
HAL Id: hal-01320388
https://inria.hal.science/hal-01320388v1

Preprint submitted on 23 May 2016 (v1), last revised 17 Jun 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing cardinalities of Q-curve reductions over
finite fields

François Morain, Charlotte Scribot, Benjamin Smith

To cite this version:
François Morain, Charlotte Scribot, Benjamin Smith. Computing cardinalities of Q-curve reductions
over finite fields. 2016. �hal-01320388v1�

https://inria.hal.science/hal-01320388v1
https://hal.archives-ouvertes.fr

Submitted exclusively to the London Mathematical Society
doi:10.1112/0000/000000

Computing cardinalities of Q-curve reductions over finite fields

François Morain, Charlotte Scribot, and Benjamin Smith

Abstract

We present a specialized point-counting algorithm for a class of elliptic curves over Fp2 that
includes reductions of quadratic Q-curves modulo inert primes and, more generally, any elliptic
curve over Fp2 with a low-degree isogeny to its Galois conjugate curve. These curves have
interesting cryptographic applications. Our algorithm is a variant of the Schoof–Elkies–Atkin
(SEA) algorithm, but with a new, lower-degree endomorphism in place of Frobenius. While it
has the same asymptotic asymptotic complexity as SEA, our algorithm is much faster in practice.

1. Introduction

Computing the cardinalities of the groups of rational points on elliptic curves over finite fields
is a fundamental algorithmic challenge in computational number theory, and an essential tool in
elliptic curve cryptography. Over finite fields of large characteristic, the best known algorithm
is the Schoof–Elkies–Atkin (SEA) algorithm [20]. A lot of work has been put into optimizing
the computations for prime fields of large characteristic (see [26] for the most recent record).
Many of these improvements carry over to the case of more general finite fields. In this article
we define a specialized, faster SEA algorithm for a class of elliptic curves over Fp2 that have
useful cryptographic applications. These curves have low-degree inseparable endomorphisms
that can be used to accelerate scalar multiplication in elliptic curve cryptosystems [23, 24];
here, we use those endomorphisms to accelerate point counting. Going beyond cryptography,
this class of curves also includes reductions of quadratic Q-curves modulo inert primes, so our
algorithm may be useful for studying these curves.
Let q be a power of a prime p > 3 (in our applications, q = p2 and p is large). Let

σ(·) : x 7−→ xp

be the Frobenius automorphism on Fq. We extend the action of Frobenius to polynomials over
Fq by acting on coefficients, and thus to curves over Fq by acting on their defining equations:
for example, an elliptic curve E/Fq and its Galois conjugate curve σE/Fq would be defined by

E : y2 = x3 +Ax+B and σE : y2 = x3 +Apx+Bp .

If E/Fq is an elliptic curve, then there is a p-isogeny πp : E → σE defined by πp : (x, y) 7→
(xp, yp). If q = pn, then composing πp,

σπp, . . . ,
σn−1

πp yields the Frobenius endomorphism
πq : (x, y) 7→ (xq, yq) of E . Being an endomorphism, πq has a characteristic polynomial

χπq (T) = T 2 − tET + q

such that χπq (πq) = [0] in End(E); the trace tE satisfies the Hasse bound

|tE | ≤ 2
√
q .

Knowing the cardinality of E(Fq) is equivalent to knowing the trace tE , since

#E(Fq) = χπq (1) = q + 1− tE .

2000 Mathematics Subject Classification 00000.

Page 2 of 15 FRANÇOIS MORAIN, CHARLOTTE SCRIBOT, AND BENJAMIN SMITH

Schoof’s point counting algorithm [18] determines tℓ := tE (mod ℓ) for small primes ℓ 6= p
by examining the action of πq on E [ℓ], the ℓ-torsion subscheme of E : we have

π2
q(P)− [tℓ]πq(P) + [q mod ℓ]P = 0 for P ∈ E [ℓ] .

If we construct a general P as detailed in §2, then finding tℓ boils down to a series of polynomial
operations modulo the ℓ-th division polynomial Ψℓ. Schoof’s algorithm tests these relations
until

∏
ℓ > 4

√
q, and then deduces tE from the tℓ using the Chinese Remainder Theorem

(CRT). To completely determine tE we need to compute tℓ for O(log q) primes ℓ, the largest
of which is in O(log q); fast polynomial evaluations add some more O(log q) factors, and the
final cost is O(log8 q) with classical arithmetic (or O(log6 q) with fast arithmetic). This basic
algorithm was subsequently improved by Atkin and Elkies; the resulting SEA algorithm (see §4)
is now the standard point-counting algorithm for elliptic curves over large characteristic fields.
In this article, we present an algorithm that was designed to compute #E(Fp2) when E is

the reduction of a low-degree quadratic Q-curve modulo an inert prime. In fact, our algorithm
applies to a larger class of curves over finite fields, which we will call admissible curves.
First, recall that every d-isogeny ϑ : E → E ′ has a dual d-isogeny ϑ† : E ′ → E such that ϑ†ϑ =

[d]E and ϑϑ† = [d]E′ . Also, σ acts on isogenies by p-th powering the coefficients of their defining
polynomials; so every isogeny ϑ : E → E ′ has a Galois conjugate isogeny σϑ : σE → σE ′.

Definition 1. Let d be a squarefree integer with p ∤ d. An elliptic curve E/Fp2 is
d-admissible if it is equipped with a d-isogeny

φ : E −→ σE such that σφ = ǫφ† where ǫ = ±1 .

Composing πp : E → σE with σφ : σE → E , we obtain the associated endomorphism

ψ := σφ ◦ πp ∈ End(E)

of degree dp. Note that the requirement p ∤ d implies that both φ and σφ are separable.

We are particularly interested in curves that are d-admissible for small values of d. When
d is extremely small the associated endomorphism can be evaluated very efficiently, and thus
used to accelerate scalar multiplication on E for more efficient implementations of elliptic curve
cryptosystems (as in [23], [10], [3], [24], and [4]). Constructing cryptographically secure curves
equipped with efficient endomorphisms is one major motivation for our algorithm; the other is
the principle that the presence of special structures demands the use of a specialized algorithm.
From a practical point of view, suitable modifications of the SEA algorithm gives us a very

fast probabilistic solution to the point counting problem for admissible curves. The essential
idea is to use SEA with the associated endomorphism ψ in place of πq. While the asymptotic
complexity of our algorithm is the same as for the unmodified SEA algorithm when d is fixed,
there are some important improvements in the big-O constants. Asymptotically, when d is
small, our algorithm runs four times faster than SEA (and even faster for smaller p).
It is not hard to see that of the p2 isomorphism classes of elliptic curves over Fp2 , only O(p)

classes correspond to d-admissible curves for any fixed d. But while d-admissible curves with
small d may be relatively rare, they appear naturally “in the wild” as reductions of quadratic
Q-curves of degree d (elliptic curves over quadratic number fields that are d-isogenous to
their Galois conjugates) modulo inert primes. For some small d, these Q-curves occur in one-
parameter families; so our algorithm allows the reductions of these families modulo suitable
primes to be rapidly searched for cryptographic curves. We explain this further in §9.

