
HAL Id: hal-01319731
https://inria.hal.science/hal-01319731

Submitted on 23 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging Declarations over the Lifecycle of
Large-Scale Sensor Applications
Milan Kabáč, Charles Consel, Nic Volanschi

To cite this version:
Milan Kabáč, Charles Consel, Nic Volanschi. Leveraging Declarations over the Lifecycle of Large-Scale
Sensor Applications. 13th IEEE International Conference on Ubiquitous Intelligence and Computing
(UIC 2016), Jul 2016, Toulouse, France. �hal-01319731�

https://inria.hal.science/hal-01319731
https://hal.archives-ouvertes.fr


Leveraging Declarations over the Lifecycle of Large-Scale Sensor Applications

Milan Kabáč
Inria Bordeaux

Bordeaux, France
email: milan.kabac@inria.fr

Charles Consel
Bordeaux Institute of Technology

Bordeaux, France
email: charles.consel@inria.fr

Nic Volanschi
Inria Bordeaux

Bordeaux, France
email: eugene.volanschi@inria.fr

Abstract—Masses of sensors and actuators are being de-
ployed in our daily environments to provide innovative services
for such spaces as parking lots, buildings, and railway net-
works. Yet, to realize the full potentials of these sensor network
infrastructures, services need to be developed. Service develop-
ment raises a number of challenges due to existing approaches
that are often low level and network/hardware-centric. This
paper proposes a high-level approach to the development of
large-scale orchestrating applications. It revolves around a
declaration language that allows to express the sensor-network
dimensions of an application (sensor discovery, delivery models,
actuation process). These declarations define the behavior of an
application with respect to the sensor network infrastructure.
We demonstrate the key relevance of these declarations at
every stage of an application lifecycle, from design to runtime.
In doing so, declarations allow to match the sensor-network
behavior of an application to the target infrastructure. Our
approach summarizes and puts in perspective our development
of industrial case studies and our experience in using a
commercially-operated sensor infrastructure.

I. INTRODUCTION

Infrastructures of masses of sensors are increasingly
emerging in our environment and being deployed over large-
scale spaces, including parking lots in cities and agricultural
fields in rural areas. These large-scale infrastructures are
now being operated worldwide by companies, enabling
economically viable services to be offered. For instance, the
Smart City project in Santander provides an infrastructure
composed of sensors, actuators, cameras and screens to
monitor available parking spaces, offering valuable infor-
mation to car drivers [1]. Similarly, Sigfox [2] deployed a
large-scale infrastructure in Moscow, providing the city with
the world’s largest intelligent parking system, comprising
fifteen thousand sensors; this system has been operated since
2014 [3].

Even though, these deployments demonstrate the maturity
and practicality of such infrastructures, there are still chal-
lenges that need to be addressed to harness the potentials
of this technology. In particular, the process of developing
services for masses of sensors is still ad hoc. Current prac-
tices are driven by the network operator (e.g., Sigfox) and
centered around the concerns of the specific stakeholders:
sensor manufacturers. Moreover, research in the domain
often ignores realistic application-specific requirements as

discussed by Raman et al. [4]. This network/hardware-
centered approach makes software development low level
and feature specific, resulting in a steep learning curve for
programmers. This situation can be a major impediment for
the success of the domain.

Just like mobile application development, large-scale
sensor infrastructures need to provide programmers with
methodologies and tools to support the development of
services. This work is essential to allow innovative services
to be developed, leading to the adoption of such infras-
tructures. For example, the Android platform comes with
a software framework that manages the lifecycle of applica-
tions, provides access to device resources, and allows data
sharing between applications. In addition, developers need
to make explicit, via a manifest file, a number of application
properties (i.e., application components, permissions, etc.).
This manifest provides a high-level view of an application,
which is leveraged by the Android device owner, as well as
the operator of the Android infrastructure (i.e., Google), to
reduce the risk of abusing resources (e.g., privacy, battery,
network) when running this application.

Similarly, for large-scale sensor infrastructures, an appli-
cation would need to expose, prior to runtime, how it may
use resources. Specifically,

• What are the required sensors/actuators?
• How does it gather/receive data from sensors?
• When are sensor readings delivered?

Such issues need to be examined at various stages of an
application lifecycle, from design to runtime, and may raise
such infrastructure concerns as determining whether the
sensor infrastructure can provide the application with the
required resources (i.e., admission control), whether the
infrastructure needs to be configured to factorize sensor read-
ings (i.e., caching mechanism). Domain expertise is needed
to examine infrastructure concerns along the lifecycle of the
application. Currently, this expertise is implicit, making the
few existing experts a bottleneck for producing new services
that take into account the infrastructure concerns. As a result,
not only are sensor-network characteristics of an application
missing to support its development, but they are also missing
to match the infrastructure to the application needs.



This paper
We propose an approach that makes explicit the domain
expertise required to guide the development and deployment
of a large-scale orchestrating application. To do so, based
on the literature and practical insights, we introduce the
notion of application behavior, which characterizes how an
application behaves to orchestrate sensors at a large scale
along three dimensions: service discovery – what sensors are
required, data delivery – how and when data are delivered to
the application, and actuating process – what actuators are
issued orders by the application. These behavior dimensions
are then instantiated across the stages of the application
lifecycle and examined with respect to sensor infrastructure
concerns. This process ranges from checking that the sensing
capabilities required by an application at design time are
compatible with the target infrastructure, to submitting an
application to an admission control procedure at deployment
time. Our contributions can be summarized as follows.

