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Abstract. Pairing based cryptography is in a dangerous position follow-
ing the breakthroughs on discrete logarithms computations in finite fields
of small characteristic. Remaining instances are built over finite fields of
large characteristic and their security relies on the fact the embedding
field of the underlying curve is relatively large. How large is debatable.
The aim of our work is to sustain the claim that the combination of
degree 3 embedding and too small finite fields obviously does not provide
enough security. As a computational example, we solve the DLP on a
170-bit MNT curve, by exploiting the pairing embedding to a 508-bit,
degree-3 extension of the base field.

Keywords: Discrete logarithm, finite field, number field sieve, MNT elliptic
curve

1 Introduction

Pairings were introduced as a constructive cryptographic tool in 2000 by Joux [31],
who proposed a one-round three participants key-exchange. Numerous protocols
also based on pairings have been developed since. Beyond efficient broadcast
protocols, prominent applications include Identity-Based Encryption [35,36,13],
or short signatures [14].

The choice of appropriate curves and pairing definitions in the context of
pairing-based cryptography has been the topic of many research articles. An
important invariant is the degree of the embedding field, which measures the
complexity of evaluating pairings, but is also related to the security of systems
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(see Section 2 for more precisions). The first cryptographic setups proposed used
pairings on supersingular curves of embedding degree 2 defined over a prime field
Fp, where p is 512-bit long, so that the pairing embeds into a 1024-bit finite field
Fp2 . Another early curve choice is a supersingular elliptic curve in characteristic
three, defined over F397 , of embedding degree 6 (used e.g. in [14], as well as various
implementation proposals, e.g. [10]). More recent proposals define pairing-friendly
ordinary curves over large characteristic fields, where constraining the embedding
degree to selected values is a desired property [42,16,19,15,25,22,9,23].

Cryptanalysis of pairings can be attempted via two distinct routes. Either
attack the discrete logarithm problem on the curve, or in the embedding field
of the pairing considered. The former approach is rarely successful, given that
it is usually easy to choose curves which are large enough to thwart O(

√
N)

attacks such as parallel collision search or Pollard rho. Note however that derived
problems such as the discrete logarithm with auxiliary inputs are much easier to
handle, as shown by [46].

Attacking pairings via the embedding field is a strategy known as the Menezes–
Okamoto–Vanstone [41] or Frey–Rück [24] attack, depending on which pairing is
considered. Successful cryptanalyses that follow this strategy have been described
in small characteristic. In [29], for a supersingular curve over F397 , the small
characteristic allowed the use of the Function Field Sieve algorithm [1], and
the composite extension degree was also a very useful property. More recently,
following recent breakthroughs for discrete logarithm computation in small
characteristic finite fields [7,27], a successful attack has been reported on a
supersingular curve over F21223 , with degree-4 embedding [27]. The outcome of
these more recent works is that curves in small characteristic are now definitively
avoided for pairing-based cryptography.

As far as we know, there is no major record computation of discrete logarithms
over pairing-friendly curves in large characteristic using a pairing reduction
in the finite field. The pairing-friendly curves used in practice have a large
embedding field of more than 1024 bits, where computing a discrete logarithm
is still very challenging. A few curves in large characteristic have comparatively
small embedding fields, and were identified as weak to this regard, although
no practical computation to date demonstrated the criticality of this weakness.
This includes the so-called MNT curves defined by Miyaji–Nakabayashi–Takano,
e.g. [42, Example 1], an elliptic curve defined over a 170-bit prime p, and of
508-bit embedding field Fp3 .

Despite the academic agreement on the fact that the pairing embedding fields
for 170-bit MNT curves in general, and the one just mentioned in particular, are
too small for cryptographic use, recent work like [2] has shown how cryptography
relying on overly optimistic hardness assumptions can linger almost indefinitely
in the wild. Demonstrating a practical break is key to really phasing out such
outdated cryptographic choices. As far as we know, an MNT curve of low
embedding degree 3 was never used in pairing-based cryptography, but was never
attacked by a pairing reduction either. In this article, we present our attack over
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the weak7 MNT curve [42, Example 1], with p of 170 bits and n = 3. We report a
discrete logarithm computation in the group of points of this curve by a pairing
reduction, using only a moderate amount of computing power.

In order to attack the discrete logarithm problem in the embedding field,
appropriate variants of the Number Field Sieve must be used. The crucial point
is the adequate choice of a polynomial pair defining the Number Field Sieve
setup, among the various choices proposed in the literature [32,40,33,6,8]. It
is also important to arrange for the computation to take advantage of Galois
automorphisms when available, both within sieving and linear algebra. Last, some
care is needed in order to efficiently compute individual logarithms of arbitrary
field elements.

This article is organized as follows. Section 2 reviews some background and
notations for MNT curves on the one hand, and the Number Field Sieve (NFS)
as a general framework on the other hand. Section 3 discusses in more detail the
various possible choices of polynomial selection techniques for NFS. Section 4
discusses the details of the discrete logarithm computation with NFS, while
Section 4.3 defines and solves an arbitrary challenge on the MNT curve.

