
HAL Id: hal-01319730
https://inria.hal.science/hal-01319730

Submitted on 23 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing Parallel Data Processing for Large-Scale
Sensor Orchestration
Milan Kabáč, Charles Consel

To cite this version:
Milan Kabáč, Charles Consel. Designing Parallel Data Processing for Large-Scale Sensor Orchestra-
tion. 13th IEEE International Conference on Ubiquitous Intelligence and Computing (UIC 2016), Jul
2016, Toulouse, France. �hal-01319730�

https://inria.hal.science/hal-01319730
https://hal.archives-ouvertes.fr


Designing Parallel Data Processing
for Large-Scale Sensor Orchestration

Milan Kabáč
Inria Bordeaux

Bordeaux, France
email: milan.kabac@inria.fr

Charles Consel
Bordeaux Institute of Technology

Bordeaux, France
email: charles.consel@inria.fr

Abstract—Masses of sensors are being deployed at the scale
of cities to manage parking spaces, transportation infrastruc-
tures to monitor traffic, and campuses of buildings to reduce
energy consumption. These large-scale infrastructures become
a reality for citizens via applications that orchestrate sensors
to deliver high-value, innovative services. These applications
critically rely on the processing of large amounts of data to
analyze situations, inform users, and control devices.

This paper proposes a design-driven approach to developing
orchestrating applications for masses of sensors that integrates
parallel processing of large amounts of data. Specifically,
an application design exposes declarations that are used to
generate a programming framework based on the MapReduce
programming model.

We have developed a prototype1 of our approach, using
Apache Hadoop. We applied it to a case study and ob-
tained significant speedups by parallelizing computations over
twelve nodes. In doing so, we demonstrate that our design-
driven approach allows to abstract over implementation details,
while exposing architectural properties used to generate high-
performance code for processing large datasets.

I . I N T R O D U C T I O N

Modern ubiquitous computing systems take the form of
wide-area infrastructures, populating a variety of environ-
ments with functionality-rich sensors. These smart envi-
ronments include wide-area transportation management [1],
[2] and large-scale smart parking systems [3], [4]. The
emergence of smart environments validates large-scale sensor
infrastructures as robust platforms for delivering innovative
services to citizens.

Nevertheless, the successful adoption of these infrastruc-
tures critically relies on the ability to develop services.
Currently, software development in this domain lacks pro-
gramming models and methodologies to address key domain-
specific challenges. In particular, masses of sensors produce
large amounts of data that require to be analyzed efficiently
to render high-value services to citizens and operators of
smart environments. When considering tens of thousands of
measurements, possibly accumulated over a period of time,
processing becomes a critical issue. In fact, the amount of
data to be processed and the requirements of the applications

1http://phoenix.inria.fr/software/diaswarm

to be developed may necessitate parallel processing [5]. For
example, as cars rush into a city in the morning, drivers
should receive up-to-date information about space availability
in parking lots, even if this involves processing massive
amounts of data repeatedly. When efficiency is paramount, it
is a key challenge to develop an orchestrating application that
exploits properties about the sensors, optimizes the strategies
to collect sensor measurements, and crunches large amounts
of data.

Existing approaches dedicated to big data processing
provide limited ways to combine data processing strategies
with the application logic. Apache Pig [6] and Hive [7]
require developers to describe data processing in SQL-
like query languages with limited support for user-defined
functions. Language libraries, such as FlumeJava [8] allow
developers to implement data processing via high-level
language abstractions. These approaches provide data flow
expressions and a set of rich data types to implement data
processing. Developers still need to decide when and
where data processing occurs, as well as how intermediate
computations are combined. In the case of large-scale
orchestration, applications may have to analyze sensor data a
number of times using different algorithms, or combine them.
These needs put an additional burden on developers since
they have to introduce boilerplate code to separate library-
specific code from the main application logic, interconnect
and coordinate computations, store intermediate results, etc.

This paper proposes a design-driven approach to devel-
oping orchestrating applications for masses of sensors that
integrates parallel processing of large amounts of data. In
doing so, we extend our previous work on a design language
dedicated to orchestrating sensors, named DiaSwarm [9],
which did not address high-performance data processing.
Our new approach provides the developer with declara-
tions expressing when and where data processing occurs.
The application design then compiles into a programming
framework, based on the MapReduce programming model.
This framework supports and guides the programming of
the orchestration logic, while abstracting over the parallel
processing of sensed data.

http://phoenix.inria.fr/software/diaswarm


A. Our contributions

High-level parallel processing model.
Our approach allows the developer to program against
a framework based on the MapReduce programming
model [10], [11]. In doing so, the developer uses a well-
proven approach to processing large datasets, based on a
parallel implementation. We illustrate our approach with a
case study of a parking management system.

A generative programming approach.
The generated parallel-processing programming frameworks
have a carefully structured data and control flow, which
enables data processing to be implemented efficiently. Our
compiler generates programming frameworks that rely on
the MapReduce model, exposing structural parallelism of
the implementation. This strategy allows to cope with large
datasets collected from masses of sensors.

