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Abstract

We consider adversarial multi-armed bandit
problems where the learner is allowed to ob-
serve losses of a number of arms beside the arm
that it actually chose. We study the case where
all non-chosen arms reveal their loss with an
unknown probability rt, independently of each
other and the action of the learner. Moreover,
we allow rt to change in every round t, which
rules out the possibility of estimating rt by a
well-concentrated sample average. We propose
an algorithm which operates under the assump-
tion that rt is large enough to warrant at least one
side observation with high probability. We show
that after T rounds in a bandit problem with N
arms, the expected regret of our algorithm is

of order O
(√∑T

t=1(1/rt) logN
)

, given that
rt ≥ log T/(2N − 2) for all t. All our bounds
are within logarithmic factors of the best achiev-
able performance of any algorithm that is even
allowed to know exact values of rt.

1 INTRODUCTION

In sequential learning, a learner is repeatedly asked to
choose an action for which it obtains a loss and receives
a feedback from the environment (Cesa-Bianchi and Lu-
gosi, 2006). We typically study two feedback settings: the
learner either observes the losses for all the potential ac-
tions (full information) or it observes only the loss of the
action it chose. This latter feedback scheme is known as
the bandit setting (cf. Auer et al., 2002a). In this paper,
instead of considering these two limit cases, we study a
more refined feedback model, known as bandit with side
observations (Mannor and Shamir, 2011; Alon et al., 2013;
Kocák et al., 2014, 2016), that generalizes both of them.
Typical examples for learning with full information and
bandit feedback are sequential trading on a stock market

(where all stock prices are fully observable after each trad-
ing period), and electronic advertising (where the learner
can only observe the clicks on actually shown ads), re-
spectively. However, advertising in a social network of-
fers a more intricate user feedback than captured by the
basic bandit model: when proposing an item to a user in
a social network, the advertiser can often learn about the
preferences of the user’s connections as well. Naturally,
the advertiser would want to improve its recommendation
strategy by incorporating these side observations.

Besides advertising and recommender systems, side obser-
vations can also arise in sensor networks, where the action
of the learner amounts to probing a particular sensor. In
this setting, each sensor can reveal readings of some other
sensors that are in its range. When our goal is to sequen-
tially select a sensor maximizing a property of interest, a
good learning strategy should be able to leverage these side
readings.

In this paper, we follow the formalism of Mannor and
Shamir (2011) who model side observations with a graph
structure over the actions: two actions mutually reveal their
losses if they are connected by an edge in the graph in ques-
tion. In a realistic scenario this graph is time dependent and
unknown to the learner (e.g., the advertiser or the algorithm
scheduling sensor readings). All previous algorithms for
the studied setting (Mannor and Shamir, 2011; Alon et al.,
2013; Kocák et al., 2014, 2016) require the environment to
reveal a substantial part of a graph, at least after the side
observations have been revealed. Specifically, these algo-
rithms require the knowledge of the second neighborhood
(the set of neighbors of the neighbors) of the chosen ac-
tion in order to update their internal loss estimates. On the
other hand, they are able to handle arbitrary graph struc-
tures, potentially chosen by an adversary and prove perfor-
mance guarantees using graph properties based on cliques
or independence sets.

The main contribution of our work is a learning algorithm
that, unlike previous solutions, does not require the knowl-
edge of the exact graph underlying the observations, be-
yond knowing from which nodes the side observations



came from. Relaxing this assumption, however, has to
come with a price: As the very recent results of Cohen et al.
(2016) show, achieving nontrivial advantages from side
observations may be impossible without perfectly known
side-observation graphs when an adversary is allowed to
pick both the losses and the side-observation graphs. On
the positive side, Cohen et al. offer efficient algorithms
achieving strong improvements over the standard regret
guarantees under the assumption that the losses are gen-
erated in an i.i.d. fashion and the graphs may be gener-
ated adversarially. Complementing these results, we con-
sider the case of adversarial losses and make the assump-
tion that the side-observation graph in round t is gener-
ated from an Erdős–Rényi model with an unknown and
time-dependent parameter rt. The main challenge for the
learner is then the necessity to exploit the side observa-
tions despite not knowing the sequence (rt). It is easy to
see that this model can be equivalently understood as each
non-chosen arm revealing its loss with probability rt, in-
dependently of all other observations. That said, we still
find it useful to think of the side observations as being
generated from an Erdős–Rényi model, as it allows di-
rect comparisons with the related literature. In particu-
lar, the case of learning with Erdős–Rényi side-observation
graphs was considered before by Alon et al. (2013): Given
full access to the underlying graph structure, their algo-
rithm Exp3-SET can be shown to guarantee a regret bound
of O

(√∑
t(1/rt)(1− (1− rt)N ) logN

)
. While the as-

sumption of having full access to the graph be dropped rel-
atively easily in this particular case, exact knowledge of rt
seems to be crucial for constructing reliable loss estimates
and use them to guide the choice of action in each round.