2 Background and notations

2.1 Using pairing embedding to break DLP

We follow [12, chap. IX]. To fix notations, pairings are defined as follows, the
map being bilinear, non-degenerate and computable in polynomial time in the
size of the inputs.

e :

{
E(Fp)[`]× E(Fpn)[`]→ µ` ⊂ F∗pn

(P,Q) 7→ e(P,Q).
(1)

Here, µ` is the subgroup of `-th roots of unity, i.e. an element u ∈ µ` satisfies
u` = 1 ∈ F∗pn . The integer n is the so-called embedding degree, that is the smallest
integer i for which the `-torsion is contained in Fpi . It has a major impact on
evaluating the difficulty of solving the DLP on the curve.

Let G1 be a generator of E(Fp)[`] and P in the same group, whose discrete
logarithm u is sought (so that P = [u]G1). We choose a generator G2 for E(Fpn)[`].
We observe that

e(P,G2) = e(G1, G2)u

so that u can be recovered as the logarithm of U = e(P,G2) in base T = e(G1, G2),
where both elements belong to the subgroup of order ` of F∗pn . Note that by
construction, ` = O(p), so that the Number Field Sieve linear algebra phase has
to be considered modulo `, which is a priori much smaller than the largest prime
order subgroup of F∗pn , which has size O(pφ(n)).

7 already described as weak in the paper by the authors
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2.2 MNT curves

The Miyaji–Nakabayashi–Takano curves were designed in 2000 in [42] as the first
example of ordinary curves with low embedding degree n = 3, 4, or 6. The curves
were presented as a weak instance of ordinary elliptic curves that should be avoided
in elliptic-curve cryptography because of the Menezes–Okamoto–Vanstone and
Frey–Rück attacks [41,24] that embed the computation of a discrete logarithm
from the group of points of the curve to the embedding field Fpn . At the 80-bit
security level which was used in the 2000’s, an elliptic curve of 160-bit prime
order was considered safe, and of at least the same security as an 1024-bit RSA
modulus. However for MNT curves over prime fields of 160 bits, the MOV and
FR reduction attacks embed to finite fields of size 480, 640, or 960 bits, none
of which should be considered as having a hard enough DLP. For these three
cases and most of all for n = 3, computing a discrete logarithm in the embedding
field is considerably easier than over the elliptic curve. The conclusion of the
MNT paper was to advise developers to systematically check that the embedding
degree of an elliptic curve is large enough, to avoid pairing reduction attacks. The
authors also mentioned as a constructive use of their curves the prequel work of
Kasahara, Ohgishi, and Sakai on identity-based encryption using pairings [35,36].
Some implementations using MNT curves exist, for example the Miracl Library
proposes software on an MNT curve over a 170-bit prime, with embedding degree
n = 6, providing a 80-bit security level.

embedding degree n log2 p (#E(Fp)) n log2 p (#Fpn) 80-bit security

3 170 510 no

4 170 680 no

6 170 1020 yes
Table 1. MNT curves as pairing-friendly curves in the 2000’s

Construction of MNT curves The parameters p, τ , ` (base field, trace, and
number of points) of the curve are given by polynomials of degree at most two.
For n = 3, 4, or 6, these are

embedding degree n p = P (x) τ = Tr(x) #E(Fp) = p+ 1− τ
3 12x2 − 1 ±6x− 1 12x2 ∓ 6x+ 1
4 x2 + x+ 1 −x, or x+ 1 x2 + 2x+ 2 or x2 + 1
6 4x2 + 1 1± 2x x2 ∓ 2x+ 1

To generate a curve, one needs to find an integer y of the appropriate size,
such that p = P (y) is prime and #E(Fp) is also prime, or equal to a small
cofactor times a large prime. To compute the coefficients of the curve equation, a
Pell equation needs to be solved.
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The target curve Our target will be the MNT curve given in [42, Example 1].
We recall that the curve parameters satisfy

y = −0x732c8cf5f983038060466

p = 12y2 − 1 = 0x26dccacc5041939206cf2b7dec50950e3c9fa4827af of 170 bits
τ = 6y − 1 where τ is the trace of the curve

#E(Fp) = p+ 1− τ = 72 · 313 · ` where ` is a 156-bit prime
` = 0xa60fd646ad409b3312c3b23ba64e082ad7b354d

The pairing embeds into the prime order ` subgroup of the cyclotomic subgroup
of Fp3 , where ` divides p2 + p+ 1.

2.3 A brief overview of NFS-DL

Our target field is Fpn . NFS-DL starts by selecting two irreducible integer
polynomials f and g such that ϕ = gcd(f mod p, g mod p) is irreducible of degree
n (construction of f and g is discussed in Section 3). We use the representation
Fpn = Fp[x]/(ϕ(x)). Let Kf = Q[x]/(f(x)) = Q(α), and Of be its ring of integers.
Note that because f is not necessarily monic, α might not be an algebraic
integer. Let ρf be the map from Kf to Fpn , sending α to T mod (p, ϕ(T )). We
define likewise Kg = Q(β), together with Og and ρg. This installs the (typical)
commutative diagram in Figure 1.