COMPUTING CARDINALITIES OF Q-CURVE REDUCTIONS Page 3 of 15

2. Computing with isogenies

We begin by recalling some standard results on isogenies, fixing notation and basic
complexities in the process. A classical reference for all this is [7].
First, let M(n) denote the cost in Fq-operations (multiplications) of multiplying two

polynomials of degree n. Traditional multiplication gives M(n) = O(n2); fast multiplication
gives Õ(n). Dividing a degree-2n polynomial by a degree-n polynomial costs O(M(n)) Fq-
operations; the extended GCD of two degree-n polynomials can be computed in O(M(n) log n)
Fq-operations. The number of roots in Fq of a degree-n polynomial F over Fq is equal to
degGcd(xq − x, F (x)), which we can compute in O((log q)M(n)) Fq-operations if n≪ q (this
is dominated by the cost of computing xq mod F ; see Appendix A).
We will make extensive use of modular composition: if F , G, and H are polynomials

over Fq with degF = n, degG < n, and degH < n, then we can compute (G ◦H) mod F
in O(n1/2

M(n) + n(ω+1)/2) Fq-operations, where 2 ≤ ω ≤ 3 is the constant for linear algebra.
Using the method of [13], the cost in Fq-operations of performing r modular compositions with
the same H and F is

Cr(n) := O(r1/2n1/2
M(n) + r(ω−1)/2n(ω+1)/2) .

We will always work with elliptic curves E/Fq using their Weierstrass models,

E : y2 = fE(x), where fE is a monic cubic over Fq .

For m > 0, the m-th division polynomial Ψm(x) is the polynomial in Fq[x] whose roots are
precisely the x-coordinates of the points in E [m](Fq).
If ℓ is a prime, then the level-ℓ modular polynomial Φℓ(J1, J2) has degree ℓ+ 1 in both J1

and J2, and is defined over Z. If Φℓ(j1, j2) = 0 for some j1 and j2 in Fq, then there is an
Fq-rational ℓ-isogeny between the curves with j-invariants j1 and j2 (possibly after a twist).
In particular, if we fix an elliptic curve E/Fq, then the roots of Φℓ(j(E), x) in Fq correspond to
(the isomorphism classes of) the curves that are ℓ-isogenous to E over Fq.
We will need explicit forms for d-isogenies where d is squarefree and prime to p. Every such

isogeny can be expressed as a composition of at most one 2-isogeny with at most one odd-degree
cyclic isogeny over Fq. If ϑ is a 2-isogeny, then it is defined by a rational map

ϑ : (x, y) 7−→
(
N(x)

D(x)
, y
M(x)

D2(x)

)
(2.1)

where N , M , and D are polynomials over Fq with degN = degM = 2 and D = x− x0 where
x0 is the abscissa of a 2-torsion point. If ϑ is a d-isogeny where d is odd, squarefree, and prime
to p, then ϑ is defined by a rational map

ϑ : (x, y) 7−→
(
N(x)

D2(x)
, y
M(x)

D3(x)

)
(2.2)

where N , M , and D are polynomials over Fq with degN = degM = d and degD = (d− 1)/2.
In both cases, the polynomial D(x) cuts out the kernel of ϑ, in the sense that D(x(P)) = 0 if

and only if P is a nontrivial element of kerϑ; we call D the kernel polynomial of ϑ. We suppose
we have a subroutine KernelPolynomial(ℓ, E , j1) which, given E and j1 = j(E1) such that
there exists an ℓ-isogeny ϑ : E → E1 over Fq, computes the kernel polynomial D of ϑ and the
isogenous curve E1 in O(ℓ2) Fq-operations (using the fast algorithms in [1]).
The algorithms in this article examine the actions of endomorphisms on kerϑ, where ϑ is

either [ℓ] or an ℓ-isogeny, for a series of small primes ℓ. The key is to define a symbolic element
of kerϑ. First, we compute the kernel polynomial D of ϑ (note that D = Ψℓ if ϑ = [ℓ]); then,
we can construct a symbolic point P of kerϑ as

P := (X,Y) ∈ E
(
Fq[X,Y]/(Y 2 − fE(X), D(X))

)
.

Page 4 of 15 FRANÇOIS MORAIN, CHARLOTTE SCRIBOT, AND BENJAMIN SMITH

We reduce the coordinates of points in 〈P 〉 modulo D(X) and Y 2 − fE(X) after each operation,
so elements of 〈P 〉 have a canonical form Q = (Qx(X), Y Qy(X)) with degQx, degQy < degD.
Let e = degD; then we can compute Q1 +Q2 for any Q1 and Q2 in 〈P 〉 in O(M(e) log e) Fq-

operations, using the standard affine Weierstrass addition formulæ. We can therefore compute
[m]Q for anym in Z andQ in 〈P 〉 in O((logm)M(e) log e) Fq-operations, using a binary method.
We let DiscreteLogarithm(Q1, Q2) be a subroutine which returns the discrete logarithm
of Q2 to the base Q1, where both points are in 〈P 〉, in O(

√
eM(e)) Fq-operations (using the

approach in [8]; in some cases we can do better [15]).

Lemma 1. Let P = (X,Y) in E(Fq[X,Y]/(Y 2 − fE(X), D(X))), and let e = degD. Then
for any Q in 〈P 〉, we can

(i) compute πp(P) = (Xp, Y p) in O((log p)M(e)) Fq-operations;
(ii) compute πp(Q), given πp(P), in O((log p)M(e)) Fq-operations;
(iii) compute φ(Q), where φ is a 2-isogeny (as in (2.1)) in O(M(e)) Fq-operations;
(iv) compute φ(Q), where φ is a d-isogeny with d odd, squarefree, and prime to p (as in (2.2))

in O(M(d) + C3(e)) Fq-operations.

Proof. See Appendix A.