1) Application behavior. We identify the sensor-network
characteristics of a large-scale orchestrating applica-
tion. As such, the characteristics of an application
can be expressed at a high level and early in the
development process, providing support throughout
the application lifecycle.

2) Declaration language. We present a simple declara-
tion language that allows to express the key sensor-
network behavior of an orchestrating application. We
show how declarations make explicit essential infor-
mation about the application.

3) Application lifecycle. We introduce stages, along the
application lifecycle, where the behavior declarations
of an application can be used to adapt both the
application and the infrastructure concerns.

4) Validation. We validate our approach with a real-sized
case study, namely, a citywide parking management
system. This case study illustrates all the aspects of our
proposed approach and demonstrates how it addresses
the sensor-network behavior of an application.

We build on practical experience gained from (1) working
with operators of sensor-network infrastructures [5] and (2)
previous implementations of case studies leveraging these
infrastructures [6], [7]. As such, our approach provides a
design framework that paves the way for researchers work-
ing on methodologies and tools supporting the development
of applications for large-scale sensor infrastructures.

Outline
The next section presents our case study, used throughout
the paper. Then, Section III decomposes our notion of appli-
cation behavior into a set of key sensor-network dimensions,
drawn from the literature on sensor networks. These dimen-
sions give a design framework for a declaration language
dedicated to the sensor-network behavior of applications.

This language is introduced in Section IV, as well as the
main stages of an application lifecycle. Section V discusses
how our approach can leverage existing approaches address-
ing infrastructure concerns. Related works are covered in
Section VI and concluding remarks are given in Section VII.

II. CASE STUDY

In this section, we present a case study used throughout
the paper to introduce the salient aspects of our work.
This case study examines the development of a parking
management application, inspired by existing smart city
projects mentioned earlier. The purpose of the application
is to monitor the occupancy of parking spaces and regulate
the flow of traffic by directing cars to available parking
spaces. Presence sensors are buried under the ground and
determine the occupancy of parking spaces by measuring
magnetic field variations. The application also requires Car-
bon Monoxide (CO) sensors to detect an unsafe level of
pollution in parking lots, and alert drivers if this situation
occurs. Parking availability and pollution alerts are displayed
on display panels at the entrance and inside the parking lots.

The goal of this application imposes a number of require-
ments on the process of orchestrating masses of sensors and
actuators.

Req 1. Both presence and CO sensors need to be grouped by
parking lots and levels. Indeed, space availability and pollu-
tion levels are naturally delivered at both these granularities
by a parking management system.

Req 2. Presence at a parking space is published by the
associated sensor when its status changes; an event-based
delivery model is well-suited for a boolean type of sensor.

Req 3. CO sensors deliver their measurements in two ways
depending on the needs of the data consumer. For the
ventilation of the parking lot, the information is produced
every 15 minutes; this time may vary depending on the time
it takes to renew the air for a ventilation system and the
size of the parking lot. For the purpose of pollution alert,
we require the pollution level to be delivered when it reaches
a given threshold.

In the remainder of the paper, we address these require-
ments at different stages of the development lifecycle of
the application. From a general perspective, requirements
on orchestrating sensors and actuators are identified along
three main dimensions, presented in the next section.

III. APPLICATION BEHAVIOR DIMENSIONS

A sensor network is an environment constrained in many
ways (bandwidth, energy, computational power, etc.). When
this environment serves a resource-intensive application or
resource-competing applications, their usage profile needs
to be determined to ensure quality of service. Towards
addressing this issue, we introduce the notion of application



behavior dedicated to sensor-network dimensions. In this
section, we leverage the literature on sensor networks and
decompose the notion of application behavior into three key
dimensions.

A. Service Discovery

Service discovery for large-scale orchestrating appli-
cations poses unique challenges due to the resource-
constrained nature of sensor networks. Service discovery
defines the sensor nodes of interest, the sources, and the
applications consuming sensor data, the sinks. The more
accurately sources are selected by applications, the less com-
munication occurs between sources and sinks. This strategy
is of utmost importance in the context of a bandwidth-poor
environment, comprising masses of sensors.

Meshkova et al. [8] notice that sensor nodes with limited
computational resources are not suited for computational and
memory hungry service discovery protocols. Furthermore,
most well-known protocols, such as UPnP or SLP, are too
large to be processed by a sensor network. A promising
approach to service discovery, proposed by Heidemann [9],
is to organize sensor-network communications with respect
to the application attributes, rather than with respect to the
network topology.

Estrin et al. [10] notice that this application-specific
approach is aligned with common application scenarios in
the domain. That is, it relies on data generated from the
sensor network infrastructure, rather than from individual
sensors. Concretely, applications are more likely to ask:
"Where are the nodes whose temperature recently exceeded
30 degrees?" than "What is the temperature at sensor #27?".

Heidemann et al. [9] also demonstrate the benefits
of an attribute-based naming approach, when driven by
application-specific requirements. In particular, they show
that this approach significantly reduces network traffic.

Based on these works, we conclude that the service dis-
covery dimension should be made explicit and contribute to
the requirements of an application, early in the development
process. This service discovery dimension should consist
of attributes (e.g., sensor types and locations), exposing
information to optimize the target sensor network (e.g.,
network traffic).