Z[x]

Kf Kg

Fpn = Fp[x]/(ϕ(x))

ρf ρg

Fig. 1. NFS-DL diagram for Fpn

Given f and g, we choose a smoothness bound B and build factor bases
Ff (resp. Fg) consisting of prime ideals in Of (resp. Og) of norm less than B,
to which we add prime ideals dividing lc(f) (resp. lc(g)) to take into account
the fact that α and β are not algebraic integers. Then, we collect relations,
that is polynomials φ(x) ∈ Z[x] such that both ideals 〈φ(α)〉 and 〈φ(β)〉 are
smooth, namely factor completely over Ff (resp. Fg). Smoothness is related to
Norm(φ(α)), and in turn to Res(f, φ) since we have

± lc(f)deg(φ) Norm(φ(α)) = Res(f, φ).
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When φ is such that the integers Res(f, φ) and Res(g, φ) are B-smooth (only
prime factors below B), we have a relation:{

φ(α)Of =
∏

q∈Ff
qvalq(φ(α)),

φ(β)Og =
∏

r∈Fg
rvalr(φ(β))

that are transformed as linear relation between virtual logarithms of ideals [52], to
which are added the so-called Schirokauer maps [51], labelled λf,i for 1 ≤ i ≤ rf
where rf is the unit rank of Kf (and the same for g).

To overcome the problem of dealing with fractional ideals instead of integral
ideals, we use the following result from [43] (see also [20]).

Proposition 1. Let f(X) =
∑d
i=0 ciX

i with coprime integer coefficients and α
a root of f . Let

Jf = 〈cd, cdα+ cd−1, cdα
2 + cd−1α+ cd−2, . . . , cdα

d−1 + cd−1α
d−2 + · · ·+ c1〉.

Then 〈1, α〉Jf = (1), Jf has norm |cd|, and Jf 〈a − bα〉 is an integral ideal for
integers a and b.

If φ(X) has degree k − 1, we have Norm(Jk−1f 〈φ(α)〉) = ±Res(f, φ), so that

we can read off the factorization of the integral Jk−1f 〈φ(α)〉 directly from the
factorization of its norm. A relation can now be written as:

(k − 1) vlog(Jf ) +
∑
q∈Ff

valq(φ(α)) vlog(q) +

rf∑
i=1

λf,i(φ(α)) vlog(λf,i)

≡ (k − 1) vlog(Jg) +
∑
r∈Fg

valr(φ(β)) vlog(r) +

rg∑
i=1

λg,i(φ(β)) vlog(λg,i) mod `.

We select as many φ(x) of degree at most k − 1 (for k ≥ 2 and very often
k = 2) as needed to find #Ff + #Fg + rf + rg + 2 relations. Note that Jf and
Jg are not always prime ideals. Nevertheless since all their prime divisors have a
grouped contribution for each relation, we may count them as single columns. We
may even replace the two columns by one, corresponding to vlog(Jf )− vlog(Jg)
(e.g. this is done in cado-nfs).

Given sufficiently many equations, the linear system in the virtual logarithms
can be solved using sparse linear algebra techniques such as the Block Wiedemann
algorithm [18]. When we want to compute the logarithm of a given target, we
need to rewrite some power (or some multiple) of the target as a multiplicative
combination of the images in Fpn of the factor base ideals, and use the precom-
puted data base of computed logarithms. Section 4 will briefly discusses algebraic
factorization in practice.
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3 Polynomial Selection

The polynomial selection is the first step of the NFS algorithm. Polynomial
selection is rather cheap, but care is needed since the quality of the polynomial
pair it outputs conditions the running time of the three next steps. Section 3.1
below explains the two phases of polynomial selection. In a nutshell, we first
decide from which family the polynomials are chosen, and then we search among
possible solutions for “exceptionally good” polynomials. Note that because all
degree n irreducible polynomials correspond to isomorphic finite fields Fpn , we
are not constrained in the choice of Res(f, g). This degree of freedom allows to
select good polynomials.

As of 2016, the available polynomial selection algorithms are:

– the Conjugation method (Conj) [6, §. 3.3], explained in Algorithm 1;
– the Generalized Joux–Lercier method (GJL) [6, §. 3.2] and [40] that produces

polynomials of unbalanced coefficient sizes;
– the Joux–Lercier–Smart–Vercauteren method (JLSV1) [32, §. 2.3], that pro-

duces two polynomials of degree n and coefficient size in O(
√
p) for both

polynomials;
– the second proposition (JLSV2) of the same paper [32, §. 3.2];
– the Joux–Pierrot (JP) method for pairing-friendly curves [33] which produces

polynomials equivalent to the Conjugation method for MNT curves;
– the Tower-NFS method (TNFS) of Barbulescu, Gaudry and Kleinjung [8];
– the Sarkar–Singh method that combines and generalizes the GJL and Conju-

gation methods [49].

Remark 1 (Non-applicable methods.). The Extended-TNFS method of Kim and
Kim-Barbulescu and its numerous variants [37,38,50,47,48,30] do not apply to
finite fields of prime extension degree n such as Fp3 . The TNFS method is not
better than the best above methods for our practical case study, as shown in the
paper [8, §5]. The Sarkar–Singh method [49] has two parameters (d, r): d is a
divisor of n and r ≥ n/d. Since n is prime, the pair (d = 1, r ≥ n) corresponds to
the GJL method and the pair (d = n, r = 1) to the Conjugation method. The pair
(d = n, r = 2) produces a polynomial f of degree 9 and small coefficients, and a
polynomial g of degree 6 and coefficients in O(p1/3). This is not competitive for
our size of parameters n = 3 and p of 170 bits: the cross-over point between the
Conjugation (r = 1) and their method (r = 2) is at log2 p

3 = 9592 bits.