Implementation.
Our approach is implemented and takes the form of a
plugin for the Eclipse IDE2. The plugin comprises a code
generator, which currently produces programming support
for the Apache Hadoop platform3.

Validation.
Our implementation is validated with an experiment that
runs application computations over a large dataset of syn-
thetic sensor readings. The experiment demonstrates that
programming frameworks generated by our approach exhibit
scalable behavior.

I I . B A C K G R O U N D & C A S E S T U D Y

In this section, we provide a brief introduction of the Dia-
Swarm language [9] dedicated to development of orchestrat-
ing applications. DiaSwarm is a declarative domain-specific
design language, which follows the Sense/Compute/Control
(SCC) paradigm promoted by Taylor et al. [12]. DiaSwarm
provides high-level, declarative constructs to allow devel-
opers to deal with sensors and actuators at design time,
prior to programming the application. Application design is
processed by a compiler, which generates support for the de-
veloper that takes the form of a programming framework [13].
The generated programming framework reflects application
design and covers domain-specific functionalities, such as
service discovery, data gathering, component interaction and
data processing. These dimensions are fully administered
by the framework to allow developers to concentrate on the
application logic.

Application design takes the form of a directed acyclic
graph (DAG) comprising devices (i.e., sensors and actuators)
and application components, namely, contexts and controllers.
Context components receive data from sensors via device
sources. They refine raw data into application values and may

2http://eclipse.org/
3http://hadoop.apache.org/

publish these values to controller components. Controllers
determine the devices that need to be actuated, as well as
the type of action that needs to be triggered.

A. Case study

We illustrate the salient features of DiaSwarm with a
smart city application, which monitors the occupancy of
parking lots to guide cars to available parking spaces. The
application collects data from presence sensors, which are
buried under the ground and determine availability of parking
spaces via magnetic field variations. The application provides
drivers with the number of available parking spaces for each
parking lot in the city. This information is displayed on
screens at the entrance of parking lots. The application also
suggests parking lots to drivers entering the city to optimize
the flow of traffic. Finally, the application determines the
average occupancy level of each parking lot in 24 hours.
The occupancy level is provided to parking managers via
messages.

Fig. 1 presents a graphical view of the parking man-
agement application in SCC. The PresenceSensor de-
vice produces values via the presence source to the sub-
scribed context components, namely ParkingAvailability,
ParkingUsagePattern and AverageOccupancy. The
ParkingAvailability context computes the number of
available parking spaces in parking lots and publishes these
values at regular intervals to the ParkingEntrancePanel
controller, which in turn triggers the update action to
refresh the number of available parking spaces on entrance
screens. Parking suggestions for drivers are computed by the
ParkingSuggestion context, which is invoked every time
the ParkingAvailability context publishes a value. In this
case, the computation carried out by ParkingSuggestion
context requires also data from the ParkingUsagePattern
context. The resulting suggestions are published to the
CityEntrancePanelController, which refreshes these sug-
gestions on entrance panels. The average occupancy level
functionality is designed in a similar fashion with the ex-
ception of providing computations over a 24-hour period
(i.e., AverageOccupancy context).

B. Preliminaries

Let us now briefly present the salient features of DiaSwarm
declarations through fragments of the design of our case
study, displayed in Fig. 2. Note that we omit details
on controller components and actuators. The complete
design for the parking management application and further
information on DiaSwarm can be found on our website.4

Service discovery. DiaSwarm service discovery is part of the
design phase. The language provides application-specific
high-level constructs for discovering objects in the large.
The grouped by clause allows sensor data to be presented

4http://phoenix.inria.fr/software/diaswarm

http://eclipse.org/
http://hadoop.apache.org/
http://phoenix.inria.fr/software/diaswarm


Figure 1: The graphical view of the parking management application.

to applications through subsets of interest. In the case of the,
ParkingAvailability context, parking spaces are gathered
together in parking lots, as shown in line 3. Similarly, in
line 10, the AverageOccupancy context groups presence
values by parking lots and computes average occupancy over
24 hours.

Data gathering. DiaSwarm provides three data delivery mod-
els, inspired by the domain of wireless sensor networks [14],
namely periodic, event-driven and query driven. For ex-
ample, in lines 2 and 9 both ParkingAvailability and
AverageOccupancy contexts require presence measurements
to be provided every 10 minutes. Thus, according to this
declaration both context components will be activated every
10 minutes with presence values. Furthermore, the event-
driven model provides data to context components upon an
event of interest (e.g., intrusion). The query-driven model
allows a context to request data from devices and other
contexts.

Programming frameworks. To enforce domain-specific func-
tionalities (e.g., service discovery) during programming, Java
programming frameworks are produced by a compiler from
DiaSwarm designs. These frameworks provide an abstract
class for each component, which in turn requires developers
to implement components by subclassing every abstract class.