3. Atkin, Elkies, and volcanic primes

Given an elliptic curve E/Fq, we split the primes ℓ 6= p into three classes: Elkies, Atkin, and
volcanic. The volcanic primes fall in two sub-classes: floor-volcanic and upper-volcanic. This
classification reflects the structure of the ℓ-isogeny graph near E , which reflects the factorization
of Φℓ(j(E), x). The facts stated below without proof all follow immediately from well-known
observations of Atkin for general ordinary elliptic curves over Fq (cf. [20, Prop. 6.2]).
Recall that the discriminant of χπq is ∆πq := t2E − 4q < 0. We say that ℓ is volcanic if ℓ

divides ∆πq . A volcanic prime ℓ is floor-volcanic if

Φℓ(x, j(E)) = (x− j1)h(x) ,
where h is an Fq-irreducible polynomial of degree ℓ, or upper-volcanic if

Φℓ(x, j(E)) =
ℓ+1∏

i=1

(x− ji)

with each ji in Fq. In each case, the roots ji are the j-invariants of the elliptic curves Ei that
are ℓ-isogenous to E over Fq (up to isomorphism).
We say that ℓ is Elkies if ∆πq is a nonzero square modulo ℓ. Equivalently, ℓ is Elkies if

Φℓ(x, j(E)) = (x− j1)(x − j2)
(ℓ−1)/e∏

i=1

hi(x) ,

where j1 and j2 are in Fq and the hi are Fq-irreducible polynomials, all of the same degree e > 1,
with e | (ℓ − 1). In this case, there exist Fq-rational ℓ-isogenies ϑ1 : E → E1 and ϑ2 : E → E2 such
that j(Ei) = ji, and the ℓ-torsion decomposes as E [ℓ] = kerϑ1 ⊕ kerϑ2.
We say that ℓ is Atkin if ∆πq is not a square modulo ℓ. Equivalently, ℓ is Atkin if

Φℓ(x, j(E)) =
(ℓ+1)/e∏

i=1

hi(x) ,

where the hi are all irreducible polynomials of the same degree e > 1, with e | (ℓ+ 1). Since
Φℓ(x, j(E)) has no roots in Fq, there are no elliptic curves ℓ-isogenous to E over Fq.

COMPUTING CARDINALITIES OF Q-CURVE REDUCTIONS Page 5 of 15

We can determine the class of a prime ℓ by finding out how many roots Φℓ(j(E), x) has in Fq.
We define a subroutine EvaluatedModularPolynomial(ℓ, E), which computes Φℓ(j(E), x)
in O(ℓ3(log ℓ)3 log log ℓ) Fq-operations (under the GRH) using the method of [26]; we can do
better if we may rely on precomputed modular polynomials over Z. The number of roots is the
degree of J = Gcd(xq − x,Φℓ(j(E), x)), which we compute at a further cost of O((log q)M(ℓ))
Fq-operations. We may then want one of these roots, if any exist; we therefore define a
subroutine OneRoot(J) which finds a single root of J . At worst, in the upper-volcanic case,
this requires O((log q)M(deg J) log deg J) = O((log q)M(ℓ) log ℓ) Fq-operations; at best, in the
lower-volcanic and Elkies cases (where J is linear and quadratic, respectively), OneRoot(J)
costs O(1) Fq-operations.

4. The SEA algorithm

Algorithm 1 presents a basic version of the SEA algorithm. The main loop computes tℓ := tE
(mod ℓ) for a series of small primes ℓ; then we recover tE from the tℓ via the CRT.
The complexity of Algorithm 1 (and Algorithm 2 below) depends on the number of non-

Atkin primes less than a given bound. The standard (and näıve) heuristic on prime classes is
to suppose that the number of Atkin and non-Atkin primes ℓ less than B for a given E/Fq
is approximately equal when B ∼ log q, as q →∞. In particular, this means that O(log q)
non-Atkin ℓ suffice to determine tE , and the largest such ℓ is in O(log q). While the standard
heuristic holds on the average, it is known to fail for some E ; Galbraith and Satoh have shown
(under the GRH) that for some E/Fp we may need to use non-Atkin ℓ as large as O(log2+ǫ p)
(see [17, App. A]). We refer the reader to [21] and [22] for further details and discussion.

Proposition 2. If E/Fq is an elliptic curve, then under the standard heuristic on prime

classes, Algorithm 1 computes tE in Õ(log4 q) expected Fq-operations (that is Õ(log5 q)
expected bit operations, using fast arithmetic).

Proof. The main loop computes a set T of pairs (tℓ := tE (mod ℓ), ℓ) with
∏

T ℓ > 4
√
q.

We then recover tE from T via an explicit CRT. Our procedure for computing tℓ depends on
the class of ℓ, which we determine using the method at the end of §3 (Lines 6, 7, and 15).
If ℓ is volcanic (Lines 9 to 14), then ℓ | ∆πq , so tℓ = 0 or tℓ ≡ ±2

√
q (mod ℓ). We distinguish

between the three cases by comparing πq(P) with ±[√q mod ℓ]P for a generic element P of
the kernel of the rational ℓ-isogeny corresponding to one of the roots of Ψℓ(j(E), x).
If ℓ is Elkies (Lines 16 to 20), then E [ℓ] decomposes as a direct sum (kerϑ1)⊕ (kerϑ2) of

ℓ-isogeny kernels; πq acts as multiplication by eigenvalues λ1 and λ2 on kerϑ1 and kerϑ2,
respectively, with λ1λ2 ≡ q (mod ℓ), so tℓ ≡ λ1 + q/λ1 (mod ℓ); and we can determine λ1 by
solving the discrete logarithm problem πq(P) = [λ1]P for a symbolic point P of kerϑ1.
If ℓ is Atkin, then we skip it completely and do not compute tℓ (see the discussion in §7).
In terms of Fq-operations, determining the class of ℓ costs O(ℓ3(log ℓ)3 log log ℓ+ log qM(ℓ));

computing tℓ then costs O((log q + log ℓ)M(ℓ) log ℓ+ ℓ(ω+1)/2) for volcanic ℓ, and O((log p+
ℓ1/2)M(ℓ) + ℓ(ω+1)/2) for Elkies ℓ. The standard heuristic on prime classes tells us that we will
try O(log q) primes ℓ, and that the largest ℓ are in O(log q); so the total cost of the algorithm
is Õ(log4 q), as claimed.

Page 6 of 15 FRANÇOIS MORAIN, CHARLOTTE SCRIBOT, AND BENJAMIN SMITH

Algorithm 1: SEATrace

Input: An elliptic curve E/Fq, where q = pn with p large
Output: The trace of Frobenius of E

1 T ← {} ; // T will contain the pairs (tE (mod ℓ), ℓ)
2 M ← 1 ; // After each iteration, tE is known modulo M
3 ℓ← 1 ;
4 while M ≤ 4

√
q do

5 ℓ← NextPrime(ℓ) ;
6 J ← Gcd(xq − x,EvaluatedModularPolynomial(ℓ, E)) ;
7 if deg J = 1 or ℓ+ 1 then // ℓ is volcanic

8 if q has a square root s modulo ℓ then // s = p for q = p2

9 F ← KernelPolynomial(ℓ, E ,OneRoot(J)) ;
10 P ← (X,Y) in E(Fq[X,Y]/(Y 2 − fE(X), F (X))) ;
11 Q1 ← πp(P) ; Q2 ← πp(Q1) ; Q3 ← [s]P ;

12 tℓ ←





−2s if Q2 = Q3 ;

2s if Q2 = −Q3

0 otherwise ;

;

13 else tℓ ← 0;
14 T ← T ∪ {(tℓ, ℓ)} ; M ← ℓM ;

15 else if deg J = 2 then // ℓ is Elkies

16 F ← KernelPolynomial(ℓ, E ,OneRoot(J)) ;
17 P ← (X,Y) in E(Fq[X,Y]/(Y 2 − fE(X), F (X))) ;
18 Q1 ← πp(P) ; Q2 ← πp(Q1) ;
19 tℓ ← λ+ q/λ (mod ℓ) where λ = DiscreteLogarithm(P,Q2) ;
20 T ← T ∪ {(tℓ, ℓ)} ; M ← ℓM ;

21 return ChineseRemainderTheorem(T) ;

5. Admissible curves

From now on, q = p2.