Algorithm 1 presents the Conjugation method, which eventually provided the
best yield. Pseudo-code describing the other methods can be found in Appendix A.

3.1 A First Comparison

The various methods above yield polynomial pairs whose characteristics differ
significantly. Table 2 gives the expected degrees and coefficient sizes. From this
data, we can derive bounds on the resultants on both sides of a relation (either

using the coarse bound (deg f + deg φ)!‖f‖∞deg φ‖φ‖∞deg f , or finer bounds such
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Algorithm 1: Polynomial selection with the Conjugation method [6, §3.3]

Input: p prime and n integer
Output: f, g, ψ with f, g ∈ Z[x] irreducible and ψ = gcd(f mod p, g mod p) in

Fp[x] irreducible of degree n
1 repeat
2 Select g1(x), g0(x), two polynomials with small integer coefficients,

deg g1 < deg g0 = n
3 Select a(y) a quadratic, monic, irreducible polynomial over Z with small

coefficients

4 until a(y) has a root y in Fp and ψ(x) = g0(x) + yg1(x) is irreducible in Fp[x]
5 f ← Resy(a(y), g0(x) + yg1(x))
6 (u, v)← a rational reconstruction of y
7 g ← vg0 + ug1
8 return (f, g, ψ)

as [11, Th. 7], as used in [8, §. 3.2]). These norms should be minimized in order
to obtain the best running-time for the NFS algorithm. We obtain the plot of
Figure 2 for the bit-size of the product of norms, similar to [6, Fig. 3].

method deg f ‖f‖∞ deg g ‖g‖∞
GJL D + 1 ≥ n+ 1 O(log p) D ≥ n O(Q1/(D+1))

JP or Conj 2n O(log p) n O(Q1/(2n))

JLSV1 n O(Q1/(2n)) n O(Q1/(2n))

JLSV2 D ≥ n+ 1 O(Q1/(D+1)) n O(Q1/(D+1))
Table 2. Norm bound w.r.t. Q

Figure 2 suggests that the GJL method yields the smallest norms for log2Q =
508. The norms produced with the Conjugation and JLSV1 methods are not very
far however so we compared more precisely these three methods for our 170-bit
parameters. This entails finding competitive polynomial pairs for each method,
and comparing their merits. Estimated bounds as well as experimental values for
the products of norms for log2Q = 508 are reported in Table 3. Results of sieving
on one slide of special-q is reported in Table 4. The algorithms and computed
polynomials are given in Appendix A. The theoretical bound ‖f‖∞ equals one
bit in the Conjugation and GJL methods whereas in practice to improve the
smoothness properties of f , we have chosen a polynomial with moderately larger
coefficients, and with better α and Murphy’s E values (see [44, §5.2 eq. (5.7)]
on Murphy’s E value). The coefficient size of g selected with the GJL, Conj
and JLSV1methods is a few bits larger than the theoretical bound because we
computed linear combinations of two distinct g, and of f and the initial g in
the JLSV1 case (since they are of same degree). The advantage of the hybrid
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JP, Conj, (deg f,deg g) = (6, 3)

GJL, (deg f,deg g) = (4, 3)

JLSV1, (deg f,deg g) = (3, 3)

JLSV2, (deg f,deg g) = (4, 3)

Fig. 2. Norm bound for four polynomial selection methods for Fp3

Joux–Pierrot method (Algorithm 2) in the MNT case is that g can be monic,
which does not allow for linear combinations.

method ‖f‖∞ ‖g‖∞ Norm bound f Norm bound g product

bound exp. bound exp. bound exp. bound exp. bound exp.

GJL 1 2 127 130 106 107 206 208 311 314

Conj 1 9 85 86 157 165 163 164 320 328

hybrid JP 1 12 85 85 157 168 163 164 320 331

JLSV1 85 85 85 86 163 163 163 164 326 327

JLSV2 102 – 102 – 206 – 180 – 386 –
Table 3. Norm bounds in bits for logQ = 508 and logE = 25.25: estimates based on
Table 2, compared to experimental values with our selected polynomials.

Galois actions. For small extension degrees n ∈ {3, 4, 6} there exist families of
polynomials producing number fields with cyclic Galois groups, and an easy-to-
compute automorphism [21, Prop. 1.2]. Taking polynomials from these families
yields a speed-up in the sieving part as well as in the linear algebra part for the
JLSV1 and Conjugation methods. We take g = x3 − y0x2 − (y0 + 3)x− 1 for the
Conjugation method, i.e. g0 = x3 − 3x − 1 and g1 = −x2 − x in Algorithm 1.
The Galois action is σ(x) = (−x− 1)/x which is independent of the parameter
y0. In that case, given the factorization for 〈a− bα〉, we can deduce that of

σ(〈a− bα〉) = 〈a− bσ(α)〉 = − 1

α
(b− (−a− b)α).

The same holds on the f side.