B. Data Delivery

Beyond the service discovery dimension, an application
behavior is also characterized with respect to how sensor
data are delivered. Tilak et al. [11] propose a classification
that introduces fundamental delivery models: continuous,
event-driven, observer-initiated and hybrid. Importantly, this
classification is defined with respect to the observer’s in-
terest (e.g., the application). The data delivery model of
an application needs to be explicit to avoid mismatches
between application requirements and the target sensor
network infrastructure. For example, an application may

require data to be delivered at a certain frequency. However,
this requirement may not be fulfilled because the target
infrastructure does not provide enough bandwidth to transmit
the data. Similarly, an application may need to access sensors
in a query-driven fashion, which may not be supported by
the target infrastructure.

It is important to notice that the data delivery models
required by applications also suggest a network structure and
specific algorithms that best match the applications’ needs,
especially in the context of a resource-poor environment.
For instance, in her Ph.D. thesis, Heinzelman showed that
clustering is most efficient for static networks, where data
is continuously transmitted [12].

The number of sources and sinks used by an application
is also valuable information for choosing an appropriate
communication strategy [13]. Liu et al. [14] introduce a
communication pattern for large-scale sensor networks that
adapts the communication strategy with respect to the rel-
ative frequency between application queries and detected
events from sensors. Furthermore, because dissemination
protocols for large-scale sensor networks are data-centric,
they can exploit application semantics to improve perfor-
mance [15]. Communication costs can be reduced by intro-
ducing some computation inside the network; this is referred
to as in-network data aggregation and processing [9]. For
example, information on how data is to be presented to
an application (e.g., parking spaces via parking lots) can
be used by the sensor network infrastructure to perform
in-network data aggregation per node cluster (i.e., parking
lots). Estrin et al. carry out this idea by using intermediate
nodes to perform application-specific data aggregation and
caching [10]. Localized algorithms are introduced in the
context of distributed computations to allow sensors to only
communicate with neighbor sensor nodes. As the number of
nodes increases, localized clustering can contribute to more
scalable behavior, since communication between nodes is
kept within a neighborhood.

To summarize, researchers have shown that application-
specific information is critical to optimize sensor networks at
various levels. This application-specific information mainly
consists of knowing what sensors are used by an application
and how sensor data are to be delivered. That is, service
discovery and data delivery.

C. Actuating

When orchestrating devices in the large, the nature of
actuators introduces some differences in the way an appli-
cation uses them, compared to sensors. In our experience,
we identify two approaches to issuing orders to actuators.
The first approach is symmetrical to sensors: it consists
of multicasting an order to a group of actuators. In our
case study, such operation is used to inform car drivers of
parking availability at the periphery of the city. The second
approach to issuing orders to actuators corresponds to what



is done when orchestrating devices in the small; it consists of
invoking a specific actuator (e.g., an information display at
a given parking level) to perform a context-specific action
(e.g., display the number of available parking spaces of a
given level).

Exposing how an application invokes actuators provides
the sensor network infrastructure with valuable information.
For example, individually invoking actuators is likely to be
a key outcome of an application. Therefore, the application
should probably not be launched, if individual actuators
are not reachable, or at least, human intervention should
be required to resolve the problem. In contrast, when an
application invokes actuators using multicast, it should have
some impact, even though some actuators may not be
reachable when launching it.

IV. STAGES OF APPLICATION LIFECYCLE

To support orchestration in the large, we introduce dec-
larations expressing the sensor-network dimensions of an
application. To address these dimensions systematically, they
are matched against each stage of the application lifecycle,
from design to runtime. This approach has the following
methodological and programming benefits.

• Sensor-network dimensions of an application are ex-
pressed early, and gradually matched against the stages
of the application lifecycle.

• This gradual mapping raises a need for adaptation
layers, when the sensor-network dimensions of an ap-
plication cannot be reconciled with the target sensor
network infrastructure (e.g., missing sensors, unavail-
able delivery model).

As can be noticed, our staged approach keeps the appli-
cation development independent from infrastructure details
(e.g., network protocol, bandwidth, data link features). In
doing so, we strive to be as agnostic to the network as
possible. We present the different stages of the application
lifecycle and instantiate each stage with our case study.

In this paper, we do not provide a formal definition of
our declaration language dedicated to sensor-network dimen-
sions of an application. Because it is simple, this language
is presented informally, throughout the next section, with
fragments from our case study. The information denoted by
these fragments, declared at design time, is leveraged across
the remaining sections devoted to the later stages.

A. Design stage

The declared sensor-network dimensions provide the
blueprint for later stages in the application lifecycle. In
particular, they are valuable documentation to be used by
the stakeholders of the sensor network infrastructure. Let
us illustrate our approach with our case study of parking
management, following the behavior dimensions introduced
previously.

Discovery of sensors and actuators. Orchestration in the
large requires to categorize the sensors and actuators of
interest. To do so, the designer needs to leverage a physical-
space partitioning that is well-suited for their target appli-
cation. This partitioning is likely to have been introduced
by the infrastructure owner and used to register sensors
and actuators as they get installed. A partitioning expressed
in terms of declarations is given in Fig. 1; it fulfills Re-
quirement 1 of our case study (see Section II). In these
declarations, parking spaces are members of parking levels,
which are members of parking lots. This partitioning of
spaces can then be used by an application to discover
sensors grouped by parking lots, matching the granularity
most common to car drivers. Last, devices are registered as
being in a city entrance, if they are so located. Fig. 2 uses
these partitioning declarations to define application-specific
discovery for sensors and actuators. For each parking lot,
the application discovers presence sensors (Lines 4 to 7) and
CO sensors (Lines 9 to 12) that are populating each parking
level. Information displays are discovered within the parking
lot for user information (Lines 14 to 17) and at the periphery
of the city to guide car drivers (Lines 19 to 22).

