Markov chain asso-
ciated to this ES and let (Ut)t2N be the sequence of i.i.d. random
vectors where Ut+1 = (Zt+1,0) 2 Rn�2 and Zt+1 � N (0, In�n).
Let

Yt =
Xt � x̄
σt

and Λt =
λt � λ̄
σt

. (20)

Then, if the function Dhx̄,λ̄,µ : Rn+1 ! R defined as follows

Dhx̄,λ̄,µ(x, λ) = h(x, λ, µ)� h(x̄, λ̄, µ) , (21)

where x, x̄ 2 Rn, λ, λ̄ 2 R, and g(x̄) = 0, is positive homogeneous
of degree 2 with respect to (x̄, λ̄), then (Yt,Λt, µt)t2N is a homo-
geneous Markov chain defined independently of (Xt, σt, λt, µt) as

Yt+1 = G1((Yt, 1), ς � Ut+1)/η� , (22)

Λt+1 = (G(f(x+x̄),g(x+x̄))
3 (Λt + λ̄, µt,Yt, η�Yt+1)� λ̄)/η� ,

(23)

µt+1 = G(f(x+x̄),g(x+x̄))
4 (µt,Λt + λ̄,Yt, η�Yt+1) , (24)

where η� = η�(ς � Ut+1) and

ς = Ord(h(Yt + [Ut+1]i + x̄,Λt + λ̄, µt)i=1,2) . (25)

PROOF. We show that Yt+1, Λt+1, and µt+1 only depend on
Yt, Λt, µt and i.i.d. random variables Ut+1, and therefore that
(Yt,Λt, µt)t2N is a homogeneous Markov chain.

Given the definitions of Yt and Λt in Proposition 3, we can write

h(Xt+σt[Ut+1]i, λt, µt) = h(σt(Yt+[Ut+1]i)+x̄, σtΛt+λ̄, µt) .

Consider ranking the elements of the set

fh(σt(Yt + [Ut+1]i) + x̄, σtΛt + λ̄, µt)gi=1,2 .

We obtain the same permutation when ranking the elements of

fDhx̄,λ̄,µt
(σt(Yt + [Ut+1]i) + x̄, σtΛt + λ̄)gi=1,2 ,

where Dhx̄,λ̄,µt
is defined in (21). Dhx̄,λ̄,µt

being positive homo-
geneous with respect to (x̄, λ̄), the ranking is the same on

fDhx̄,λ̄,µt
(Yt + [Ut+1]i + x̄,Λt + λ̄)gi=1,2

and, consequently, on

fh(Yt + [Ut+1]i + x̄,Λt + λ̄)gi=1,2 .

Therefore, the same permutation ς defined in (25) is obtained when
ranking the candidate solutions Xt+σt[Ut+1]i, i = 1, 2, on h(x, λt, µt)
than when ranking the candidate solutions Yt + [Ut+1]i on h(x +
x̄,Λt + λ̄, µt). It follows that

Yt+1 =
Xt+1 � x̄
σt+1

=
G1((Xt, σt), ς � Ut+1)� x̄
G2(σt, ς � Ut+1)

= G1((Yt, 1), ς � Ut+1)/η� , (26)

where we used scale-invariance properties of G1 and G2 ((17) and
(18)) and translation-invariance property of G1 in (15).

On the other hand, we have

Λt+1 =
λt+1 � λ̄
σt+1

=
G(f(x),g(x))

3 (λt, µt,Xt,Xt+1)� λ̄
G2(σt, ς � Ut+1)

, (27)

where G3 is given in (11). Using scale-invariance of G2 and positive
homogeneity of g with respect to x̄, it follows that

G(f(x),g(x))
3 (λt, µt,Xt,Xt+1)�λ̄ = σt

�
G(f(x+x̄),g(x+x̄))

3 (Λt+λ̄,

µt,Yt, η�Yt+1)� λ̄
�
.

Replacing in (27), we obtain (23).

Remark 2. With the update of λt used in [3] (λt+1 = max(0, λt+
µtg(Xt + σtZt+1) if ∆h � 0, λt otherwise), Λt+1 cannot be
written as a function of (Yt,Λt, µt). Indeed, because of the max
function, one cannot get rid of σt.