C. Data processing

Although high level, the DiaSwarm declarations suggest
data processing models. Specifically, an application is
reactive and consists of chains of component activations. A

1 context ParkingAvailability as Availability[] {
2 when periodic presence from PresenceSensor <10 min>
3 grouped by parkingLot
4 with map as Boolean reduce as Integer
5 always publish;
6 }

8 context AverageOccupancy as ParkingOccupancy[] {
9 when periodic presence from PresenceSensor <10 min>

10 grouped by parkingLot every <24 hr>
11 with map as Presence reduce as Integer
12 always publish;
13 }

15 device PresenceSensor {
16 attribute parkingLot as ParkingLotEnum;
17 source presence as Boolean;
18 }
19

20 structure Presence {
21 presence as Boolean;
22 time as String;
23 }

Figure 2: Excerpt of the parking management application design in Dia-
Swarm.

chain is executed when its initial activation condition holds
(e.g., a sensor publishes data), regardless of the delivery
model. The execution of a chain ends if one or more
actuators are invoked or a component does not publish any
value. Additionally, when a component declaration groups
values (e.g., grouped by parkingLot), it will process a
sequence of values, indexed by the grouping attribute (i.e.,
parkingLot). For example, in the ParkingAvailability
component, the processing will receive a list of available
parking spaces, indexed by parking lot identifiers (i.e., Par-
kingLotEnum). Additionally, this construct allows values
to be accumulated over a period of time, as illustrated by
the AverageOccupancy context (line 8). The declaration
in line 10 allows presence values, not only to be grouped
by parkingLot, but also to be accumulated over a 24-hour
period (keyword every).

I I I . E X P O S I N G PA R A L L E L I S M

The large amount of data collected from sensors calls
for efficient processing strategies. We now examine how
an application design influences the way data are processed.
This study allows us to propose extensions to DiaSwarm and
novel treatments of declarations to generate efficient parallel
processing of large-scale datasets.

A. MapReduce

Our aim is to put in synergy design and programming
by leveraging design declarations to expose parallelism and
allow efficient processing strategies to be implemented. An
ideal case study is the grouped by directive because it par-
titions a large set of gathered data and exposes a processing
strategy that matches the MapReduce programming model.



1 public class ParkingAvailability extends AbstractParkingAvailability
2 implements MapReduce<ParkingLotEnum, Boolean, ParkingLotEnum, Boolean, ParkingLotEnum, Integer> {
3 @Override
4 public void map(ParkingLotEnum parkingLot, Boolean presence, MapCollector<ParkingLotEnum, Boolean> collector) {
5 if(!presence)
6 collector.emitMap(parkingLot, true);
7 }

9 @Override
10 public void reduce(ParkingLotEnum parkingLot,
11 List<Boolean> values, ReduceCollector<ParkingLotEnum, Integer> collector) {
12 int sum = 0;
13 for (int i = 0; i < values.size(); i++) {
14 sum++;
15 }

17 collector.emitReduce(parkingLot, sum);
18 }

20 @Override
21 protected List<Availability> onPeriodicPresence(Map<ParkingLotEnum, Integer> presenceByParkingLot) {
22 List<Availability> availabilityList = new ArrayList<Availability>();

24 for(Entry<ParkingLotEnum, Integer> parkingLot : presenceByParkingLot.entrySet()) {
25 Availability availability = new Availability(parkingLot.getKey(), parkingLot.getValue());
26 availabilityList.add(availability);
27 }

29 return availabilityList;
30 }
31 }

Figure 3: An implementation of the ParkingAvailability context with MapReduce.

Indeed, this programming model is dedicated to processing
large datasets in a massively parallel manner [10], [11]. It
requires processing to be split into two phases: Map and
Reduce. Following our approach, data processing needs to be
reflected in the design phase. This is done by extending the
grouped by directive with an optional clause that specifies
what types of values are produced by both the Map and
Reduce phases. This is illustrated in Fig. 2, where the
ParkingAvailability declaration includes a MapReduce
clause that declares the Map phase to produce Boolean
values and the Reduce phase to produce Integer values.

The DiaSwarm compiler generates a programming frame-
work that requires the developer to provide an implemen-
tation for both the Map and Reduce phases of the data
processing. As shown in Fig. 3, this is done by imple-
menting map and reduce methods declared in the generated
MapReduce interface. In conformance with the MapReduce
model, the Map function is passed a key and a value, which
correspond to the parking lot identifier (i.e., the attribute of
the grouped by directive) and an availability status, provided
by the corresponding sensor. The emitMap method is invoked
to produce each key/value pair result of the Map phase. The
framework-generated code groups the results of the Map
phase into a list that is then passed to the Reduce phase.
This phase sums up the set of values associated with a given
intermediate key and, subsequently, emits the availability
of a parking lot (emitReduce). The data resulting from the

MapReduce computation are presented to the developer in the
form of a map (line 21). The onPeriodicPresence method
(line 21 to 30) wraps data resulting from the MapReduce
process into the availabilityList sequence (line 26),
which is returned to subscribed components (i.e., Parking-
EntrancePanelController, ParkingSuggestion).

Although our example involves simple processing, in
practice, our design-driven generative approach reduces
programming efforts by automatically generating application-
specific MapReduce programming frameworks. Furthermore,
the generated code keeps the development process straight-
forward since it prevents specificities of the MapReduce
implementation (job scheduling/configuration/execution, dis-
tributed file system, APIs, etc.) to percolate into the applica-
tion logic.