Forming a database of good polynomials f . For the Conjugation method
(and similarly for the competing methods), the early steps in Algorithm 1 can be
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tabulated in some way, depending only on the extension degree n (and for JLSV1,
also on the size of p, but not its value): we can store a database of f ’s with good
smoothness properties (low α and high Murphy’s E values). Actually we searched
over a(y) = a2y

2 + a1y + a0, where 0 < a2 < 32, |a1| < 32 and |a0| < 512, and
computed f = Resy(a(y), x3 − yx2 − (y + 3)x − 1). Later, depending on p, we
can continue Algorithm 1 for these precomputed polynomials (test whether a
has a root modulo p).

Note also that in Algorithm 1, the rational reconstruction step naturally
produces several quotients u/v, which yield several candidate polynomials g.
Small linear combinations of these polynomials can be tried, in order to improve
on the Murphy’s E value.

3.2 Probing the sieving yield

To finalize the comparison between the polynomials, we compared the relation
yield for small special-q ranges sampled over the complete special-q space. Because
the JLSV1 and Conjugation methods feature balanced norms (see Tab. 3), we
used similar large prime bounds (27 bits) on both sides in both cases, and allowed
two large prime on each side. In contrast, for the GJL method, we allowed
28-bit large primes on the g side, and chose q to be only on that side. The
Conjugation method (polynomial below) appeared as the best option based on
the seconds/relation measure, given that the overall yield was sufficient. Results
of this test are reported on Table 4.

f = 28x6 + 16x5 − 261x4 − 322x3 + 79x2 + 152x+ 28

α(f) = −2.94
log2 ‖f‖∞= 8.33
g = 24757815186639197370442122 x3 + 40806897040253680471775183 x2

−33466548519663911639551183x− 24757815186639197370442122

α(g) = −4.16
log2 ‖g‖∞= 85.08, the optimal being 1

2 log2 p = 85
E(f, g) = 1.31 · 10−12

(2)

Method seconds/relation relations/special-q remarks

Generalized
Joux–Lercier

3.48 4.96 0+3 large primes below 228

JLSV1 1.31 4.24 2+2 large primes below 227, orbits
of three special-q batched togetherConjugation 0.91 5.93

Table 4. Probed yield for special-q ranges. Cpu time on Intel Xeon E5520 (2.27GHz).
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4 Solving DLP over Fp3

4.1 Sieving and linear algebra

We took a smoothness bound of 50 × 106 on both sides; and all special-q in
[50× 106, 227], on both sides. This took roughly 660 core-days, normalized on the
most common hardware used, namely 4-core Intel Xeon E5520 CPUs (2.27GHz).
We collected 57070251 relations, out of which 34740801 were non duplicate.
Filtering produced a 1982791×1982784 matrix M with weight 396558692. Taking
into account the block of 7 Schirokauer maps S, the matrix M‖S is square.

We computed 8 sequences in the Block Wiedemann algorithm, using the trick
mentioned in [18, §8], as programmed in cado-nfs (rediscovered and further ana-
lyzed in [34]). All these sequences can be computed independently. Computation
time for the 8 Krylov sequence was about 250 core-days (Xeon E5-2650, 2.4GHz,
using four 16-core nodes per sequence). Finding the linear (matrix) generator for
the matrices took 75 core-hours, parallelized over 64 cores. Building the solution
cost some more 170 core-days. We reconstructed virtual logarithms for 15196345
out of the 15206761 factor base elements (99.9%). This was good enough to start
looking for individual logarithms.

4.2 Computing individual discrete logarithms in Fp3

From the linear algebra step, we know how to compute the logarithm modulo `
of any element of Fp3 whose lift in either Kf or Kg factors completely over the
factor base. Lifting in Kf is often convenient because norms are smaller.

The tiny case. A particular element which lifts conveniently in Kf is the common
root t of both polynomials. By construction, its lift α ∈ Kf generates a principal
(fractional) ideal that factors as J−1f (see Proposition 1) times prime ideals of

norm dividing 28, namely: (α) = I22,0I
−2
2,∞I7,0I

−1
7,∞, where I22,∞I7,∞ corresponds to

Jf and the prime ideals in the right-hand side can be made explicit. Its logarithm
therefore writes as 8

log(t) = 2 vlog I2,0 − 2 vlog I2,∞ + vlog I7,0 − vlog I7,∞ +

5∑
i=1

λf,i(α) vlog(λf,i).

λf,1(α) = 0x3720106a3d368d7f731a0757b905778050ae327, λf,2(α) = 0x1dbeace7d0ec187712ae8afcd6ccdc4db06f781,

λf,3(α) = 0x9c3109f7741d625869f135706be03fc09375450, λf,4(α) = 0x1e46653b287d99c502a5c6e12ab17a3dd10988c,

λf,5(α) = 0x31628f3e0b491e622946b32f66292c1389a7427.

By construction the value log(t) above is invertible modulo `, and we can freely
normalize our virtual logarithm values so that it is equal to one.

8 The convention in cado-nfs is to take coefficients of largest degree first in the
Schirokauer maps computation z 7→ 1

`
(z`

m−1 − 1) where m = lcml prime, l|`[l : `].
Here we have m = 1.
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The tame case. Elements whose lifts do not factor completely over any of the
factor base but have only moderate-size outstanding factors can be dealt with
using a classical descent procedure. This finds recursively new relations involving
smaller and smaller primes, until all primes involved belong to the factor base.
Software achieving this exists, such as the las_descent program in cado-nfs.