µt+1 is given in (24). Dhx̄,λ̄,µt
is positive homogeneous of de-

gree 2 with respect to (x̄, λ̄). Therefore, according to Definition 4
and for α = σt,

Dhx̄,λ̄,µt
(Xt+1, λt) = σ2

tDhx̄,λ̄,µt
(η�Yt+1 + x̄,Λt + λ̄) (28)

and

Dhx̄,λ̄,µt
(Xt, λt) = σ2

tDhx̄,λ̄,µt
(Yt + x̄,Λt + λ̄) , (29)

where we used (20). Subtracting (29) from (28), we get

h(Xt+1, λt, µt)�h(Xt, λt, µt) = σ2
t

�
h(η�Yt+1+x̄,Λt+λ̄, µt)

� h(Yt + x̄,Λt + λ̄, µt)
�
. (30)

Using (30) and positive homogeneity of g with respect to x̄, we get

βt =

8>>><>>>:
χ1/4 if µtg2(η�Yt+1 + x̄) < k1

� jh(η�Yt+1+x̄,Λt+λ̄,µt)�h(Yt+x̄,Λt+λ̄,µt)j
n

or k2jg(η�Yt+1 + x̄)� g(Yt + x̄)j < jg(Yt + x̄)j
χ�1 otherwise ,

therefore, (24) follows.

The result in Proposition 3 is particularly interesting if x̄ and λ̄
correspond to the optimum of the constrained problem, xopt, and
to the Lagrange multiplier, λopt, respectively. In this case, one
can express the convergence rate of the algorithm towards xopt as a
function of the homogeneous Markov chain (Yt,Λt, µt)t2N, where
Yt =

Xt�xopt
σt

and Λt =
λt�λopt

σt
. The LLN can then be applied to

prove linear convergence if the Markov chain satisfies some stabil-
ity conditions, which are further discussed in Section 5.



COROLLARY 1. Let (Xt, σt, λt, µt)t2N be the Markov chain as-
sociated to Algorithm 1 optimizing the augmented Lagrangian h in
(5), where f is a convex quadratic function defined as

f(x) =
1

2
xTHx , (31)

with H 2 Rn�n a symmetric positive-definite matrix. Let Yt =
Xt�xopt
σt

and Λt =
λt�λopt

σt
, where xopt is the optimum and λopt is

the associated Lagrange multiplier. Then (Yt,Λt, µt)t2N is a ho-
mogeneous Markov chain defined independently of (Xt, σt, λt, µt)
as in Equations 22, 23, 24, and 25, where x̄ = xopt and λ̄ = λopt.

Before moving to the proof, we remind that for f convex quadratic
and g linear, KKT conditions are also sufficient conditions of op-
timality, that is, a point satisfying KKT conditions is also an opti-
mum of the constrained problem (see Theorem 16.4 in [11]). Since
the problem is unimodal, KKT conditions are satisfied only for xopt

and λopt, and we have

rxf(xopt) + λoptrxg(xopt) = 0 . (32)

PROOF. We show that for f(x) = 1
2

xTHx,Dhxopt,λopt,µ in (21)
is positive homogeneous of degree 2 with respect to (xopt, λopt) 2
Rn+1 and therefore, by virtue of Proposition 3, (Yt,Λt, µt)t2N is
a homogeneous Markov chain. We have by definition of h

h(xopt + αx, λopt + αλ, µ) = f(xopt + αx)| {z }
A

+ (λopt + αλ)g(xopt + αx)| {z }
B

+
µ

2
g2(xopt + αx)| {z }

C

.

Givenrxf(y) = yTH andrxg(y) = bT , it follows that

A = α2f(xopt + x) + (1� α2)f(xopt) + α(1� α)rxf(xopt)x ,

B = α2(λopt + λ)g(xopt + x) + α(1� α)λoptrxg(xopt)x ,

C = α2 µ

2
g2(xopt + x) .

Therefore

h(xopt + αx, λopt + αλ, µ) = α2h(xopt + x, λopt + λ, µ)

+ (1�α2)f(xopt) +α(1�α)(rxf(xopt) +λoptrxg(xopt))x .

Using (32) and the fact that the constraint g is active at xopt, imply-
ing that h(xopt, λopt, µ) = f(xopt), we get

Dhxopt,λopt,µ(xopt +αx, λopt +αλ) = α2Dhxopt,λopt,µ(xopt +x,
λopt + λ) .