B. Integrating Hadoop

Our design-driven development approach facilitates the
processing of large datasets collected from sensor infras-
tructures by providing the developer with a customized
framework, following the MapReduce programming model.
In this section, we show how generative programming is
used to produce support for combining an orchestrating
application with an actual implementation of MapReduce,
namely Hadoop.

Apache Hadoop is an open source implementation of the
MapReduce paradigm, which has gained increasing attention



1 public class ParkingAvailabilityJob extends Configured implements Tool {

3 public static class ParkingAvailabilityMap extends MapReduceBase
4 implements Mapper<LongWritable, Text, Text, BooleanWritable> {
5 @Override
6 public void map(LongWritable key, Text value, OutputCollector<Text, BooleanWritable> output, Reporter reporter) {
7 jobLauncher.doMap(key, value, output);
8 }
9 }

11 public static class ParkingAvailabilityReduce extends MapReduceBase
12 implements Reducer<Text, BooleanWritable, Text, IntWritable> {
13 @Override
14 public void reduce(Text key, Iterator<BooleanWritable> values, OutputCollector<Text, IntWritable> output, Reporter

reporter) {
15 jobLauncher.doReduce(key, values, output);
16 }
17 }

19 @Override
20 public int run(String[] args) {
21 JobConf conf = new JobConf(getConf(), ParkingAvailabilityJob.class);
22 conf.setInputFormat(TextInputFormat.class);
23 // Remaining configuration
24 }
25 }

Figure 4: An example of the generated Hadoop MapReduce program for the ParkingAvailability context.

over the last years and is currently being used by a number
of companies, including IBM, LinkedIn, Facebook and
Google [15]. In our approach, our compiler generates a
MapReduce program that relies on the Hadoop framework.
Furthermore, this MapReduce program defines default con-
figuration parameters that enable a job to be executed in
Hadoop.

Let us describe how this is achieved, by examining the
code automatically generated for the ParkingAvailability
context, shown in Fig. 5. The ParkingAvailabilityJob
class defines a Hadoop MapReduce program, which com-
prises the definition of both the map and reduce methods
along with code related to the job configuration and execu-
tion. Both the Map function and the Reduce function are
implemented by overriding the map and reduce methods of
the respective Mapper and Reducer interfaces. Typically,
when using the Hadoop MapReduce library, the definition
of the map and reduce methods resides in the MapReduce
program. In this case, however, the implementation of these
operations has already been provided by the developer in the
ParkingAvailability class. The MapReduce program in-
vokes the user-defined map and reduce methods via the Par-
kingAvailabilityParser class, which keeps an instance
of the ParkingAvailability context. ParkingAvailabil-
ityParser interprets input data of the MapReduce program
as corresponding DiaSwarm types and invokes the required
map/reduce method. Consequently, results from the user-
defined map/reduce method are translated to the MapReduce
program and submitted via its output collector.

Fig. 4 shows the ParkingAvailabilityJob class, which

ParkingAvailabilityJob
+run(args)
+main(args)

M
ap

R
ed

uc
e

M
ap

pe
r

R
ed

uc
er

ParkingAvailabilityParser

-parkingAvailability: MapReduce
+map(key, value, output)
+reduce(key, value, output)

ParkingAvailability
+map(key, value, context)
+reduce(key, value, context)
#onPresence(parkingLotIterator)

ParkingAvailabilityMap
+map(key, value, output)

ParkingAvailabilityReduce
+reduce(key, value, output)

Generated code Implementation Hadoop lib DiaSwarm lib

Figure 5: The generated support for integrating Apache Hadoop.

defines the MapReduce program for the ParkingAvailabil-
ity context. The compiler generates a minimal MapReduce
program for every context declared as MapReduce at design
time. The type of input data for a generated MapReduce
program is defined by the input format, which defaults to
TextInputFormat (line 22). In our approach, sensor data
is stored in the JSON format. In our case study, each
presence status delivered to the application is converted
to JSON and occupies precisely one line in the resulting
dataset. Furthermore, each presence entry is defined by the
timestamp of the event, device attributes (i.e., id, parking
lot) and the presence source. TextInputFormat fits such
usage since it splits the input dataset to provide the Map
function with one line of text (i.e., one JSON entry) at a
time. In a MapReduce program, any key or value type
implements the Writable interface, which allows Hadoop to
serialize objects for transmission over the network [16]. To
facilitate the development of MapReduce programs, Hadoop
already provides Writable wrapper classes for the majority



of Java primitives (e.g., boolean → BooleanWritable).
In addition, developers may provide custom datatypes by
defining classes implementing the Writable interface. At
this stage, design declarations are of great importance since
they allow the compiler to interpret key and value types of
the resulting MapReduce program. For instance, as shown
in Fig. 2, the ParkingAvailability context declares the
output value type of the Map function as Boolean (line 4).
As a result, the compiler matches the Boolean data type with
the corresponding BooleanWritable wrapper class (Fig. 4,
line 6). Moreover, an enumeration is interpreted as a
string and matched with the Text wrapper class (Fig. 4,
line 6). Finally, design declarations using complex data
types result in the generation of a custom wrapper class,
which implements the Writable interface and reflects the
entire structure of the datatype.