The general case. For computing individual logarithms of arbitrary elements, we
used the boot technique described in [28]. For each target, we compute a preimage
in Z[x] represented by a polynomial of degree at most 5 and coefficients bounded
by p1/3. The norm in Kf of the preimage is O(p2) = O(Q2/3), of approximately
340 bits. The asymptotic complexity of this step is LQ[1/3, 1.26], and would
be LQ[1/3, 1.132] with one early-abort test (see e.g. [45, §4.3] or [3, Ch. 4]).
The optimal size of largest prime factors in the decomposition is given by the
formula LQ[2/3, (e2/3)1/3 ≈ 0.529], where e = 2/3 (see [17, §4]). Applying it for
log2Q = 508 gives a bound of 68 bits and a running-time of approximately 242

tests. In practice we found very easily initial splittings where B1 is less than 64
bits, which eased the descent.

4.3 Solving the challenge

Our main use case for individual logarithm computation in Fp3 is to solve a
DLP challenge on the curve. The challenge definition procedure (described in
the appendix9, the Magma code is also available10) gives:

G1 = (0x106b415d7b4a2d71659ae97440cbb20a6de42d76d69, 0x16d74a2a88e817f1821a1c40e220d34eec93e33cb83),

P = (0x15052ba45717710e6b0cbf8ed89c5c1a0a279480e26, 0x8050f05a231ae1f13e56de1171c108294656052339)

From Section 2.1, we need to compute log(GT ) and log(S), where GT =
e(G1, G2) and S = e(P,G2) are given in the Magma verification script10. We
searched for randomized values GrT and Gr

′

T S which were amenable to the descent
procedure. After 32 core-hours looking in the range r ∈ [1, 64000], we selected
the following element

G52154
T = −0x21d517d51512e9− 0x95233b3af1b3c7x+ 0x8d324ebc7849bbx2

+ 0x18ff0d5ae0b52bx3 + 0x13f711fe92d63cdx4 − 0x15c778630d36920x5

whose straightforward lift in Kf has 59-bit smooth norm (resultant with f , more
precisely):

0x87ac1a057df9772d1e08d4de56b3e6b5f208710437b5f92ac4a494c318c9781107e00364934e34efa87b26597771c

= 22 · 5 · 72 · 31 · 193 · 277 · 1787 · 12917 · 125789 · 142301513 · 380646221 · 2256567883

·132643203397 · 138019432565816569 · 603094914193031251 · 801060739300538627

9 §B.1 and §B.2 of the pre-proceedings version available at https://hal.inria.fr/

hal-01320496
10 http://www.lix.polytechnique.fr/~guillevic/discrete-log/

SAC2016-mnt170-verification-script.mag
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Virtual logarithms for primes below 50 · 106 (25.57 bits) were known. The descent
procedure took 13.4 hours. Once all logarithms were computed, the value of
log(GT ) could be deduced:

log(GT ) = 0x8c58b66f0d8b2e99a1c0530b2649ec0c76501c3 (normalized to log t = 1).

Similarly, we selected

G35313
T S 7→ 0x457449569db669 + 0x88c32ec54242fdx− 0x2370c0f5914ba9x2

+ 0x14c7ccbafc20e2x3 + 0xde2e21c5f1a4c4x4 − 0x10b6bfd826db49cx5

whose lift in Kf has norm

−0x44dafd6ec57c91e64567fa045187100da9a98c5c509b388cb61759f345b3ce27226a5e8520be0bd4559acbd538b90

= −24 · 52 · 7 · 643 · 1483 · 2693 · 95617 · 9573331 · 33281579 · 1608560119 · 48867401441

·516931716361 · 896237937459937 · 16606283628226811 · 19530910835315983

the largest factor having 54 bits, a very small size indeed (compared to the 68 bits
predicted by theory). The descent procedure for other primes took 10.7 hours.
We found that

log(S) = 0x48a6bcf57cacca997658c98a0c196c25116a0aa (normalized to log t = 1).

We eventually found that

logG1
(P ) = 0x711d13ed75e05cc2ab2c9ec2c910a98288ec038 mod `.

5 Conclusion and future work

5.1 Consequences for pairing-based cryptography

Our work showed that the choice of embedding degree n and finite field size log pn

should be done carefully. The size of Fpn should be large enough to provide the
desired level of security. We recall these sizes for Fp3 . The recent improvements
of Kim and Kim–Barbulescu [37,38] do not apply to Fpn where n is prime, so
Fp3 is not affected. The asymptotic complexity of the NFS algorithm for Fp3
is exp

(
(c+ o(1))(log pn)1/3(log log pn)2/3

)
= Lp3 [1/3, (64/9)1/3]. Since there is a

polynomial factor hidden in the notation c+ o(1), taking log2 Lp3 [1/3, (64/9)1/3]
does not give the exact security level but only an approximation. We may compare
our present record with previous records of same size for prime fields Fp and
quadratic fields Fp2 . Kleinjung in 2007 announced a record computation in a
prime field Fp of 530 bits (160 decimal digits) [39]. Barbulescu, Gaudry, Guillevic
and Morain in 2014 announced a record computation in Fp2 of 529 bits (160
decimal digits) [4]. We compare the timings in Table 5. The timings of relation
collection and linear algebra were not balanced in Kleinjung record: 3.3 years
compared to 14 years and moreover, this is a quite old record so it is not really
possible to compare our record with this one directly. We can compare our record
with the 529-bit Fp2 record computation of 2014 [4]. Our total running-time is
15.5 times longer whereas the finite field is 21 bit smaller.
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record relation collection linear algebra individual log total