Figure 2 shows contour lines ofDhxopt,λopt,µ(x, λ) (21), where
the augmented Lagrangian h is defined for a particular convex quadratic
function, the sphere f(x) = 1

2
x2, x 2 R, and the constraint func-

tion g(x) = �x + 1. The penalty factor µ = 1. In this setting,
xopt = 1 and λopt = 1. We can see from the figure that the func-
tion is scaling-invariant with respect to (xopt, λopt): if we zoom
in around the point (xopt, λopt), we will still see the same con-
tour lines. Algorithm 1 optimizes the function whose values cor-
respond to a horizontal cut in the graph, that is, to a fixed value
of λ. The intersection between the horizontal line λ = λi and
the blue line corresponds to minxDhxopt,λopt,µ(x, λi, µ) where
arg minxDhxopt,λopt,µ(x, λi, µ) can be read on the x-axis. For
λ = λopt, the intersection happens in 0 and the corresponding
value on the x-axis is xopt = 1.
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Figure 2: Contour lines of Dhxopt,λopt,µ for f(x) = 1
2
x2,

g(x) = �x + 1, and µ = 1. The vertical (respectively horizon-
tal) dotted black line shows xopt = 1 (respectively λopt = 1).
Points where the solid blue line intersects the contour lines rep-
resent minxDhxopt,λopt,µ(x, λ) for the corresponding λ.

5.2 Sufficient Conditions for Linear Conver-
gence

Let us consider Algorithm 1 optimizing the augmented Lagrangian
h from (5) such that the function Dhxopt,λopt,µt defined in (21)
is positive homogeneous of degree 2 with respect to (xopt, λopt),
where xopt is the optimum of the problem and λopt is the associ-
ated Lagrange multiplier. Let (Xt, σt, λt, µt)t2N be the Markov
chain generated by the algorithm. Under these assumptions, let
(Yt,Λt, µt)t2N be the homogeneous Markov chain defined in Propo-
sition 3. The log-progress ln

kXt+1�xoptk
kXt�xoptk can be expressed as a

function of (Yt,Λt, µt) as follows

ln
kXt+1 � xoptk
kXt � xoptk

= ln
kYt+1k
kYtk

η�(ς � Ut+1) , (33)

where ς and η� are defined in (25) and (10) respectively. By taking
the sum then the limit of the average, we obtain the convergence
rate

lim
t!1

1

t

t�1X
k=0

ln
kXk+1 � xoptk
kXk � xoptk

= lim
t!1

1

t

t�1X
k=0

ln
kYk+1k
kYkk

� η�(ς � Uk+1) . (34)

If the Markov chain (Yt,Λt, µt)t2N is ϕ-irreducible and positive
Harris-recurrent, then a LLN can be applied to the left-hand side of
(34) to show almost sure linear convergence.

Before stating our theorem, we defineR(Φ), Φ = (Φ1,Φ2,Φ3),
as the expectation of ln η�(ς

h(x+xopt,Φ2+λopt,Φ3)

(Φ1,1) � U) for U � pU.

R(Φ) = E
�

ln η�(ς
h(x+xopt,Φ2+λopt,Φ3)

(Φ1,1) � U)
�

=

Z
ln η�(ς

h(x+xopt,Φ2+λopt,Φ3)

(Φ1,1) � u) pU(u)du . (35)

We also recall Theorem 17.0.1 from [10], which gives sufficient
conditions for the application of the LLN.

THEOREM 1 (THEOREM 17.0.1 FROM [10]). Assume that X
is a positive Harris-recurrent chain with invariant probability π.
Then, the LLN holds for any q such that π(jqj) =

R
jq(x)jπ(dx) <

1, that is, for any initial state X0, limt!1
1
t

Pt�1
k=0 q(Xk) = π(q)

almost surely.