Data delivery. The designer needs to define how data are
delivered to the application. Fig. 3 presents delivery model
declarations for sensors, which build upon service discovery
rules introduced previously. Event-driven delivery model is
chosen for presence sensors because it allows to react only
when the status of parking spaces changes (Line 1). Given
that this status is a boolean value, events are the most natural

1 parking_level INCLUDES parking_space
2 parking_lot INCLUDES parking_level
3 city INCLUDES city_entrance

Figure 1. Extracts from the city partitioning of spaces.

1 APPLICATION parking_management
2 IMPORT city_partitioning

4 DISCOVER presence_sensors = {
5 service = sensor
6 source = presence :: boolean
7 group = parking_lot }
8

9 DISCOVER co_sensors = {
10 service = sensor
11 source = co_level :: float
12 group = parking_lot }
13

14 DISCOVER plot_info_displays = {
15 service = actuator
16 action = display
17 group = parking_lot }
18

19 DISCOVER city_info_displays = {
20 service = actuator
21 action = display
22 group = city_entrance }

Figure 2. Application-specific service discovery for the parking manage-
ment application.



1 DELIVERY presence_sensors AS event_driven
2 DELIVERY co_sensors AS periodic::15::min AND event_driven

Figure 3. Application-specific data delivery for the parking management
application.

delivery model. This fulfills Requirement 2 of our case
study. To fulfill Requirement 3, CO sensors are assigned
the periodic data delivery model and the event-based model
(Line 2). The periodic model is used by the ventilating
system to renew the parking air, whereas the event-based
model is used to warn users of an air pollution event when
the CO level has reached a given threshold.

Actuating. Fig. 4 presents declarations for actuating infor-
mation displays using service discovery rules introduced
earlier. Information displays are actuated with respect to
their level within the parking lot since the application tailors
the information to this granularity (Lines 1 to 2). However,
at the city periphery, information displays are actuated more
globally because they receive recommendations for drivers
entering the city and looking for an available parking space
at their destination (Lines 4 to 5). In our case study, we envi-
sion information displays performing some local processing
to select relevant information (e.g., parking lots nearby a city
entrance). For this purpose, we use the MULTICAST directive
that triggers a partition of information displays (e.g., at city
entrances) to disseminate information on parking lots. A
FOREACH directive is also available to allow for fine-grained
actuation of ventilation systems based on the CO level
measured at each parking level (not shown in this paper).
Despite being high-level, our declarations provide a precise
conceptual framework for the programming stage.

B. Programming stage

This stage consists of developing the application, ad-
dressing all of its sensor-network dimensions that involves
programming. In doing so, data structures accommodating
sensor readings are implemented. Furthermore, the process-
ing of sensor readings is programmed with respect to data
delivery models, chosen at design time (Fig. 3). Finally, note
that the approach to processing data and producing results
typically follows what has been defined at the design stage.
For example, the reporting on parking space availability
follows the granularity of the service discovery (i.e., parking
levels) (Fig. 2). Furthermore, the processing of presence
sensor readings follows an event-based model. Also, design
declarations result in software architectural patterns. For
example, a callback mechanism is typically implemented
to serve an event-driven delivery model such as the one
declared for presence sensors (Fig. 3, Line 1).

C. Deployment stage

At deployment time, the key features of the target sensor
network infrastructure are revealed. These features should
thus be matched against the sensor-network requirements of

1 TRIGGER display ON plot_info_displays
2 MULTICAST parking_level
3

4 TRIGGER display ON city_info_displays
5 MULTICAST city_entrance

Figure 4. Application-specific device actuation for the parking manage-
ment application.

the application to identify whether adaptations are needed.
Let us illustrate this stage in the context of our parking
management application. For service discovery, we need to
verify that the target sensor network infrastructure provides
the required sensors and actuators declared in Fig. 2. Assume
that CO sensors are not present, the deployment process
should fail. Alternatively, if regulation does not require CO
sensors, an adaptation layer could be invoked to produce
fake values. Such a situation would likely demand human
intervention.

Similarly, if bandwidth limitations in the sensor infras-
tructure or energy constraints on a sensor type prevents the
periodic delivery requirement to be fulfilled (e.g., Fig. 3,
Line 2), a human intervention may be needed to make
a decision. Such a situation would occur, for example, if
the periodicity of CO measurements needed to be adapted
because it likely needs to adhere to strict regulations.

The partitioning of sensors is another key feature of
the target infrastructure. Adaptation code may be required
to map the infrastructure partitioning into the application
partitioning; this can be done when the application partition-
ing is more coarse than the infrastructure partitioning. For
example, if the application required presence sensors to be
grouped per parking lot (Fig. 2, Line 7) and the infrastructure
only grouped them per level, a layer could gather the
sensors for all levels to deliver the appropriate information
to the application. For data delivery, the models of the
target infrastructure are matched against the ones required
by the application. Some adaptation strategies can be used
to account for mismatches. For example, an event delivery
model can be simulated with periodic delivery, combined
with an event condition. In our case study, if an application
alerts parking users when the air pollution has reached
a given threshold, it might select an event-based delivery
model to achieve this goal. An adaptation layer consists
of monitoring the CO periodic measurements and trigger
an event when a given threshold is reached. In practice,
depending on the physical architecture of the sensor network
infrastructure, adaptation code may be placed close to the
sensors (e.g., at a base station) or run as an additional layer
of the application if the infrastructure cannot be extended.