Recalling Definition 1: let E be a d-admissible curve over Fp2 , with separable d-isogeny
φ : E → σE (satisfying σφ = ǫφ† with ǫ = ±1), and associated endomorphism ψ = σφ ◦ πp.

Proposition 3. The associated and Frobenius endomorphisms of E are related by

ψ2 = [ǫd]πp2 . (5.1)

The characteristic polynomial of ψ is

χψ(T) = T 2 − rdT + dp , (5.2)

where r is an integer satisfying

dr2 = 2p+ ǫtE . (5.3)

In particular,

rψ = p+ ǫπp2 in End(E) . (5.4)

Proof. Equation (5.1) holds because ψ2 = (σφπp)(
σφπp) = (ǫφ†φ)(σπpπp) = [ǫd]πq. The

degree of ψ is dp, so ψ has characteristic polynomial χψ(T) = T 2 − xT + dp for some integer x.

COMPUTING CARDINALITIES OF Q-CURVE REDUCTIONS Page 7 of 15

On the other hand, ǫdπq has characteristic polynomial T 2 − ǫdtET + d2p2; but ψ2 = xψ − dp is
a root, so x = rd where r satisfies (5.3). We then have ǫdr2πq = (ǫπq + p)2 in Z[πq]. Comparing
with (5.1), we find rψ = ±(p+ ǫπq); but then χψ(ψ) = 0 implies (5.4).

Equation (5.3) has a number of interesting corollaries. First, tE ≡ −ǫ2p (mod d), so we obtain
some information on tE for free. Second, r determines tE , and hence #E(Fp2). Third, we have
a much smaller bound on r than on tE : for d-admissible curves the Hasse–Weil bound becomes

|r| ≤ 2
√
p/d . (5.5)

This suggests our point-counting strategy, which is to modify the SEA algorithm to compute
r instead of tE , by considering the action on E [ℓ] of ψ instead of πq and using fewer primes ℓ.
We simplify the task by quickly disposing of the supersingular case, which can be efficiently

detected using Sutherland’s algorithm [25], or slightly faster using a probabilistic algorithm.

Proposition 4. If E/Fp2 is d-admissible, then it is supersingular if and only if r = 0, in
which case tE = −2ǫp and E(Fp2) ∼= (Z/(p+ ǫ)Z)2.

Proof. The curve E is supersingular if and only if p | tE , if and only if p | r (by (5.3) mod p
and p ∤ d), if and only if r = 0 (by (5.5)). The group structure follows from [27, Th. 1.1].

From now on, we will assume E is ordinary; so End(E) is an order in the quadratic
imaginary field Q(πq), and Z[πq] and Z[ψ] are orders contained in End(E). Looking at (5.2),
we see that the discriminants of Z[ψ] and Z[πq] are related by

∆ψ = d(dr2 − 4p) and ∆πq = t2E − 4p2 = r2∆ψ ,

so |r| is the conductor of Z[πq] in Z[ψ]: that is,

Z[πq] ⊂ Z[ψ] ⊆ End(E) with [Z[ψ] : Z[πq]] = |r| .
Indeed, since E is ordinary, we have r 6= 0; so we can rewrite (5.4) as

ψ =
p+ ǫπq

r
in End(E) . (5.6)

Deuring’s theorem on isogeny classes and class groups (cf. [19, §4]) can be used to show that
the number of Fq-isomorphism classes of ordinary d-admissible curves with a given r is H(∆ψ),
where H is the Kronecker class number. In particular, every r in the interval of (5.5) occurs
for some d-admissible E/Fq.
In the language of isogeny volcanoes [6]: if ℓ is a prime dividing r, then E is somewhere

strictly above the floor of the volcano for ℓ; that is, all ℓ | r are upper-volcanic.

6. Computing the cardinality of admissible curves

Let E/Fq be an ordinary d-admissible curve, with associated endomorphism ψ; we want
to compute #E(Fq). Many of the techniques used in the conventional SEA algorithm can be
transposed to working with ψ instead of πq. Equations (5.3) and (5.5) show that tE is completely
determined by |r|, which is bounded by 2

√
p/d; so we can compute tE by computing

rℓ := r (mod ℓ)

for ℓ in a collection of small primes L such that
∏

ℓ∈L

ℓ > 4
√
p/d ,

Page 8 of 15 FRANÇOIS MORAIN, CHARLOTTE SCRIBOT, AND BENJAMIN SMITH

then recovering r from the rℓ using the CRT. As a quick comparison, using SEA with πq to
compute tE directly would require

∏
ℓ∈L ℓ > 4

√
q = 4p.

Proposition 5. If E/Fp2 is d-admissible, then under the standard heuristic on prime

classes, Algorithm 2 computes tE in Õ(log4 p) expected Fq-operations (that is Õ(log5 p)
expected bit operations, using fast arithmetic).

Proof. We compute tE from r, which we recover exactly using the CRT from the pairs (rℓ, ℓ)
in R, since

∏
(rℓ,ℓ)∈R ℓ > 4

√
p/d. Our approach for computing rℓ depends on which class ℓ falls

into; we determine the class of ℓ in Lines 6, 7, and 15 (exactly as in Algorithm 1).
If ℓ is volcanic (Lines 9 to 14), then combining ℓ | ∆πq with (5.3) yields r ≡ 0 or ±2

√
p/d

(mod ℓ); in particular, if ℓ is volcanic and dp is a nonsquare modulo ℓ, then rℓ = 0.
If ℓ is Elkies (Lines 16 to 20), then let E [ℓ] = (kerϑ1)⊕ (kerϑ2) be the decomposition of

the ℓ-torsion into eigenspaces for πq. Since ℓ is not volcanic we have r 6≡ 0 (mod ℓ), so (5.6)
shows that the kerϑi are also eigenspaces for ψ. So let λπ and λψ be the eigenvalues of πq and
ψ on kerϑ1 (say); then (5.6) yields λψ ≡ (p+ ǫλπ)/r (mod ℓ), and then χψ(λψ) ≡ 0 (mod ℓ)

implies rℓ ≡ λψ
d + p

λψ
(mod ℓ). We can therefore compute rℓ by computing λψ, which is the

discrete logarithm of ψ(P) to the base P for a symbolic point P in kerϑ1.
If ℓ is Atkin then we skip it completely, as in Algorithm 1 (but see §7).
In terms of Fq-operations, determining the class of ℓ costs O(ℓ3(log ℓ)3 log log ℓ+ log qM(ℓ)),

while computing rℓ costs O((log p+ log ℓ)M(ℓ) log ℓ+ ℓ(ω+1)/2) if ℓ is volcanic, and O((log p+
ℓ1/2)M(ℓ) + ℓ(ω+1)/2) if ℓ is Elkies. The standard heuristic on prime classes tell us that we will
try O(log p) primes ℓ, the largest of which are in O(log p); so the total complexity is Õ(log4 p)
Fq-operations, as claimed.