The execution of a MapReduce program depends upon
the data delivery model underlying the interaction between
sensors (devices) and the application logic (contexts). In
our case study, the ParkingAvailability context declares
that data must be gathered from presence sensors in a 10-
minute time window according to a periodic delivery model
(Fig. 2, line 2). Data processing takes place when the time
window elapses; that is, every 10 minutes, for our case
study. At runtime, this job is executed with respect to the
gathered sensed data and produces a result. The orchestrating
application recovers the result, which is passed to the
context via its callback method (e.g., onPeriodicPresence
for ParkingAvailability).

C. Other data processing methods

Nowadays, the field of Big Data is attracting much
attention from research and industry. The tool-development
efforts devoted to dealing with rapidly emerging sources of
big data result in an abundance of open-source projects [17].
Apache Hadoop is a widely-used tool to deal with large-
scale datasets because it provides a reliable and scalable
solution, maintained by a large community of developers.
Hadoop is a batch-processing tool, typically used to analyze
log files of large-scale systems, collected over a long period
of time. The order of magnitude of these systems may
range from hundreds of gigabytes to petabytes and, possibly
terabytes. Apache Spark [18] is an alternative large-scale,
data processing tool, which is gaining popularity due to its
promise to outperform Hadoop by 10x [19]. Spark is an
in-memory, data processing framework, which builds upon
fault tolerant abstractions, manipulated using a rich set of
operators, called Resilient Distributed Datasets (RDDs) [20].
In contrast with batch-processing tools, Apache Storm [21]
primarily targets the processing of unbounded streams of data.
Storm is an example of a CEP [22] system, where data flow
through a network of transformation entities. An application
topology forms a directed acyclic graph, where stream
sources (spouts) flow data to sinks (bolts); it implements a

single transformation on the provided stream. In the context
of large-scale orchestration, the power of batch-processing
tools can be leveraged to analyze long-term datasets for
trends in the usage of the city’s infrastructure (e.g., parking
lots) and to identify structural degradation (e.g., buildings,
bridges). Stream processing tools, on the other hand, are best-
suited to deal with high-frequency sensor readings, which
typically involve tracking applications (e.g., vehicle position,
parking place availability). In the future, we intend to extend
the parallel data-processing compiler to integrate both Spark
and Storm, allowing developers to choose the right tool for
their project.

I V. E X P E R I M E N TA L E VA L U AT I O N

To assess our approach, we have conducted a series of tests
to examine the overall behavior of the MapReduce program-
ming model for processing large amounts of sensor data. To
do so, we developed a prototype of the parking management
system, with Hadoop as the target platform, and analyzed the
scalability of our approach using various datasets. In addition,
we evaluated the design of the application and observed how
specific design choices may impact the overall performance
of an orchestrating application.

A. Experimental setup

The experimentation focuses on the average parking
occupancy feature of our case study. The AverageOccupancy
context processes sensor data acquired over a 24-hour period,
calculates the average occupancy of a parking lot, and notifies
the parking manager via a Messenger device.

Machines. The experiment was carried out on a cluster of 12
nodes running within a private Eucalyptus [23] cloud. Each
node in the cloud corresponds to a m2.xlarge type virtual
machine instance with 2 CPUs, 2GB of RAM and 10GB
of disk space. Every instance ran the DataStax Enterprise
4.6.1 [24] image, which is a big data platform leveraging
tools such as Apache Hadoop and Apache Spark.

Datasets. We generated synthetic datasets to simulate a city’s
sensor infrastructure for the parking management system.
Each dataset contains sensor data, indicating parking space
occupancy, which is emitted every 10 minutes over 24 hours
(i.e., 144 measurements per sensor). We generated datasets
for different sensor infrastructures, ranging from 10 000 to
200 000 sensors per dataset, thus testing the MapReduce
program with datasets including up to 28 800 000 input
records.

B. Experimental results

Scalability. Fig. 6 shows the performance of our parking
management program. We compare its execution time with
respect to 3 cluster setups – one, six and twelve nodes –
and an increasing input dataset size. As can be expected,
the execution time of the one-node setup increases the



Figure 6: Performance comparison between different cluster setups.

fastest, compared to the six and twelve node setups. The
six and twelve node setups perform at par for the smallest
dataset sizes (from 10 000 to 50 000 sensors) because their
computing power is under-used. As the size of the datasets
increases, the performance of these two setups gradually
separate, showing better performance for the twelve-node
setup. These preliminary results show that our compiler
generates MapReduce implementations that attain expected
scalability. Furthermore, these results demonstrate that
declarations at the design level can benefit performance
by driving compilation strategies, such as parallelization in
our case study. This is achieved by introducing high-level
insights (MapReduce constructs) in DiaSwarm.