D. Launch stage

When launched, the application may not have access to
its required resources, if they are already serving other
applications, or if the infrastructure has been temporarily
or permanently reconfigured. This stage is distinct from



the next stage, namely runtime because it does not address
changes that may impact the application, while it is running.
The aim of this stage is to adapt for changes that occurred
between the time the application was deployed and its
launching. For example, the sensor network infrastructure
may have reserved some bandwidth to serve a given period-
icity for CO sensors and be unable to fulfill this requirement
because of a temporary failure of network nodes.

E. Runtime stage

At run time, the operating conditions of the application
can change arbitrarily. For example, resources may be put
offline for some technical reasons. In our case study, a
base station failure may disconnect a number of sensors
and actuators, sensors may fail, bandwidth may degrade,
etc. These changing conditions can violate the quality of
service requirements of the application and compromise its
purpose. In our case study, if the failure of CO sensors
does not offer the expected coverage of the parking lot
levels, the threshold for a pollution level may not be reached
because of the resulting inaccurate measurements. A crude
approach could consist of terminating an application when
its sensor-network requirements are violated. Human inter-
vention could then be required to analyze the situation and
resume operation, if possible. A more advanced solution
would consist of introducing a runtime mechanism that
monitors the cardinality of the sensor partitions defined by
the application. This mechanism should allow the application
to adapt at runtime when operating conditions degrade.
Similarly, the application needs a mechanism to react to
data delivery models that are violated at runtime. Interfacing
these events with a programming language can be done
via the exception mechanism by introducing exceptional
events dedicated to runtime errors, as described by Mercadal
et al [16], or violation of quality of service contracts, as
presented by Gatti et al. [17].

Summary. Table I summarizes how declarations of sensor-
network dimensions are leveraged throughout the application
lifecycle. As can be noticed, the range of actions based
on declarations is very large: from guiding programming
to admission control at deployment time, to coordinating
concurrent activations of actuators at runtime. The table
illustrates the framework laid out by our approach, providing
a spectrum of opportunities that goes beyond our case study.

V. DISCUSSION

We first explain how our work can leverage existing
approaches on sensor networks. We then discuss a related
development approach and discuss how it could be extended
with the present work.

A. Leveraging other approaches

This section shows how our sensor-network declarations
could be further exploited for adapting the infrastructure to

the application needs. This could be done by leveraging vari-
ous existing approaches to application-specific optimizations
in sensors/actuators networks. The discussion is organized
around a set of the key infrastructure concerns drawn from
the literature on sensor networks.

1) Admission control: Madria et al. [18] propose the
Sensor Cloud paradigm as a computing environment spread
in a wide geographical area, unifying multiple WSNs, and
available to one or multiple applications. This can be viewed
as an extension to the notion of Cloud computing, adding
virtualized sensing and actuating abstractions. The Missouri
S&T Sensor Cloud is a concrete realization of this paradigm.
It provides applications with sensing as a service, taking
such parameters as the region of interest, the frequency and
latency of sensed data. An admission control module (called
provision management) examines the service requests to
decide whether they can be fulfilled. When physical sensors
are virtualized to several applications, this module computes
the sampling durations and frequencies for satisfying all
the requests. This configuration is recomputed when new
applications join, or existing applications leave the system.

Because our approach exposes application needs, such
as the required sampling frequencies of sensors, it could
directly benefit to this paradigm, automating the service
(re)negotiation between the application and the sensor
Cloud, at different stages.

2) Network configuration: Heideman et al. [13] show
how WSN application performance can be improved by up
to 60% and network traffic cut by half, by matching data
dissemination algorithms to the application requirements. To
this purpose, they offer a network API, allowing the appli-
cation developer to choose between several data diffusion
algorithms, such as push-based or pull-based. Additionally,
they provide experimental data to determine which algorithm
is best for which application communication patterns. For
instance, a pull-based algorithm (namely two-phase pull
diffusion) performs poorly when there are many sensors
potentially sending data to many sinks but the sensor data
are actually sent rarely. In this situation, some push-based
diffusion algorithms can significantly improve performance.

Clearly, by making network-sensor dimensions of applica-
tions explicit, our approach allows to automatically select the
appropriate dissemination algorithm. The stage at which this
selection should occur depends on when relevant information
is known. In a single-application setting, where both sensor
discovery and periodicity are known statically, the network
can be configured at design time. For another example, if
sensor periodicity is static but the number of actual sensors
is known later, the choice can be done at deployment time
or at launch time. In multi-application settings, the selection
of a dissemination algorithm must at least be examined at
each application launching.

Liu et al. [14] introduce a family of data dissemination/-
gathering algorithms in n × n grid WSNs, spanning the



Table I
ADDRESSING SENSOR-NETWORK DIMENSIONS THROUGHOUT THE APPLICATION LIFECYCLE.