Remark 1. Suppose ℓ | d and ℓ 6= 2. Equation (5.3) tells us that tE ≡ 2ǫp (mod ℓ); so
ℓ | ∆πq , and ℓ is volcanic. Moreover, since ∆ψ = d(dr2 − 4p), we can deduce that ℓ || ∆ψ. Note
also that End(E) ∼= End(σE), so the ℓ-isogeny factoring φ is horizontal; this implies that End(E)
is ℓ-maximal. Combined with the above, we see that Z[ψ] is ℓ-maximal in Q(πq). In particular,
if ℓ is upper-volcanic then ℓ | r (and (0, ℓ) can be added to R in Algorithm 2).

7. Complements

Schoof’s original algorithm may be generalized from prime ℓ to small prime powers in a very
simple way. Going further, we may use isogeny cycles to compute eigenspaces of πq and ψ on
E [ℓn] for Elkies ℓ: the methods developed for πq in [5] and [8] generalize to ψ without any
difficulty. Once we have recovered

ψ(P) = [kn]P for P = (X,Y) ∈ E
(
Fq[X,Y]/(Y 2 − fE(X), Fℓn(X))

)
,

we have kn+1 = kn + τℓn for 0 ≤ τ < ℓ, and we need to test

ψ(P)− [kn]P = [τ]([ℓn]P) in E
(
Fq[X,Y]/(Y 2 − fE(X), Fℓn+1(X)

)

(here Fℓn and Fℓn+1 are factors of Ψℓn and Ψℓn+1 that are minimal polynomials for ℓn and
ℓn−1-torsion points).
We may extend Algorithms 1 and 2 to use Atkin primes. If ℓ is Atkin, then πq and ψ have no

rational eigenspaces in E [ℓ]; but we may still compute tℓ and rℓ by working on the full ℓ-torsion,
as in Schoof’s original algorithm. If P is a symbolic point of E [ℓ] then (χπq mod ℓ)(P) = 0, so in

COMPUTING CARDINALITIES OF Q-CURVE REDUCTIONS Page 9 of 15

Algorithm 2: AdmissibleTrace

Input : A d-admissible curve E/Fp2 , where p is large
Output: The trace of Frobenius of E

1 R ← {} ; // R will contain the pairs (r (mod ℓ), ℓ)
2 M ← 1 ; // After each iteration, r is known modulo M
3 ℓ← 1 ;

4 while M ≤ 4
√
p/d do

5 repeat ℓ← NextPrime(ℓ) until ℓ ∤ d;

6 J ← Gcd(xp
2 − x,EvaluatedModularPolynomial(ℓ, E)) ;

7 if deg J = 1 or ℓ+ 1 then // ℓ is volcanic

8 if dp has a square root s modulo ℓ then
9 F ← KernelPolynomial(ℓ, E ,OneRoot(J)) ;

10 P ← (X,Y) ∈ E(Fq[X,Y]/(Y 2 − fE(X), F (X))) ;
11 Q1 ← πp(P) ; Q2 ← σφ(Q1) ; Q3 ← [s]P ;

12 rℓ ←






2s/d (mod ℓ) if Q3 = Q2 ;

−2s/d (mod ℓ) if Q3 = −Q2

0 otherwise ;

;

13 else rℓ ← 0 ;
14 R← R∪ {(rℓ, ℓ)} ; M ← ℓM ;

15 else if deg J = 2 then // ℓ is Elkies

16 F ← KernelPolynomial(ℓ, E ,OneRoot(J)) ;
17 P ← (X,Y) ∈ E(Fq[X,Y]/(Y 2 − fE(X), F (X))) ;
18 Q1 ← πp(P) ; Q2 ← σφ(Q1) ;
19 rℓ ← λ/d+ p/λ (mod ℓ) where λ = DiscreteLogarithm(P,Q2) ;
20 R← R∪ {(rℓ, ℓ)} ; M ← ℓM ;

21 return ǫ(dr2 − 2p) where r = ChineseRemainderTheorem(R) ;

Algorithm 1, tℓ is the discrete logarithm of πq(πq(P)) + [q mod ℓ]P to the base πq(P); similarly,
in Algorithm 2, rℓ is the discrete logarithm of ǫπq(P) + [p mod ℓ](P) to the base ψ(P) (here we
use ψ2 − drψ + [dp] = d(ǫπq − rψ + [p]) = 0 and ℓ ∤ d). The kernel polynomial defining E [ℓ] is
Ψℓ, which we can compute using standard recurrences involving the coefficients of fE (using the
method of [2], for example) in O(M(ℓ2) log ℓ) Fq-operations. But Ψℓ has degree (ℓ2 − 1)/2, so
computing tℓ resp. rℓ costs O((log q)M(ℓ2)) resp. O((log p)M(ℓ2)) Fq-operations; for that cost,
we would gain much more information by using a larger Elkies prime instead. Alternatively,
we can use Atkin’s initial ideas using the splitting degree of Φℓ(X, j(E)) to determine a list of
potential tℓ to be used in a tricky match and sort algorithm, or the more advanced algorithm
of [12]. In our setting, we could use (5.3) to transform the list of tℓ’s to build a list of rℓ’s (on
average, this does not increase the size of the lists too much).
Finally, we mention the use of the baby-step giant-step approach to speed up the final

computations. If P ∈ E(Fq), then χψ(P) = 0 becomes [ǫd+ dp]P = [rd]ψ(P), so [p+ ǫ](Q) =
[r]ψ(Q) with Q = [d]P (if Q = OE , then another P should be used). Suppose we stop the loop
of Algorithm 2 early; then r is known modulo M . Writing r = r0 + sM with |s| ≤ 2

√
p/d/M ,

we can find s by solving [p+ ǫ− r0]Q = [s]([M]ψ(Q)) for a sufficiently general choice of Q in
E(Fq); this is a classical discrete logarithm problem with Fq-points, but in a smaller search space
than the whole of E(Fq). The optimal threshold forM is best determined through experiments.

Page 10 of 15 FRANÇOIS MORAIN, CHARLOTTE SCRIBOT, AND BENJAMIN SMITH

8. Comparison of Algorithms 1 and 2

Let us compare the cost of computing tE with Algorithms 1 and 2 when E is d-admissible. For
simplicity, we will suppose that Algorithm 1 also avoids the primes dividing d (these are very
few and very small, so they do not contribute asymptotically or practically to the comparison).
The first clear difference between the algorithms is the number and size of primes ℓ used:

Algorithm 2 essentially uses the smaller half of the set of primes used by Algorithm 1. The
largest primes in each set still have roughly the same size, O(log p), so asymptotically this makes
no difference—but using half the number of primes, and the smaller half at that, represents an
important improvement in practice.
Now consider the cost of computing tℓ (as in Algorithm 1) or rℓ (as in Algorithm 2) for

the same ℓ. The costs of determining the class of ℓ and the calls to KernelPolynomial are
identical, and the calls to DiscreteLogarithm are equivalent. The only real difference is in
how each algorithm computes the relations used to determine tℓ and rℓ.