Optimization through design. Beyond significantly improv-
ing the execution time of an orchestrating application,
Hadoop opens up further optimization opportunities at the
design level. For instance, in our case study, the Average-
Occupancy context processes a dataset of presence values to
produce the average occupancy of each parking lot for the last
24 hours. A closer look at the application design reveals that
the computation provided by the AverageOccupancy context
could be achieved by leveraging the computation of the
ParkingAvailability context. The computed availability
of parking spaces could thus be provided to the Average-
Occupancy context at regular intervals, defined by the data
delivery contract (i.e., <10 min>) of the ParkingAvailabil-
ity context. As a result, the AverageOccupancy context
would use the provided data to calculate a cumulated moving
average over the period of 24 hours.

The suggested design adjustments are depicted in Fig. 7.
As can be noticed, the design of the application remains
straightforward. More importantly, this design prevents
sensor readings from being processed multiple times: the
AverageOccupancy context factorizes the computations per-
formed by the ParkingAvailability context. This caching
strategy reduces the total time and resources the application
requires for data processing. In fact, as shown in Fig. 7, the

1 context AverageOccupancy as ParkingOccupancy[] {
2 when provided ParkingAvailability // replaces line 9,

Fig. 2
3 grouped every <24 hr> // replaces line 10, Fig. 2
4 always publish;
5 }

Figure 7: The ParkingAvailability context factorizing the computation
performed by AverageOccupancy.

computation performed by the AverageOccupancy context
no longer involves processing of a large dataset on a cluster
(hence the MapReduce clause is omitted).

This major optimization also has a direct impact on
application upkeep costs, since nowadays companies delegate
processing of large datasets to cloud computing platforms
(e.g., Amazon Web Services) with a time-of-use pricing
model.

V. R E L AT E D W O R K

In this section, we examine existing approaches that
address the development of applications orchestrating sensors.
We consider approaches from domains where orchestration
of sensors is a common concern. Furthermore, we highlight
the differences between our approach and large-scale data
processing support.

Internet of Things (IoT). Patel et al. propose a multi-stage,
model-driven approach, dedicated to the development of
IoT applications [25]. This approach provides support at
different stages of the development process. At design
time, the approach offers a set of customizable modeling
languages for the specification of an application. The
approach is complemented by code generation and task-
mapping techniques for the deployment of node-level code
onto devices. Even though this approach is aimed to facilitate
the development process through guidance, Patel et al. do
not provide details regarding the size of sensed data that are
gathered and processed. They do not discuss what support
is generated to facilitate the programming process. This
approach does not address how masses of sensors are handled,
nor does it present performance measurements to assess how
it scales up for large datasets.

Pervasive computing. The domain of pervasive computing
offers a number of approaches targeting the development of
orchestrating applications. PervML [26] is a model-driven
development approach that provides a conceptual framework
for context-aware applications. The various aspects of a
pervasive computing application are modeled by different
types of UML diagrams. Dey et al. propose the Context
Toolkit [27] that provides the programmer with building
blocks to mediate between the contextual aspects of the
environment and the application. Olympus goes beyond mid-
dleware in providing a programming framework dedicated
to the development of pervasive computing systems [28].



Because it is based on a domain-specific framework, Olym-
pus raises the level of abstraction and facilitates the devel-
opment of applications. DiaSuite takes these approaches
further by introducing a design language dedicated to the
Sense/Compute/Control paradigm [29], [30]. A design is
used to generate a dedicated programming framework that
guides, restricts, and supports the implementation phase.

All the above-mentioned approaches have been designed
for the orchestration of objects in the small (i.e., offices,
buildings, etc.). They do not address challenges arising with
large-scale infrastructures and do not provide strategies to
tackle data-intensive processing.

Wireless sensor networks (WSN). Gupta et al. propose
sMapReduce [31], a programming pattern inspired by the
MapReduce programming model for mapping application
behavior onto a sensor network and enabling complex data
aggregation. sMapReduce divides the network-level user
program into sMap and Reduce functions; this strategy
respectively associates a behavior to sensor nodes and exe-
cutes data aggregation over the network. Compared to our
approach, sMapReduce remains lower-level since it provides
network-level programming abstractions and introduces the
network topology in computations.

Often, programming applications for WSNs is done at a
low level, requiring the developer to have extensive knowl-
edge about the underlying layers (network, hardware, OS).
Mottola and Picco [32] surveyed a number of programming
approaches for WSNs aimed to facilitate the programming of
layers underlying applications; these approaches target sensor
nodes, communication operations, routing strategies, etc.
These works are complementary to ours in that they provide
high-level abstractions that can be used by our compiler to
target frameworks for WSNs. However, they do not provide
support dedicated to dealing with large datasets produced
from massive-scale sensor infrastructures.

Large-scale data processing. Apache Pig [6] and Apache
Hive [7] are widely used as high-level platforms for analyzing
large-scale datasets. These platforms provide SQL-like
declarative query languages (i.e., PigLatin & HiveQL) to
express data analysis programs. These tools are well-suited
for offline data analysis, but require some effort for running
scripts from application code (e.g., setting up a connection
with a JDBC server). Sawzall [33] used by Google is a high-
level scripting language for automating analyses on large data
sets on top of the MapReduce execution model. Sawzall
is not publicly available but is reported to improve the
programming significantly, compared to C++ programming
of MapReduce. High-level language libraries, such as
FlumeJava [8], provide high-level abstractions dedicated to
parallel processing; they provide support for user-defined
functions, compared to SQL-like approaches.