THEOREM 2. Let (Xt, σt, λt, µt)t2N be the Markov chain as-
sociated to Algorithm 1 optimizing the augmented Lagrangian h



such that the function Dhxopt,λopt,µt defined in (21) is positive ho-
mogeneous of degree 2 with respect to (xopt, λopt) (the optimum
and the Lagrange multiplier respectively). Let (Yt,Λt, µt)t2N be
the Markov chain defined in Proposition 3 and assume that it is pos-
itive Harris-recurrent with invariant probability measure π, that
Eπ(j ln k[Φ]1kj) < 1, Eπ(j(ln j[Φ]2j)j) < 1, and Eπ(R(Φ)) <
1. Then, for all X0, for all σ0, for all λ0, and for all µ0, linear
convergence holds asymptotically almost surely, that is

lim
t!1

1

t
ln
kXt � xoptk
kX0 � xoptk

= lim
t!1

1

t
ln
jλt � λoptj
jλ0 � λoptj

= lim
t!1

1

t
ln
σt
σ0

= �CR , (36)

where

� CR = Eπ(R(Φ)) =

Z
R(Φ)π(dΦ) . (37)

PROOF. Using the property of the logarithm, we have

lim
t!1

1

t
ln
kXt � xoptk
kX0 � xoptk

= lim
t!1

1

t

t�1X
k=0

ln
kXk+1 � xoptk
kXk � xoptk

.

Then, using (34), we obtain

lim
t!1

1

t
ln
kXt � xoptk
kX0 � xoptk

= lim
t!1

1

t

t�1X
k=0

ln kYk+1k

� lim
t!1

1

t

t�1X
k=0

ln kYkk+ lim
t!1

1

t

t�1X
k=0

ln η�(ς � Uk+1) . (38)

Since (Yt,Λt, µt)t2N is positive Harris-recurrent with an invari-
ant probability measure π, it is possible to apply the LLN to the
right-hand side of (38). Knowing that ς = ς

h(x+xopt,Λt+λopt,µt)

(Yt,1) , it
follows

lim
t!1

1

t
ln
kXt � xoptk
kX0 � xoptk

=

Z
ln k[Φ]1kπ(dΦ)

�
Z

ln k[Φ]1kπ(dΦ) +

Z
R(Φ)π(dΦ) = �CR .

The same reasoning applies for limt!1
1
t

ln
jλt�λoptj
jλ0�λoptj and for

limt!1
1
t

ln σt
σ0

. Using the property of the logarithm again, we
obtain

lim
t!1

1

t
ln
jλt � λoptj
jλ0 � λoptj

= lim
t!1

1

t

t�1X
k=0

ln jΛk+1j

� lim
t!1

1

t

t�1X
k=0

ln jΛkj+ lim
t!1

1

t

t�1X
k=0

ln η�(ς � Uk+1) (39)

and

lim
t!1

1

t
ln
σt
σ0

= lim
t!1

1

t

t�1X
k=0

σk+1

σk
= lim
t!1

1

t

t�1X
k=0

ln η�(ς � Uk+1) .

(40)

By applying the LLN to the right-hand sides of (39) and (40), it
follows

lim
t!1

1

t
ln
jλt � λoptj
jλ0 � λoptj

= lim
t!1

1

t
ln
σt
σ0

= �CR .

6. EMPIRICAL RESULTS
By virtue of Corollary 1, all convex quadratic functions satisfy

the assumptions in Theorem 1. We consider two of them in our
experiments: the sphere function (fsphere) and the ellipsoid function
(fellipsoid), defined in (31) where (i) H = In�n for fsphere and (ii)

H is a diagonal matrix with diagonal elements [H]ii = α
i�1
n�1 , i =

1, � � � , n, for fellipsoid, with condition number α = 10. We choose
b = (�1, 0, � � � , 0)T and c = 1 for the linear constraint g(x) =
bT x + c � 0. According to (3) and (4), KKT conditions are satis-
fied for the optimum xopt = (1, 0, � � � , 0) and the Lagrange factor
λopt = 1 for both problems.

We run Algorithm 1 and simulate the Markov chain on each
problem for different parameter settings in dimensions 10, 50, and
100. We choose k1 = 3, k2 = 5, and χ = 21/n. For space
constraints, we only discuss results obtained in n = 10.

6.1 Single Runs
Figure 3 shows single runs of Algorithm 1 on constrained fsphere

(left column) and constrained fellipsoid (right column) for (i) a mod-
erate initial value of the penalty parameter µ0 = 1 (first row),
(ii) a large value µ0 = 103 (second row), and (iii) a small value
µ0 = 10�3 (third row). For all runs, X0 = (1, � � � , 1), σ0 = 1,
and λ0 = 2. Displayed are the distance to the optimum kXt�xoptk,
the distance to the Lagrange multiplier jλt�λoptj, the penalty fac-
tor µt, and the step-size σt in log-scale, plotted against the number
of iterations.