Design Programming Deployment Launch Runtime
stage stage stage stage stage

Goals High-level Supporting & guiding Admission App/Network Resolving
specification programming control adaptations QoS violations

Service
discovery

Declaring
Implementing
data structures

Matching
sensors/actuators

Validating

Coping with
infrastructure

failures

sensors/actuators resource
and their partitioning allocation

Data
delivery

Declaring Implementing
data processing

models

Matching data
delivery

Validating
data delivery & accommodating

models data delivery

Actuating
Declaring Implementing

actuation
strategies

Validating Coordinating
actuation – & accommodating concurrent
strategies actuation actuation

whole space between pure push – when sensors send data to
applications, to pure pull — when applications send queries
to sensors. Their algorithm family is based on a variable
diffusion structure, similar to a comb. They show how the
optimal balance can be expressed as a function of the grid
size n and the relative frequencies of application queries
and sensor events. As both frequencies are made explicit in
our approach, the right push vs pull configuration in such
a network could be computed automatically, as soon as the
grid size n is known. For static networks, the configuration
can be done at design time. When sensors are discovered at
a later stage, such as deployment or launch time, the choice
has to be performed at the corresponding stage.

Delicato et al. [19] propose an architecture based on web
services, in which sensors and applications declare the ser-
vices they provide, respectively need, using standard SOAP
configuration messages. These service descriptions include
the sensor and data type, the geographical location, the
acquisition interval (data rate), and the acquisition duration.
A threshold may also be specified for non-periodic sensing.
These sensors and application characteristics are used during
network configuration for setting up the data dissemination
protocol to minimize the energy consumption of the sensors
used for delivering their data to client applications. When
using our approach, the application needs are made explicit
at design time, and can be thus used to configure the network
at deployment time or to reconfigure it at launch time, to
accommodate an incoming application.

3) Event filtering and processing: TiNA [20] is a scheme
for minimizing sensor power consumption by exploiting the
temporal coherency tolerance of applications. This approach
goes beyond in-network data aggregation in that it does not
send sensor readings at all, if this fits the QoD (quality of
data) needs of applications. Thus, applications express their
sensing needs using annotated SQL-style queries. These
queries mention the type of data, its possible aggregation,
and periodicity, and are annotated with temporal coherency
tolerance. TiNA uses these annotations to suppress sensor

readings (hence to save power) while still providing high
quality approximated answers to application queries. This
approach is complementary to ours in that applications are
able to declare their sensing needs as early as possible. These
declarations can be directly used to leverage sophisticated
underlying optimizations such as those provided by TiNA.

B. A domain-specific language approach
Kabáč and Consel propose a domain-specific language

dedicated to the design of applications orchestrating sen-
sors [6]. Design declarations are processed to support and
guide the programmer using generative programming. This
strategy allows to abstract over the characteristics of the
sensor network. To cope with issues specific to orchestrating
masses of sensors, they introduce a design language that is
dedicated to this domain, allowing the developer to declare
what an application does, prior to programming it. This de-
sign language, named DiaSwarm, consists of constructs ded-
icated to manipulating objects at a large scale. For example,
it provides constructs to declare delivery models of sensors
as well as aspects related to parallel data processing at design
time [7]. They have developed a compiler for DiaSwarm
that produces a programming framework customized with
respect to a given DiaSwarm design. This present work
was inspired by DiaSwarm but it is more general in that
it is not dedicated to supporting the programming stage
and covers more aspects with its declaration language (e.g.,
actuators). Furthermore, we go beyond DiaSwarm in that we
examine how sensor-network dimensions can be leveraged
throughout the lifecycle of an application. In doing so,
we bridge the gap between the application needs and the
sensor-network concerns: we describe the details of their
interactions and leverage the literature in sensor networks.
Using these results, DiaSwarm could be further developed
by extending its compiler to generate code that would
address the stages and infrastructure concerns presented in
our work. For example, adaptation layers could be generated
automatically, either added to the application code or loaded
in the sensor-network infrastructure.



VI. RELATED WORK

To identify the key sensor-network dimensions of an
application, we already mentioned a range of works (Sec-
tion III). In this section, we review works pertaining to other
aspects related to sensor networks, not discussed earlier.

From WSN to SSN: Historically, Wireless Sensor Net-
works (WSNs) have been designed for a single applica-
tion. As a result, they could be highly optimized in an
application-specific manner at design time. This approach
is well suited for small-scale networks but does not scale
for networks of thousands of nodes. Indeed, at this scale,
the cost of network deployment and maintenance becomes
more important and return on investment is a key issue.
Consequently, in recent years, research has been focusing
on building Shared Sensor Networks (SSN), allowing several
applications to run concurrently on the same sensor network
infrastructure. Despite their benefits, SSNs are still in an
early stage, compared to WSNs. A very recent survey of
SSNs [21] identifies several specificities of SSNs, raising
new challenges that must be addressed. Such challenges
include dealing with the heterogeneity of the infrastructure,
dealing with resource contentions, and optimizing sensor
data flows for several applications at the same time. Hetero-
geneity imposes a looser coupling between the applications
and the infrastructure. Dealing with resource contention
requires exposing application needs early to ensure that a
new application does not interrupt currently running ones.
Optimizing sensor data flows also requires exposing early
the sensor-network behaviors of the application to enable
cross-application optimizations. While SSNs bring concrete
solutions to these challenges, they do not (yet) offer tools
for streamlining the development of SSN applications.

Our work proposes an approach towards resolving this
development problem by exposing the sensor-network di-
mensions of an application early, at design time. These
dimensions can then be exploited at different stages. For
example, at deployment time, our declarations address such
challenges as resource contention.