– if ℓ is Elkies, then Algorithm 1 uses 2× πp while Algorithm 2 uses 1× πp + 1× σφ.
– if ℓ is volcanic, then (in the worst cases) Algorithm 1 uses 2× πp + 1× [s mod ℓ], while
Algorithm 2 uses 1× πp + 1× σφ+ 1× [s mod ℓ].

In each case, the asymptotic costs are the same; but if d≪ log p, then the costs are dominated
by computations of πp on 〈P 〉 (for the same P). The crucial practical difference is that for each
class of prime, Algorithm 2 exchanges half of the computations of πp required by Algorithm 1
for one computation of σφ, which has a very small cost when d≪ log p. Hence, for any given
prime ℓ, Algorithm 2 should compute rℓ twice as quickly as Algorithm 1 computes tℓ.
By our complexity analysis, we see that the largest ℓ is O(log p) instead of O(log q), and we

use the the smaller half of them, we expect a real speedup of a factor of four. This is confirmed
by our experimental results in §11 below.

9. Q-curves and other sources of admissible curves

Admissible curves appear naturally as reductions of quadratic Q-curves modulo inert primes
(cf. [24, §3]). As such, we can construct parametrized families of admissible curves over any Fp2 .

Definition 2. A quadratic Q-curve of degree d is an elliptic curve Ẽ without complex
multiplication, defined over a quadratic field Q(

√
∆), such that there exists an isogeny of

degree d from Ẽ to its Galois conjugate τ Ẽ , where τ is the conjugation of Q(
√
∆) over Q.

Proposition 6. Let Ẽ/Q(
√
∆) be a quadratic Q-curve of degree d. If p ∤ d is a prime of

good reduction for Ẽ that is inert in Q(
√
∆), then the reduction of Ẽ modulo p is d-admissible.

Proof. González shows that a d-isogeny φ̃ : Ẽ → τ Ẽ must be defined over Q(
√
∆,
√
±d)

(see [9, §3]); so if we extend τ to the involution of Q(
√
∆,
√
±d) that acts trivially on Q(

√
±d)

if and only if
√
±d is in Fp, then φ̃ reduces modulo p to a d-isogeny φ : E → σE over Fp2 , and

τ φ̃ reduces to σφ. Observe that τ φ̃φ̃ is an endomorphism of Ẽ of degree d2. Since Ẽ does not
have complex multiplication, its only endomorphisms of degree d2 are [±d]; hence τ φ̃ = ǫφ̃†

with ǫ = ±1. Reducing modulo p we have σφ = ǫφ†, so E is d-admissible.

We emphasize that if a d-admissible curve E is the reduction of a quadratic Q-curve Ẽ , then
the associated endomorphism on E is not the reduction of any endomorphism on Ẽ . Indeed, Ẽ
has no non-integer endomorphisms by definition.

COMPUTING CARDINALITIES OF Q-CURVE REDUCTIONS Page 11 of 15

Example 1. Fix any prime p > 3; the following construction (carried much further in [23]
and [24]) yields a 1-parameter family of 2-admissible curves over Fp2 . Let ∆ be a squarefree
integer that is not a square modulo p (so p is inert in Q(

√
∆)), let τ be the involution of

Q(
√
∆,
√
−2) that restricts to σ modulo p, and let s be a free parameter taking values in Q.

The family of curves over Q(
√
∆) defined by Ẽ : y2 = x3 − 6(5− 3s

√
∆)x + 8(7− 9s

√
∆) is

equipped with a 2-isogeny φ̃ : Ẽ → τ Ẽ over Q(
√
∆,
√
−2) with kernel polynomial D(x) = x− 4

(see [11, Prop 3.3]). Computing φ̃† and τ φ̃, we find that τ φ̃ = ǫφ̃†, where ǫ = 1 if p ≡ 5, 7
(mod 8) and ǫ = −1 if p ≡ 1, 3 (mod 8). Reducing everything modulo p, as in the proof of
Prop. 6, we obtain a family of curves

E : y2 = x3 − 6(5− 3s
√
∆)x+ 8(7− 9s

√
∆) over Fp2 = Fp(

√
∆)

with the parameter s taking values in Fp, equipped with a 2-isogeny φ : E → σE over Fp2 .
Composing πp with σφ yields the associated endomorphism ψ of E , defined by

ψ : (x, y) 7−→
(
xp(xp − 4) + 18(1− s

√
∆)

−2(xp − 4)
,

yp√
−2p

(
(xp − 4)2 − 18(1− s

√
∆)

−2(xp − 4)2

))
.

Since the definition of admissible curves involves only isogenies over Fp2 , we would expect a
characterization of admissible curves over a given Fp2 in terms of modular polynomials.

Proposition 7. If E is an ordinary elliptic curve over Fq = Fp2 such that j(E) is a simple
root of Φd(x, x

p) in Fq \ {0, 1728} (so in particular, Aut
Fq
(E) = {[±1]}), then E is d-admissible.

Proof. If j(E) is a simple root of Φd(x, x
p) in Fq, then up to Fq-isomorphism there is a

unique d-isogeny φ : E → σE . If φ were not defined over Fq, then the endomorphism σπpφ
would not be defined over Fq, hence not commute with πq, contradicting non-supersingularity.
For d-admissibility, it remains to show that σφ = ǫφ† with ǫ = ±1. But if this were not the case,
then (σφ)† would be a second d-isogeny E → σE , not isomorphic to φ (since Aut

Fq
(E) = {[±1]});

that is, j(E) would be (at least) a double root of Φd(x, x
p).

Example 2. Multiple roots of Φd(x, x
p) may not yield d-admissible curves. Consider

the ordinary curve E : y2 = x3 + (38 + 53i)x+ 27− 3i over Fq = F103(i) where i2 = −1: then
j(E) = 35 + 5i is a double root of Φ3(x, x

103). Indeed, we have a pair of non-isomorphic 3-
isogenies φ1 : E → σE and φ2 : E → σE , with kernel polynomials x+ 1 + 39i and x− 4 + 32i,
respectively; but σφ1 = ±φ2† and σφ2 = ±φ1†, so E is not 3-admissible.