It turns out that the problem of estimating rt while striv-
ing to perform efficiently is in fact a major difficulty in our
setting. Indeed, as we allow rt to change arbitrarily be-
tween each round, we cannot rely on any past observations
to construct well-concentrated estimates of these parame-
ters. That is, the main challenge is estimating rt from only
a handful of samples. The core technical tool underlying
our approach is a direct estimation procedure for the losses
that does not estimate rt explicitly.

Armed with this estimation procedure, we propose a learn-
ing algorithm called Exp3-Res that guarantees a regret of
O(
√∑

t(1/rt) logN), provided that rt ≥ log T/(2N−2)
holds for all rounds t. This assumption essentially corre-
sponds to requiring that, with high probability, at least 1
side observation is produced in every round, or, in other
words, the side-observation graphs encountered are all non-
empty. Notice that for the assumed range of rt’s, our regret
bound improves upon the standard regret bound of Exp3,
which is of O(

√
NT logN). It is easy to see that when rt

becomes smaller than 1/N , side observations become un-
reliable and the bound of Exp3 cannot be improved. That
is, if our assumption cannot be verified a priori, then ignor-

ing all side observations and using the Exp3 algorithm of
Auer et al. (2002a) instead can yield a better performance.
On the other hand, given that our assumption holds, our
bounds cannot be significantly improved as suggested by
the lower-bound of Ω(

√
T/r) proved for a static r by Alon

et al. 2013.

Many other partial-information settings have been studied
in previous work. One of the simplest of these settings
is the label-efficient prediction game considered by Cesa-
Bianchi et al. (2005), where the learner can observe either
losses of all the actions or none of them, not even the loss
of the chosen action. This observation can be queried by
the learner at most an ε < 1 fraction of the total number of
rounds, which means no losses are observed in the remain-
ing rounds. An even more restricted information setting,
label efficient bandit feedback was considered by Allen-
berg et al. (2006), where the learner can only query the loss
of the chosen action, instead of all losses (see also Audibert
and Bubeck, 2010). Algorithms for these two settings have
regret of Õ(

√
T/ε) and Õ(

√
NT/ε), respectively. While

these bounds may appear very similar to ours, notice that
our setting offers a more intricate (and, for some problems,
more realistic) feedback scheme, which also turns out to be
much more challenging to exploit. In another related set-
ting, Seldin et al. (2014) consider M side observations that
the learner can proactively choose in each round without
limitations. Seldin et al. deliver an algorithm with regret
of Õ(

√
(N/M)T ), also proving that choosing M observa-

tions uniformly at random is minimax optimal; given this
sampling scheme, it is not even necessary to observe the
loss of the chosen action. Their result is comparable to
ours and the result by Alon et al. (2013) for Erdős–Rényi
observation graphs with parameter r = M/N . However,
Seldin et al. also assume that M is known, which obviates
the need for estimating r. We provide a more technical dis-
cussion on the related work in Section 6.

In our paper, we assume that, just like the observation prob-
abilities, the losses are adversarial, that is, they can change
at each time step without restrictions. Learning with side
observations and stochastic losses was studied by Caron
et al. (2012) and Buccapatnam et al. (2014). While this
is an easier setting that the adversarial one, the authors as-
sumed, in both cases, that the graphs have to be known
in advance. Recently, Carpentier and Valko (2016) stud-
ied another stochastic setting where the graph is also not
known in advance, however their setting considers differ-
ent feedback and loss structure (influence maximization)
which differs from the side-observation setting.

Furthermore, Alon et al. (2015) considered a strictly more
difficult setting than ours, where the loss of the chosen ac-
tion may not be a part of the received feedback.



2 PROBLEM DEFINITION

We now formalize our learning problem. We consider a
sequential interaction scheme between a learner and an en-
vironment, where the following steps are repeated in every
round t = 1, 2, . . . , T :

1. The environment chooses rt ∈ [0, 1] and a loss func-
tion over the arms, with `t,i being the loss associated

with arm i ∈ [N ]
def= {1, 2, . . . , N} at time t.