Compared to the above-mentioned supports, our approach
integrates, at the design level, two domain-specific fundamen-

tal dimensions: large-scale orchestration of sensors and large-
scale data processing. The integrated nature of our approach
allows developers to easily combine results from various
computations. The design-driven nature of our approach is
supported by high-level declarations, exposing such domain-
specific information as service discovery and data delivery.
Declarations are analyzed to determine data and control flow
information, which in turn, is used to generate efficient,
parallel-data processing frameworks.

V I . C O N C L U S I O N A N D F U T U R E W O R K

We have proposed a design-driven approach to develop-
ing orchestrating applications for masses of sensors that
integrates parallel processing of large amounts of sensed
data. Our new approach provides the developer with design
declarations expressing when and where data processing
occurs. A compiler takes an application design as input
and produces a programming framework based on the
MapReduce programming model. The generated framework
supports and guides the programming of the orchestration
logic, while abstracting over the parallel processing of sensed
data.

We have demonstrated that our approach creates syn-
ergy between design and programming, allowing seamless
introduction of high-performance computing strategies, as
illustrated by the MapReduce programming model. We
illustrated our approach with a case study of a parking
management system. This case study was used to conduct
an experiment on Apache Hadoop, demonstrating how our
design-driven approach can be leveraged to parallelize the
processing of large datasets and obtain significant speedups.

In the future, we intend to support the processing of un-
bounded streams of data, typical of sensors. Our declarative
approach will allow us to design orchestrating applications
that mix the processing of both large datasets and unbounded
data streams, allowing us to abstract away these aspects.

R E F E R E N C E S

[1] Y. Mizuno and N. Odake, “Current Status of Smart Systems
and Case Studies of Privacy Protection Platform for Smart
City in Japan,” in 2015 Portland International Conference on
Management of Engineering and Technology (PICMET), Aug
2015, pp. 612–624.

[2] M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and
R. Morris, “Smarter Cities and Their Innovation Challenges,”
Computer, vol. 44, no. 6, pp. 32–39, June 2011.

[3] Libelium, “Smart City project in Santander to monitor
Parking Free Slots,” March 2016. [Online]. Available:
http://www.libelium.com/smart_santander_parking_smart_city.

[4] Worldsensing SL, “Worldsensing and SIGFOX announce
the world’s largest Intelligent Parking deployment with
Micronet, the SIGFOX Network Operator for Russia,” March
2016. [Online]. Available: http://www.worldsensing.com/news-

press/press-release-worldsensing-and-sigfox-announce-the-worlds-

http://www.libelium.com/smart_santander_parking_smart_city
http://www.worldsensing.com/news-press/press-release-worldsensing-and-sigfox-announce-the-worlds-largest-intelligent-parking-deployment-with-micronet-the-sigfox-network-operator-for-russia.html
http://www.worldsensing.com/news-press/press-release-worldsensing-and-sigfox-announce-the-worlds-largest-intelligent-parking-deployment-with-micronet-the-sigfox-network-operator-for-russia.html


largest-intelligent-parking-deployment-with-micronet-the-sigfox-

network-operator-for-russia.html.

[5] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and
B. Moon, “Parallel Data Processing with MapReduce: A
Survey,” SIGMOD Rec., vol. 40, no. 4, pp. 11–20, December
2012.

[6] The Apache Software Foundation, “Apache Pig,” March 2016.
[Online]. Available: https://pig.apache.org.

[7] The Apache Software Foundation , “Apache Hive,” March
2016. [Online]. Available: https://hive.apache.org.

[8] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry,
R. Bradshaw, and N. Weizenbaum, “FlumeJava: Easy, Effi-
cient Data-Parallel Pipelines,” in Proceedings of the 31st ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’10). ACM, 2010, pp. 363–375.

[9] M. Kabáč and C. Consel, “Orchestrating Masses of Sensors:
A Design-Driven Development Approach,” in Proceedings
of the 2015 ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (GPCE
2015). ACM, 2015, pp. 117–120.

[10] R. Lämmel, “Google’s MapReduce programming model -
Revisited,” Science of Computer Programming, vol. 70, no. 1,
pp. 1–30, Oct. 2008.

[11] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107–113, Jan. 2008.

[12] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software
Architecture: Foundations, Theory, and Practice. Wiley
Publishing, 2009.

[13] M. Fayad and D. C. Schmidt, “Object-Oriented Application
Frameworks,” Commun. ACM, vol. 40, no. 10, pp. 32–38,
Oct. 1997.

[14] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “A
Taxonomy of Wireless Micro-Sensor Network Models,” SIG-
MOBILE Mob. Comput. Commun. Rev., vol. 6, no. 2, pp.
28–36, Apr. 2002.