10. Generating cryptographically strong curves

One of the important motivations for developing our algorithm was the generation of
cryptographically strong curves. Indeed, the curves proposed for cryptographic applications
in [23] and [24], and which were subsequently used in fast, compact Diffie–Hellman key
exchange software [3], are admissible. These curves were designed to offer accelerated scalar
multiplication (using the associated endomorphism) over fast finite fields, without obstructing
twist-security; but when generating twist-secure curves at and above the 128-bit security level,
we can expect to try hundreds of thousands of curves before finding a suitable one. In this
context of counting many curves, practical speedups become very important.
For cryptographic applications based on the hardness of the discrete logarithm problem, the

minimum requirement for a “secure” curve E/Fp2 is that #E(Fp2) = c · n, where n is prime and
c is tiny (traditionally, we want c = 1; more modern software using Montgomery and Edwards

Page 12 of 15 FRANÇOIS MORAIN, CHARLOTTE SCRIBOT, AND BENJAMIN SMITH

models requires c = 2 or 4). For some applications we further require “twist-security”: that is,
the quadratic twist E ′ should satisfy #E ′(Fp2) = c′ · n′, where n′ is prime and c′ is tiny.
To find a secure or twist-secure curve over Fp2 we typically fix a prime p of bitlength around

the required security parameter, then test a series of curves over Fp2 , computing their orders
until we find a curve with the right structure. Equation (5.3) implies

#E(Fp2) = (p+ ǫ)2 − ǫdr2 and #E ′(Fp2) = (p− ǫ)2 + ǫdr2 .

This places some immediate constraints on the combinations of d, p, and ǫ that can yield
suitable curves. For example, #E(Fp2) ≡ (p+ ǫ)2 (mod d), so d | #E(Fp2) if and only if p ≡
−ǫ (mod d); such p should be avoided unless we can accept d | c. Similarly, if twist-security
prohibits d | c′ then we should must avoid p ≡ ǫ (mod d). Clearly if E is 2-admissible, then it
must have a rational point of order 2, so we cannot do better than having c = c′ = 2. Similarly,
3-admissible curves must have either 3 | c or 3 | c′.
Extensive computations done for d = 2 and 3 over a range of primes revealed densities of

twist-secure d-admissible curves (modulo the constraints above) similar to the densities of
twist-secure general elliptic curves over the same fields.
With Algorithm 1, we can speed up the search for secure curves by checking whether tℓ ≡

p2 + 1 (mod ℓ) for each ℓ; if so, then ℓ | #E(Fp2), so we can abort the computation and move
on to the next candidate curve [14]. Similarly, if tℓ ≡ −(p2 + 1) (mod ℓ) then ℓ | #E ′(Fp2).
With Algorithm 2, if ℓ divides #E(Fp2) then (p+ ǫ)2 ≡ ǫdr2 (mod ℓ), so ℓ cannot divide

#E(Fp2) unless ǫd is a square mod ℓ; and if ǫd is a square mod ℓ, then we should abort if

rℓ ≡ ±(p+ ǫ)/
√
ǫd (mod ℓ). In fact, if rℓ ≡ 0 and p+ ǫ ≡ 0 (mod ℓ), then the nondegeneracy

of the ℓ-Weil pairing implies that E [ℓ](Fp2) ∼= (Z/ℓZ)2. Replacing ǫ with −ǫ yields analogous
results for the twist E ′.
We note also that there may be an advantage in generating curves using the parameter r and

not tE . We could force some value of ℓ to divide r by rejecting curves E for which Φℓ(X, j(E))
does not have 1 or ℓ+ 1 roots. This has no impact on tE , and we already know r (mod ℓ). We
just need to hope that such curves are as secure as general d-admissible curves.

11. Implementation and experiments

We implemented the new algorithm on top of our implementation of SEA, realized in C++
using NTL 9.6.4 (with gcc 4.9.2). The timings below (in seconds) are for an Intel Xeon platform
(E5520 CPU at 2.27GHz). We define two primes (of 128 and 255 bits), derived from the decimal
expansion of π:

p128 := 314159265358979323846264338327950288459 ,

p255 := 31415926535897932384626433832795028841971693993751058209749445923078164062963 .

First, we compare the straightforward computation of Xq mod Φℓ to a modular composition
over Fp2 with p = p128 and p255, for two choices of ℓ:

p128
ℓ Xp mod Φℓ Xp ◦Xp Xq

101 0.23 0.04 0.47
173 0.43 0.11 0.88

p255
ℓ Xp mod Φℓ Xp ◦Xp Xq

101 0.69 0.07 1.40
173 1.38 0.18 2.80

COMPUTING CARDINALITIES OF Q-CURVE REDUCTIONS Page 13 of 15

Then we ran our program on curves from the family of Example 1, for each 1 ≤ s ≤ 100. This
gave the following average values:

p128
Algorithm 1 Algorithm 2

max. ℓ 164 62
Xq time 9.11 2.62
Total time 20.11 4.1

p255
Algorithm 1 Algorithm 2

max. ℓ 352 160.76
Xq time 89.73 22.55
Total time 171.95 39.16

Finally, we searched for twist-secure curves with small values of the parameter s. For instance,
with p = p128 and s = 113, we get a curve of cardinality 2p′, whose twist has cardinality 6p′′;
with p = p255, taking s = 269 yields a pair of curves each with cardinality two times a prime.

Appendix A. Detailed complexity of basic computations

Let F (X) be a degree e polynomial with coefficients in Fq[X]. We define G and H to be the
polynomials of degree < e such that H ≡ Xp (mod F) and

Y p ≡ Y G(X) with G(X) ≡ f (p−1)/2
E (X) mod F (X) . (A.1)

A.1. Computing Xq mod F

The first step in factoring F is to compute Xq mod F . When q = pn for some prime p, we
may start by computing H and then proceed with modular composition.
If R(X) =

∑e−1
i=0 riX

i with ri ∈ Fq, then
σR(X) =

∑e−1
i=0 r

p
iX

i satisfies Rp mod F = σR ◦
Xp mod F . We assume that the cost of computing all the rpi is negligible (as it is with a
suitable choice of basis for Fq/Fp: if Fp2 = Fp(

√
∆), then (a+ b

√
∆)p = a− b

√
∆ for all a and b

in Fp). For our purposes, the computation of Xp2 computes H(X) and Xp2 = σH ◦H mod F ,
which costs O((log p)M(e) + C(e)) instead of O((log q)M(e)), which is larger provided that
2e ≤ (log p)2. When q = pn with n > 2, similar savings can be obtained.

A.2. Proof of Lemma 1

Let F = D, or any factor of D (as in the extensions of the algorithm mentioned in §7).
For (i), the obvious way is to compute H , then G, in O((log p)M(e)) Fq-operations. Alterna-

tively, we can adapt the methods of [8]: first compute G in O((log p)M(e)) operations. Consider
the polynomial P (W) =W 3 +ApW +Bp − (X3 +AX +B)G(X)2. Then Xp mod F is a root
of both σF (W) and P (W) in Fq[X]/(F (X)), so W −H(X) | g = gcd(P (W), σF (W)). Very
generally, g =W −H(X). The main cost is that of reducing σF (W) modulo P (W), which is
O(eM(e)). This can be reduced to C3(e) or even O((log ℓ)M(e)) if F divides Ψℓ.
For (ii): we can compute πp(Q) = (Qpx, Y

pQpy) = (σQx ◦H mod F, Y G(σQy ◦H) mod F) in

C2(e) Fq-operations. This also applies for computing πq(P) = (Xp2 , Y p
2

) = πp(H,Y G).
For (iv): suppose φ = (N/D,M/D2) with degN = degM = 2 and degD = 1. We compute

N ◦Qx mod F , M ◦Qx mod F , and D ◦Qx mod F followed by some multiplications, keeping
numerators and denominators. We only need a few modular multiplications, for a cost of
O(M(e)).
For (v), we have φ = (N/D2,M/D3) with deg(N) = deg(M) = d, and deg(D) = (d− 1)/2.