2. Based on its previous observations (and possibly some
randomness), the learner draws an arm It ∈ [N ].

3. The learner suffers loss `t,It .

4. For all i 6= It, Ot,i is independently drawn from
a Bernoulli distribution with mean rt. Furthermore,
Ot,It is set as 1.

5. For all i ∈ [N ] such thatOt,i = 1, the learner observes
the loss `t,i.

The goal of the learner is to minimize its total expected
losses, or, equivalently, to minimize the total expected re-
gret (or, in short, regret) defined as

RT = max
i∈[N ]

E

[
T∑
t=1

(`t,It − `t,i)

]
.

We will denote the interaction history between the learner
and the environment up to the beginning of round t
by Ft−1. We also define pt,i = P [It = i| Ft−1].

The main challenge in our setting is leveraging side obser-
vations without knowing rt. Had we had access to the exact
value of rt, we would be able to define the following esti-
mate of `t,i:

̂̀∗
t,i =

Ot,i`t,i
pt,i + (1− pt,i)rt

(1)

It is easy to see that the loss estimates defined this way
are unbiased in the sense that E

[ ̂̀
t,i

∣∣∣Ft−1] = `t,i for
all t and i. It is also straightforward to show that an ap-
propriately tuned instance of the Exp3 algorithm of Auer
et al. (2002a) fed with these loss estimates is guaranteed to
achieve a regret of O(

√∑
t(1/rt) logN) (see also Seldin

et al. 2014).

Then, one might consider a simple algorithm that devotes
a number of observations to obtain an estimate r̂t of rt and
plug this estimate into (1). However, notice that since rt is
allowed to change arbitrarily over time, we can only work
with a severely limited sample budget for estimating rt:
only N − 1 independent observations! Thus, we can ob-
tain only very loose confidence intervals around rt which

translate to even more useless confidence intervals around̂̀∗
t,i.

Below, we describe a simple trick for obtaining loss esti-
mates that have similar properties to the ones defined in (1)
without requiring exact knowledge or even explicit estima-
tion of rt. Our procedure is based on the geometric resam-
pling method of Neu and Bartók (2013). To get an intuition
of the method, let us assume that we have access to the in-
dependent geometrically distributed random variable G∗t,i
with parameter ot,i = pt,i + (1 − pt,i)rt. Then, replac-
ing 1/ot,i by G∗t,i in the definition of ̂̀∗t and ensuring that
G∗t,i is independent of Ot,i, we can obtain an unbiased loss
estimate essentially equivalent to ̂̀∗t .

The challenge posed by this approach is that in our set-
ting, we do not have exact sample access to the geometric
random variable G∗t,i. In the next section, we describe our
algorithm that is based on replacing G∗t,i in the above defi-
nition by an appropriate surrogate.

3 ALGORITHM

Our algorithm is called Exp3-Res and displayed as Algo-
rithm 1. It is based on the Exp3 algorithm of Auer et al.
(2002a) and crucially relies on the construction of a surro-
gate Gt,i of G∗t,i. Throughout this section, we will assume
that rt ≥ log T

2N−2 , which implies that the probability of hav-
ing no side observations in round t is of order 1/

√
T .

The algorithm is initialized by setting w1,i = 1/N for all
i ∈ [N ], and then performing the updates

wt+1,i =
1

N
exp

(
−ηt+1L̂t,i

)
(2)

after each round t, where ηt+1 > 0 is a parameter of the
algorithm called the learning rate in round t and L̂t,i is cu-
mulative sum of the loss estimates ̂̀s,i up to (and including)
time t. In round t, the learner draws its action It such that
It = i holds with probability pt,i ∝ wt,i. To simplify some
of the notation below, we introduce the shorthand notations
Pt [·] = P [ ·| Ft−1] and Et [·] = E [ ·| Ft−1].

For any fixed t, i, we now describe an efficiently com-
putable surrogateGt,i for the geometrically distributed ran-
dom variable G∗t,i with parameter ot,i that will be used for
constructing our loss estimates. In particular, our strategy
will be to construct several independent copies

{
O′t,i(k)

}
of Ot,i and choosing Gt,i as the index k of the first copy
with O′t,i(k) = 1. It is easy to see that with infinitely many
copies, we could exactly recover G∗t,i; our actual surrogate
is going to be weaker thanks to the smaller sample size. For
clarity of notation, we will omit most explicit references to
t and i, with the understanding that all calculations need to
be independently executed for all pairs t, i.