Kleinjung [39] 3.3 CPU-years 14 years few hours
530-bit field 3.2 GHz Xeon64 3.2 GHz Xeon64 3.2 GHz Xeon64 17.3 years
Fp, 2007

BGGM [4] 68 core-days=0.19y 30.3 hours few hours 70 days
529-bit field 2.0 GHz E5-2650 NVidia GTX 680 2.0 GHz E5-2650 = 0.2 year
Fp2 , 2014 graphic card

BGGM [5] 850 core-days 5500 core-days few days
512-bit field = 2.33 years = 15 years 17.3 years
Fp3 , 2015 2.4 GHz Xeon E5-2650

this work 660 core-days 423 days 2 days 1085 days
508-bit field =1.81 years = 1.16 years = 2.97 years
Fp3 , 2016 2.27GHz 4-core 2.4 GHz 2.27GHz 4-core

Xeon E5520 Xeon E5-2650 Xeon E5520
Table 5. Comparison of running-time for Discrete Logarithm records in Fp, Fp2 and
Fp3 of 530, 529, 512 and 508 bits.

5.2 Future work

We have computed a DLP on an MNT curve with embedding degree 3. What are
the next candidates? We could continue the series in two directions: increasing
the size of pn to 600 bits, in order to compare this new record to the previous
records of the same size, in particular the Fp2 record of 600 bits [6]. We could
conjecture, according to the present record and the size of the norms, that a DLP
record in Fp3 of 600 bits will be more than 15 times harder than in a 600-bit
field Fp2 .

The second direction would be to continue the series of MNT curves, with
n = 4. We found an MNT curve of embedding degree 4 in Miracl (file k4mnt.ecs).
The curve was generated by Drew Sutherland for Mike Scott a long time ago.

y = 0xf19192168b16c1315d33

p = y2 + y + 1 = 0xe3f367d542c82027f33dc5f3245769e676a5755d

` = 0x6b455e0a014f1e30eaef7300bd4bb4258290fc5

τ = y + 1 = 0xf19192168b16c1315d34

#E(Fp) = y2 + 1 = p+ 1− τ = 2 · 17 · `

Since n is a prime power, we have to adapt the Kim–Barbulescu technique
(dedicated to non-prime power n) to prime-power extension degrees11. We con-
struct Fp4 as Fp2 [x]/(ϕ(x)), where Fp2 = Fp[s]/(h1(s)) and both h1 and ϕ are of
degree 2, and ϕ has coefficients in Fp2 . As a consequence, the polynomials f and

11 right after the submission, several variants of Kim’s Extended TNFS where proposed,
that deal with any composite n, in particular prime power n, and generalize the
Sarkar–Singh method [50,47,48,30].
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g will have coefficients in Z[s]/(h1(s)) instead of Z. For example, one could take

h1(s) = s2 + 2,
h2(x, t0, s) = x2 + s+ t0,

P (t0) = t20 + t0 + 1,
f = Rest0(P (t0), h2(x, t0, s)) = x4 + (2s− 1)x2 − s− 1,
g = h2(x, y, s) = x2 + s+ 0xf19192168b16c1315d33.

The major difference is that to be efficient, we have to sieve polynomials of degree 1
with coefficients in Z[s]/(h1(s)), that is elements of the form (a0+a1s)+(b0+b1s)x
where the ai’s and bi’s are small rational integers, say |ai|, |bi| ≤ A. For instance,
taking log2(E) = 1.1(logQ)1/3(log logQ)2/3 ≈ 28, we obtain A = E2/(2 deg h) of
14 bits. The upper bound on the norm would be of 120 bits on f -side and 219
bits on g-side, the total being roughly of 339 bits. This is 11 bits more than our
present record for the 508-bit n = 3 MNT curve (328 bits, Table 3), but by far
much less than with any previous technique applied to that Fp4 . Norm estimates
are provided in Table 6. From a practical point of view, we would need extensions
of the work [26].

Table 6. Norm bound estimates for Fp4 of 640 bits.

method ‖f‖∞ ‖g‖∞ NBf NBg NBf +NBg

Extended TNFS+hybrid JP 1 80 120 219 339

GJL 1 128 144 243 387

JLSV1 80 80 195 195 390

Sarkar-Singh, d = 2, r = 2 1 107 172 222 394

Hybrid JP–Conj 1 80 159 240 399

JLSV2, D = 6 (D best choice) 91 91 264 206 470

Acknowledgements. The authors are grateful to Pierrick Gaudry for his help in
running the computations.
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Generalized Joux–Lercier method. The first step of the GJL polynomial selection
algorithm is to choose a polynomial f of degree 4 in our context. We need f to
factor as a linear polynomial times a degree 3 polynomial modulo p, hence we
cannot allow for a degree two subfield, or any of the Galois groups C4, V4 or
D4. We extracted from the Magma number field database the list of irreducible
polynomials of degree 4 and Galois group A4 (of order 12), class number one and
signature (0, 2) (592 polynomials) and (4, 0) (3101 polynomials).