Middleware: Several works propose middleware solu-
tions for supporting large-scale sensing and actuating appli-
cations. A general approach to this problem domain is the
SwarmOS vision. In a white paper [22], the authors promote
a middleware platform for developing applications at the
frontier between a large-scale WSN and the Cloud. The goal
of SwarmOS is to offer high-level services, intermediating
between the WSN/Cloud resources and applications (called
“swarmlets”). Such services include access control and vir-
tualization, data summarization and aggregation, discovery,
etc. While such middleware services could greatly simplify
the development of sensing/actuating applications, they do
not offer a systematic method for developing such applica-
tions. Additionally, SmarmOS specifically targets applica-
tions with dynamic component graphs, allowing continuous

graph reconfiguration. Our approach favors applications with
a static internal structure, exposing as many of their charac-
teristics at early stages. Extending application behavior with
dynamic aspects will be studied in future work.

Other middleware solutions simplify the development of
applications on SSNs by increasing the abstraction level.
However, they do not address infrastructure optimizations.
For example, the LooCI middleware [23] implements an
easy-to-use component composition model, based on event
publishing and subscription. This middleware allows for run-
time re-configuration and introspection. Such middleware
solutions mostly match application needs against sensors
capabilities at runtime; they do not attempt to anticipate
(mis)matches at earlier phases in application lifecycle to
improve their reliability.

Adaptive algorithms: Another body of work concerns
adaptive algorithms for sensor networks. This is a highly
dynamic approach based on observing application needs
and the associated communication patterns, and adapting
the network infrastructure to optimize performance. The
Adaptive Multi-Criteria Routing (AMCR) algorithm [24] is
a key instance of this approach. Its authors argue that most
of the WSN routing protocols are designed for a specific
application class. AMCR is a generic routing protocol able to
adapt to traffic patterns recognized by observing running ap-
plications. More specialized routing algorithms, such as the
comb-needle routing structure [14], also integrate adaptive
behavior based on monitoring an application at runtime and
estimating the frequencies of sensor events and application
queries. The above-mentioned adaptive approaches are more
ambitious than ours, in that their aim is to automatically opti-
mize the sensor infrastructure, without imposing applications
to make their needs explicit. However, networks supplying
such an advanced self-tuning would need to be extensively
tested to ensure the robustness of the adaptive optimizations.
Our approach is more predictable in that it exposes sensor-
network dimensions of applications such that their execution
follows statically defined parameters. Nevertheless, we could
re-use the work on adaptive algorithms by leveraging our
sensor-network application declarations to perform their
optimizations statically, instead of dynamically. As a result,
our static approach would incur no runtime overhead.

VII. CONCLUSION

This paper has introduced an approach to developing
large-scale orchestrating applications that revolves around
a declaration language covering the key sensor-network
dimensions. This declaration language is described through
a case study of a parking management system. We have
shown that our sensor-network declarations can be leveraged
across the main stages of an application lifecycle to match
the application requirements to a target infrastructure. We
have discussed a set of key infrastructure concerns identified
in the literature on sensor networks and we have shown how



our approach could take these works further by leveraging
information from our declarations.

REFERENCES

[1] Libelium, “Smart City project in Santander to moni-
tor Parking Free Slots,” March 2016. [Online]. Available:
http://www.libelium.com/smart_santander_parking_smart_city.

[2] Sigfox, “Sigfox,” March 2016. [Online]. Available:
http://www.sigfox.com.

[3] Worldsensing SL, “Worldsensing and SIGFOX announce
the world’s largest Intelligent Parking deployment with
Micronet, the SIGFOX Network Operator for Russia,”
March 2016. [Online]. Available: http://www.worldsensing.com

/news-press/press-release-worldsensing-and-sigfox-announce-the-

worlds-largest-intelligent-parking-deployment-with-micronet-

the-sigfox-network-operator-for-russia.html.

[4] B. Raman and K. Chebrolu, “Censor Networks: A Critique of
"Sensor Networks" from a Systems Perspective,” SIGCOMM
Comput. Commun. Rev., vol. 38, no. 3, pp. 75–78, Jul. 2008.

[5] M. Kabáč, N. Volanschi, and C. Consel, “An Evaluation of
the DiaSuite Toolset by Professional Developers: Learning
Cost and Usability,” in Proceedings of the 6th Workshop on
Evaluation and Usability of Programming Languages and
Tools (PLATEAU’15). ACM, 2015, pp. 9–16.

[6] M. Kabáč and C. Consel, “Orchestrating Masses of Sensors:
A Design-Driven Development Approach,” in Proceedings of
the 2015 ACM SIGPLAN International Conference on Gener-
ative Programming: Concepts and Experiences (GPCE’15).
ACM, 2015, pp. 117–120.

[7] ——, “Designing Parallel Data Processing for Large-Scale
Sensor Orchestration,” in 13th IEEE International Conference
on Ubiquitous Intelligence and Computing (UIC’16), 2016.,
in press.

[8] E. Meshkova, J. Riihijärvi, M. Petrova, and P. Mähönen,
“A Survey on Resource Discovery Mechanisms, Peer-to-peer
and Service Discovery Frameworks,” Comput. Netw., vol. 52,
no. 11, pp. 2097–2128, Aug. 2008.

[9] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan,
D. Estrin, and D. Ganesan, “Building Efficient Wireless
Sensor Networks with Low-level Naming,” in Proceedings
of the Eighteenth ACM Symposium on Operating Systems
Principles (SOSP ’01). ACM, 2001, pp. 146–159.

[10] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next
Century Challenges: Scalable Coordination in Sensor Net-
works,” in Proceedings of the 5th Annual ACM/IEEE Inter-
national Conference on Mobile Computing and Networking
(MobiCom ’99). ACM, 1999, pp. 263–270.