[15] The Apache Software Foundation, “Hadoop Wiki PoweredBy,”
March 2016. [Online]. Available: http://wiki.apache.org

/hadoop/PoweredBy.

[16] T. White, Hadoop: The Definitive Guide. O’Reilly Media,
Inc., 2012.

[17] The Apache Software Foundation, “Projects Directory,” March
2016. [Online]. Available: https://projects.apache.org

/projects.html?category#big-data.

[18] The Apache Software Foundation , “Apache Spark,” March
2016. [Online]. Available: http://spark.apache.org.

[19] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster Computing with Working Sets,” in
Proceedings of the 2nd USENIX Conference on Hot Topics
in Cloud Computing (HotCloud’10). USENIX Association,
2010, pp. 10–10.

[20] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica,
“Resilient Distributed Datasets: A Fault-tolerant Abstraction
for In-memory Cluster Computing,” in Proceedings of the
9th USENIX Conference on Networked Systems Design and
Implementation (NSDI’12). USENIX Association, 2012, pp.
2–2.

[21] The Apache Software Foundation, “Apache Storm,” March
2016. [Online]. Available: http://storm.apache.org.

[22] G. Cugola and A. Margara, “Processing flows of information:
From data stream to complex event processing,” ACM Comput.
Surv., vol. 44, no. 3, 2012.

[23] Hewlett-Packard, “HP Helion Eucalyptus,” March 2016. [On-
line]. Available: http://www.eucalyptus.com.

[24] DataStax, “DataStax Enterprise,” March 2016. [Online].
Available: http://www.datastax.com.

[25] P. Patel, A. Pathak, D. Cassou, and V. Issarny, “Enabling High-
Level Application Development in the Internet of Things,” in
S-CUBE’13: 4th International Conference on Sensor Systems
and Software, Jun. 2013.

[26] E. Serral, P. Valderas, and V. Pelechano, “Towards the Model
Driven Development of Context-aware Pervasive Systems,”
Pervasive Mob. Comput., vol. 6, no. 2, pp. 254–280, Apr.
2010.

[27] A. K. Dey, G. D. Abowd, and D. Salber, “A Conceptual
Framework and a Toolkit for Supporting the Rapid Prototyping
of Context-Aware Applications,” Hum.-Comput. Interact.,
vol. 16, no. 2, pp. 97–166, Dec. 2001.

[28] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Campbell,
and M. D. Mickunas, “Olympus: A High-Level Programming
Model for Pervasive Computing Environments,” in Proceed-
ings of the Third IEEE International Conference on Pervasive
Computing and Communications (PERCOM ’05). IEEE
Computer Society, March 2005, pp. 7–16.

[29] D. Cassou, E. Balland, C. Consel, and J. Lawall, “Leveraging
Software Architectures to Guide and Verify the Development
of Sense/Compute/Control Applications,” in Proceedings of
the 33rd International Conference on Software Engineering
(ICSE ’11). ACM, 2011, pp. 431–440.

[30] B. Bertran, J. Bruneau, D. Cassou, N. Loriant, E. Bal-
land, and C. Consel, “DiaSuite: a Tool Suite To Develop
Sense/Compute/Control Applications,” Science of Computer
Programming, vol. 79, pp. 39–51, Jan. 2014.

[31] V. Gupta, E. Tovar, L. M. Pinho, J. Kim, K. Lakshmanan,
and R. Rajkumar, “sMapReduce: A Programming Pattern
for Wireless Sensor Networks,” in Proceedings of the 2nd
Workshop on Software Engineering for Sensor Network Appli-
cations (SESENA ’11). ACM, 2011, pp. 37–42.

[32] L. Mottola and G. P. Picco, “Programming Wireless Sensor
Networks: Fundamental Concepts and State of the Art,” ACM
Comput. Surv., vol. 43, no. 3, pp. 19:1–19:51, 2011.

[33] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpret-
ing the Data: Parallel Analysis with Sawzall,” Sci. Program.,
vol. 13, no. 4, pp. 277–298, Oct. 2005.

http://www.worldsensing.com/news-press/press-release-worldsensing-and-sigfox-announce-the-worlds-largest-intelligent-parking-deployment-with-micronet-the-sigfox-network-operator-for-russia.html
http://www.worldsensing.com/news-press/press-release-worldsensing-and-sigfox-announce-the-worlds-largest-intelligent-parking-deployment-with-micronet-the-sigfox-network-operator-for-russia.html
https://pig.apache.org
https://hive.apache.org
http://wiki.apache.org/hadoop/PoweredBy
http://wiki.apache.org/hadoop/PoweredBy
https://projects.apache.org/projects.html?category#big-data
https://projects.apache.org/projects.html?category#big-data
http://spark.apache.org
http://storm.apache.org
http://www.eucalyptus.com
http://www.datastax.com

	Introduction
	Our contributions

	Background & Case Study
	Case study
	Preliminaries
	Data processing

	Exposing Parallelism
	MapReduce
	Integrating Hadoop
	Other data processing methods

	Experimental Evaluation
	Experimental setup
	Experimental results

	Related Work
	Conclusion and Future Work
	References