In the GJL method, the LLL algorithm outputs four polynomials g1, g2, g3
and g4 with small coefficients. To obtain the smallest possible coefficients, we
set the LLL parameters to δ = 0.99999 and η = 0.50001. We compute linear
combinations g =

∑4
i=1 λigi with |λi|‖gi‖∞ ≤ 25 · min1≤i≤4 ‖gi‖∞ (roughly

speaking, |λi| ≤ 32) so that the size of the coefficients of g do not increase too
much, while we can obtain a polynomial g with a better Murphy’s E value.

Then we run the GJL method with our modified post-LLL step for each
polynomial f in our database and we selected the pair with the highest Murphy’s
E value. We obtained

f = x4 − 2x3 + 2x2 + 4x+ 2
α(f) = 1.2
log2 ‖f‖∞ = 2
g = 133714102332614336563681181193704960555 x3 + 173818706907699496668994559342802299969 x2

+ 878019651910536420352249995702628405053 x− 185403948115503498471378323785210605885

α(g) = −2.1
log2 ‖g‖∞ = 129.37, the optimal being 3

4 log2 p = 127.5
E(f, g) = 5.08 · 10−13

Joux-Lercier-Smart-Vercauteren method. The Joux-Lercier-Smart-Vercauteren
method (JLSV1) is possibly the most straighforward polynomial selection method
adapted to non-prime finite fields. It is possible to force this method to pick
polynomials f within a specific family, in order to force nice Galois properties.
For example, we may use the form ψ = x3 − tx2 − (t+ 3)x− 1.

The enumeration was the largest for the JLSV1 method: we searched over 225

polynomials f in the cyclic family x3 − t0x2 − (t0 + 3)x− 1, with a parameter
t0 of 84 up to 85 bits. We kept the polynomials whose α value was less than
−3.0. We continued the JLSV1 polynomial selection algorithm selectively for
these good precomputed polynomials. The “initial” g (say g0) produced by the
method can be improved by using instead any linear combination g = λf + µg0
for small λ and µ, thereby improving the Murphy’s E value. We set |λ|, |µ| ≤ 25.

f = x3 − 30145663100857939296343446 x2 − 30145663100857939296343449 x− 1
α(f) = −3.0
log2 ‖f‖∞= 84.64
g = 30145663100857939299699540 x3 + 46845274144495980578316407 x2

−43591715158077837320782213 x− 30145663100857939299699540

α(g) = −2.8
log2 ‖g‖∞= 85.28, the optimal being 1

2 log2 p = 85
E(f, g) = 1.02 · 10−12

(3)
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Conjugation and Joux–Pierrot methods. The Joux-Pierrot method produces
polynomials with the same degree and coefficient properties as the Conjugation
method for MNT curves and that are moreover monic. The polynomials con-
structed with the Conjugation method allow a factor two speed-up thanks to
a Galois automorphism. We propose here a hybrid variant in Algorithm 2 for
pairing-friendly curves. The conjugation method, in Algorithm 1, is the one which
eventually produced the best polynomial pair.

For the Conjugation method as well as the hybrid method of Algorithm 2,
and similarly to the JLSV1 method, it is possible to choose polynomials g of the
form ψ = x3 − tx2 − (t+ 3)x− 1 to allow a Galois automorphism of degree 3.

Algorithm 2: Variant of Joux–Pierrot and Conjugation methods

Input: p prime, p = P (y) where degP ≥ 2 and P of tiny coefficients, n integer
Output: f, g ∈ Z[x] irreducible and ψ = gcd(f mod p, g mod p) in Fp[x]

irreducible of degree n
1 repeat
2 Select g1(x), g0(x), two polynomials with small integer coefficients,

deg g1 < deg g0 = n
3 Select small integers a, b, c, d

4 ψ(x) = g0(x) +

(
a+ by

c+ dy
mod p

)
g1(x)

5 f ← ResY (P (Y ), (c+ dY )g0(x) + (a+ bY )g1(x))
6 g ← (c+ dy)g0(x) + (a+ by)g1(x) // g ≡ (c+ dy)ψ(x) mod p

7 until ψ(x) is irreducible in Fp[x] and f , g are irreducible in Z[x]
8 return (f, g, ψ)

In practice, in Algorithm 2 one might prefer to constrain d = 0, so that g has
small leading coefficient c. Going further and requiring c = 1 so that g is monic
reduces however too much the possibilities to find a good pair of polynomials.

The following example has been obtained with Algorithm 2, searching over
all (a+ by)/c with |a|, |b|, |c| ≤ 256.

y = −8702303353090049898316902 is the targeted MNT curve parameter
f = 108x6 + 1116x5 + 3347x4 + 2194x3 − 613x2 − 468x+ 108
g = 6x3 + 34809213412360199593267639 x2 + 34809213412360199593267621 x− 6

= 6x3 − (4y − 31)x2 − (4y − 13)x− 6
ϕ = 1

6g mod p = x3 + 151460167298404651346258165094598961506004769966481 x2

+151460167298404651346258165094598961506004769966478 x− 1
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