[11] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “A
Taxonomy of Wireless Micro-Sensor Network Models,” SIG-
MOBILE Mob. Comput. Commun. Rev., vol. 6, no. 2, pp.
28–36, Apr. 2002.

[12] W. B. Heinzelman, “Application-Specific Protocol Architec-
tures for Wireless Networks,” Ph.D. dissertation, Cambridge,
MA, USA, 2000.

[13] J. Heidemann, F. Silva, and D. Estrin, “Matching Data
Dissemination Algorithms to Application Requirements,” in
Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems (SenSys ’03). ACM, 2003, pp.
218–229.

[14] X. Liu, Q. Huang, and Y. Zhang, “Balancing Push and Pull
for Efficient Information Discovery in Large-Scale Sensor
Networks,” IEEE Transactions on Mobile Computing, vol. 6,
no. 3, pp. 241–251, March 2007.

[15] F. Ye, H. Luo, S. Lu, and L. Zhang, “Wireless Sensor Net-
works,” C. S. Raghavendra, K. M. Sivalingam, and T. Znati,
Eds. Kluwer Academic Publishers, 2004, ch. Dissemination
Protocols for Large Sensor Networks, pp. 109–128.

[16] J. Mercadal, Q. Enard, C. Consel, and N. Loriant, “A Domain-
specific Approach to Architecturing Error Handling in Perva-
sive Computing,” in Proceedings of the International Confer-
ence on Object Oriented Programming Systems Languages
and Applications (OOPSLA ’10). ACM, 2010, pp. 47–61.

[17] S. Gatti, E. Balland, and C. Consel, “A Step-wise Approach
for Integrating QoS Throughout Software Development,” in
Proceedings of the 14th International Conference on Funda-
mental Approaches to Software Engineering: Part of the Joint
European Conferences on Theory and Practice of Software
(FASE’11/ETAPS’11), 2011, pp. 217–231.

[18] S. Madria, V. Kumar, and R. Dalvi, “Sensor Cloud: A Cloud
of Virtual Sensors,” IEEE Software, vol. 31, no. 2, pp. 70–77,
2014.

[19] F. C. Delicato, P. F. Pires, L. Pirmez, and L. F. Carmo, “A
Service Approach for Architecting Application Independent
Wireless Sensor Networks,” Cluster Computing, vol. 8, no.
2-3, pp. 211–221, Jul. 2005.

[20] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysan-
this, “TiNA: A Scheme for Temporal Coherency-Aware in-
Network Aggregation,” in Proceedings of the 3rd ACM In-
ternational Workshop on Data Engineering for Wireless and
Mobile Access (MobiDe ’03). ACM, 2003, pp. 69–76.

[21] C. M. D. Farias, W. Li, F. C. Delicato, L. Pirmez, A. Y.
Zomaya, P. F. Pires, and J. N. D. Souza, “A Systematic
Review of Shared Sensor Networks,” ACM Comput. Surv.,
vol. 48, no. 4, pp. 51:1–51:50, Feb. 2016.

[22] E. A. Lee, B. Hartmann, J. Kubiatowicz, T. S. Ros-
ing, J. Wawrzynek, D. Wessel, J. Rabaey, K. Pister,
A. Sangiovanni-Vincentelli, S. A. Seshia, D. Blaauw, P. Dutta,
K. Fu, C. Guestrin, B. Taskar, R. Jafari, D. Jones, V. Kumar,
R. Mangharam, G. J. Pappas, R. M. Murray, and A. Rowe,
“The Swarm at the Edge of the Cloud,” IEEE Design Test,
vol. 31, no. 3, pp. 8–20, June 2014.

[23] D. Hughes, K. Thoelen, W. Horré, N. Matthys, J. D. Cid,
S. Michiels, C. Huygens, and W. Joosen, “LooCI: A Loosely-
coupled Component Infrastructure for Networked Embedded
Systems,” in Proceedings of the 7th International Conference
on Advances in Mobile Computing and Multimedia (MoMM
’09). ACM, 2009, pp. 195–203.

[24] R. Eltarras and M. Eltoweissy, “Adaptive Multi-Criteria
Routing for Shared Sensor-Actuator Networks,” in Global
Telecommunications Conference (GLOBECOM’10), Dec
2010, pp. 1–6.

http://www.libelium.com/smart_santander_parking_smart_city
http://www.sigfox.com
http://www.worldsensing.com/news-press/press-release-worldsensing-and-sigfox-announce-the-worlds-largest-intelligent-parking-deployment-with-micronet-the-sigfox-network-operator-for-russia.html
http://www.worldsensing.com/news-press/press-release-worldsensing-and-sigfox-announce-the-worlds-largest-intelligent-parking-deployment-with-micronet-the-sigfox-network-operator-for-russia.html
http://www.worldsensing.com/news-press/press-release-worldsensing-and-sigfox-announce-the-worlds-largest-intelligent-parking-deployment-with-micronet-the-sigfox-network-operator-for-russia.html
http://www.worldsensing.com/news-press/press-release-worldsensing-and-sigfox-announce-the-worlds-largest-intelligent-parking-deployment-with-micronet-the-sigfox-network-operator-for-russia.html

	Introduction
	Case Study
	Application behavior dimensions
	Service Discovery
	Data Delivery
	Actuating

	Stages of application lifecycle
	Design stage
	Programming stage
	Deployment stage
	Launch stage
	Runtime stage

	Discussion
	Leveraging other approaches
	Admission control
	Network configuration
	Event filtering and processing

	A domain-specific language approach

	Related work
	Conclusion
	References