We observe that the algorithm converges linearly on both fsphere

and fellipsoid after a certain number of iterations, independently of
µ0. The convergence on fellipsoid is slower than on fsphere. In the
first case, the initial value µ0 = 1 is already close to the “stable”
value of the penalty parameter and linear convergence of Xt, λt,
and σt towards xopt, λopt, and 0 occurs immediately. In the second
case, the initial value µ0 = 103 is too large. However, it decreases
and converges to a stable value after some iterations. The algo-
rithm then starts to converge linearly. For a too small initial value
µ0 = 10�3, the distance to the optimum (and to the Lagrange mul-
tiplier) first decreases, then the algorithm stagnates. The reason is
that for small values of µt, the Lagrange factor λt varies very little
(see Line 6 in Algorithm 1), therefore the augmented Lagrangian
does not change much between iterations, resulting in stagnation.
After some iterations, however, µt increases again and eventually
converges to a stationary value. Once µt is stationary, kXt � xoptk,
jλt � λoptj, and σt start to decrease linearly.

6.2 Simulations of the Markov Chain
Figure 4 shows simulations of the Markov chain (Yt,Λt, µt)t2N

defined in Proposition 3 on constrained fsphere (left column) and
constrained fellipsoid (right column), for different initial values of
the penalty parameter (µ0 = 1, 103, 10�3 in first, second, and third
row respectively). The figure shows the evolution of the normalized
distance to xopt, kYtk, the normalized distance to λopt, jΛtj, and
the penalty factor, µt. We choose Y0 = (1, � � � , 1) and Λ0 = 1 in
all simulations.

It can be seen from the graphs that the variables of the Markov
chain seem to converge to a stationary distribution, even for too
small or too large initial values of µt. The bump in kYtk and jΛtj
graphs we observe on the third row, for both fsphere and fellipsoid, can
be explained by looking at the third row in Figure 3: when µt is too
small, kXt � xoptk and jλt � λoptj stagnate while the step-size σt
decreases, resulting in an increase of kYtk and jΛtj. We observe
that µt oscillates around about 0.1 on constrained fsphere and around
about 0.3 for constrained fellipsoid. These values are comparable to
the ones we observe on single runs in Figure 3.
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Figure 3: Single runs of the (1 + 1)-ES with augmented La-
grangian constraint handling on constrained fsphere (left col-
umn) and constrained fellipsoid (right column) for different ini-
tial values of µt in n = 10. Parameters of the constraint g are
b = (�1, 0, � � � , 0)T and c = 1. X0 = (1, � � � , 1)T and λ0 = 2.
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Figure 4: Simulations of the Markov chain (Yt,Λt, µt)t2N on
constrained fsphere (left column) and constrained fellipsoid (right
column) for different initial values of µt in n = 10. Parameters
of the constraint g are b = (�1, 0, � � � , 0)T and c = 1. Y0 =
(1, � � � , 1)T and Λ0 = 1.

The stability of the Markov chain depends, however, on the pa-
rameters of the algorithm. In simulations not shown due to space
limitations, we observe instability of the Markov chain, as well as
divergence of the algorithm, for χ = 2 with large values of µ0 in
n = 100.

7. DISCUSSION
We studied the problem of minimizing a function subject to a

single linear constraint. Taking the work of [3] as a starting point,
we proposed a (1+1)-ES with an augmented Lagrangian constraint
handling approach and proved its linear convergence on problems
where the associated augmented Lagrangian, minus its value at the
optimum and the Lagrange multiplier, is positive homogeneous of
degree 2, using a Markov chains approach, and given the stability
of the considered Markov chain. To construct the Markov chain,
we had to modify the update of the Lagrange factor used in [3]
and consider a simpler augmented Lagrangian. Indeed, invariance
alone is not sufficient, as the algorithm in [3] is translation and
scale-invariant yet we could not find an underlying Markov chain.

Experiments on the constrained sphere and on the moderately ill-
conditioned constrained ellipsoid showed stability of the Markov
chain, as well as linear convergence of the algorithm, for the dis-
cussed parameter settings.
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