First we reduce N ,M , and D modulo F (if necessary), at a cost of O(M(d)). We then compute
N ◦Qx mod F , M ◦Qx mod F , and D ◦Qx mod F followed by some multiplications, keeping
numerators and denominators. The dominating cost is bounded by O(M(d) + C3(e)).

Page 14 of 15 FRANÇOIS MORAIN, CHARLOTTE SCRIBOT, AND BENJAMIN SMITH

References

1. Alin Bostan, François Morain, Bruno Salvy, and Éric Schost. Fast algorithms for computing isogenies
between elliptic curves. Math. Comput., 77(263):1755–1778, 2008.

2. Qi Cheng. Straight-line programs and torsion points on elliptic curves. Comput. Complexity, 12:150–161,
2003.

3. Craig Costello, Hüseyin Hisil, and Benjamin Smith. Faster compact Diffie-Hellman: Endomorphisms on the
x-line. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014
- 33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in Comput. Sci.,
pages 183–200. Springer, 2014.

4. Craig Costello and Patrick Longa. FourQ: Four-dimensional decompositions on a Q-curve over the Mersenne
prime. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 -
21st International Conference on the Theory and Application of Cryptology and Information Security,
Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part I, volume 9452 of Lecture
Notes in Comput. Sci., pages 214–235. Springer, 2015.

5. Jean-Marc Couveignes and François Morain. Schoof’s algorithm and isogeny cycles. In L. Adleman and
M.-D. Huang, editors, Algorithmic Number Theory, volume 877 of Lecture Notes in Comput. Sci., pages
43–58. Springer-Verlag, 1994. 1st Algorithmic Number Theory Symposium - Cornell University, May 6-9,
1994.

6. Mireille Fouquet and François Morain. Isogeny volcanoes and the SEA algorithm. In C. Fieker and D. R.
Kohel, editors, Algorithmic Number Theory, volume 2369 of Lecture Notes in Comput. Sci., pages 276–291.
Springer-Verlag, 2002. 5th International Symposium, ANTS-V, Sydney, Australia, July 2002, Proceedings.

7. Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge University Press,
1999.

8. Pierrick Gaudry and François Morain. Fast algorithms for computing the eigenvalue in the Schoof-Elkies-
Atkin algorithm. In ISSAC ’06: Proceedings of the 2006 international symposium on Symbolic and algebraic
computation, pages 109–115, New York, NY, USA, 2006. ACM Press.

9. Josep González. Isogenies of polyquadratic Q-curves to their Galois conjugates. Archiv der Mathematik,
77:383–390, 2001.

10. Aurore Guillevic and Sorina Ionica. Four-dimensional GLV via the Weil restriction. In Sako and Sarkar
[16], pages 79–96.

11. Yuji Hasegawa. Q-curves over quadratic fields. Manuscripta Math., 94(1):347–364, 1997.
12. Antoine Joux and Reynald Lercier. ”Chinese & Match”, an alternative to Atkin’s ”Match and Sort”

method used in the SEA algorithm. Math. Comp., 70(234):827–836, April 2001.
13. Erich Kaltofen and Victor Shoup. Subquadratic-time factoring of polynomials over finite fields. Math.

Comp., 67(223):1179–1197, 1998.
14. Reynald Lercier. Finding good random elliptic curves for cryptosystems defined over F2n . In W. Fumy,

editor, Advances in Cryptology – EUROCRYPT ’97, volume 1233 of Lecture Notes in Comput. Sci., pages
379–392. Springer-Verlag, 1997.

15. Preda Mihăilescu, François Morain, and Éric Schost. Computing the eigenvalue in the Schoof-Elkies-Atkin
algorithm using Abelian lifts. In ISSAC ’07: Proceedings of the 2007 international symposium on Symbolic
and algebraic computation, pages 285–292, New York, NY, USA, 2007. ACM Press.

16. Kazue Sako and Palash Sarkar, editors. Advances in Cryptology - ASIACRYPT 2013, volume 8269 of
Lecture Notes in Comput. Sci. Springer, 2013.

17. Takakazu Satoh. On p-adic point counting algorithms for elliptic curves over finite fields. In Claus
Fieker and David R. Kohel, editors, Algorithmic Number Theory, 5th International Symposium, ANTS-V,
Sydney, Australia, July 7-12, 2002, Proceedings, volume 2369 of Lecture Notes in Comput. Sci., pages
43–66. Springer, 2002.

18. Rene Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp.,
44:483–494, 1985.

19. Rene Schoof. Nonsingular plane cubic curves over finite fields. J. Combin. Theory Ser. A, 46(2):183–211,
1987.

20. Rene Schoof. Counting points on elliptic curves over finite fields. J. Théor. Nombres Bordeaux, 7:219–254,
1995.

21. Igor E. Shparlinski and Andrew V. Sutherland. On the distribution of Atkin and Elkies primes. Found.
Comput. Math., 14(2):285–297, 2014.

22. Igor E. Shparlinski and Andrew V. Sutherland. On the distribution of Atkin and Elkies primes for
reductions of elliptic curves on average. LMS J. Comput. Math., 18:308–322, 1 2015.

23. Benjamin Smith. Families of fast elliptic curves from Q-curves. In Sako and Sarkar [16], pages 61–78.
24. Benjamin Smith. The Q-curve construction for endomorphism-accelerated elliptic curves. J. Cryptology,

2015.
25. Andrew V. Sutherland. Identifying supersingular elliptic curves. LMS J. Comput. Math., 15:317–325,

2012.
26. Andrew V. Sutherland. On the evaluation of modular polynomials. In ANTS X—Proceedings of the Tenth

Algorithmic Number Theory Symposium, volume 1 of Open Book Ser., pages 531–555. Math. Sci. Publ.,
Berkeley, CA, 2013.

COMPUTING CARDINALITIES OF Q-CURVE REDUCTIONS Page 15 of 15

27. Hui June Zhu. Group structures of elementary supersingular abelian varieties over finite fields. J. Number
Theory, 81:292–309, 2000.

F. Morain
École Polytechnique/LIX
and Centre national de la recherche
scientifique (CNRS)

and Institut national de recherche en
informatique et en automatique (INRIA)

France

morain@lix.polytechnique.fr

C. Scribot
Ministère de l’Éducation Nationale
France

B. Smith
Institut national de recherche en
informatique et en automatique (INRIA)

and École Polytechnique/LIX
and Centre national de la recherche
scientifique (CNRS)

France

smith@lix.polytechnique.fr