Let us now describe our mechanism for constructing the



copies {O′(k)}. Since we need independence of Gt,i and
Ot,i for our estimates, we use only side observations from
actions [N ] \ {It, i}. First, let’s define σ as a uniform ran-
dom permutation of [N ] \ {It, i}. For all k ∈ [N − 2],
we define R(k) = Ot,σ(k). Note that due to the construc-
tion, {R(k)}N−2k=1 are pairwise independent Bernoulli ran-
dom variables with parameter rt, independent of Ot,i. Fur-
thermore, knowing pt,i we can define P (1), . . . , P (N−2)
as pairwise independent Bernoulli random variables with
parameter pt,i. Using P (k) and R(k) we define the ran-
dom variable O′(k) as

O′(k) = P (k) + (1− P (k))R(k)

for all k ∈ [N − 2]. Using independence of all previously
defined random variables, it is easy to check that the vari-
ables {O′(k)}N−2k=1 are pairwise independent Bernoulli ran-
dom variables with expectation ot,i = pt,i + (1 − pt,i)rt.
Now we are ready to define Gt,i as

Gt,i = min {k ∈ [N − 2] : O(k)′ = 1} ∪ {N − 1} . (3)

The following lemma states some properties of Gt,i.

Lemma 1. For any value of g we have

E [Gt,i] =
1

ot,i
− 1

ot,i
(1− ot,i)N−1

E
[
G2
t,i

]
=

2− ot,i
o2t,i

+
1

o2t,i
(1− ot,i)N−2×

×
(
o2t,i + ot,i − 2 + 2ot,i(N − 2)(ot,i − 1)

)
Proof. The proof follows directly from using the definition
of Gt,i and simplifying the sums

E [Gt,i] =

N−2∑
k=1

[
kot,i(1− ot,i)k−1

]
+

+ (N − 1) (1− ot,i)N−2,

E
[
G2
t,i

]
=

N−2∑
k=1

[
k2ot,i(1− ot,i)k−1

]
+

+ (N − 1)
2

(1− ot,i)N−2.

Using Lemma 1, it is easy to see that Gt,i follows a trun-
cated geometric law in the sense that

P [Gt,i = m] = P
[
min

{
G∗t,i, N − 1

}
= m

]
holds for all m ∈ [N − 1]. Using all this notation, we
construct an estimate of `t,i as

̂̀
t,i = Gt,iOt,i`t,i. (4)

The rationale underlying this definition of Gt,i is rather

Algorithm 1 Exp3-Res

1: Input:
2: Set of actions [N ].
3: Initialization:
4: L̂0,i ← 0 for i ∈ [N ].
5: Run:
6: for t = 1 to T do

7: ηt ←
√

logN
/(

N2 +
∑t−1
s=1

∑N
i=1 ps,i(

̂̀
s,i)2

)
.

8: wt,i ← (1/N) exp(−ηtL̂t−1,i) for i ∈ [N ].
9: Wt ←

∑N
i=1 wt,i.

10: pt,i ← wt,i/Wt.
11: Choose It ∼ pt = (pt,1, . . . , pt,N ).
12: Receive the observation set Ot.
13: Receive the pairs {i, `t,i} for all i s.t. Ot,i = 1.
14: Compute Gt,i for all i ∈ [N ] using (3).
15: ̂̀

t,i ← `t,iOt,iGt,i for all i ∈ [N ].
16: L̂t,i = L̂t−1,i + ̂̀t,i for all i ∈ [N ].
17: end for

delicate. First, note that pt,i is deterministic given the his-
tory Ft−1 and therefore, does not depend on Ot,i. Second,
Ot,i is also independent of Ot,j for j 6∈ {i, It}. As a result,
Gt,i is independent of Ot,i, and we can use the identity
Et [Gt,iOt,i] = Et [Gt,i]Et [Ot,i]. The next lemma relates
the loss estimates (4) to the true losses, relying on the ob-
servations above and the assumption rt ≥ log T

2N−2 .

Lemma 2. Assume rt ≥ log T
2N−2 . Then, for all t and i,

0 ≤ `t,i − Et
[̂̀
t,i

]
≤ 1√

T
.

Proof. Fix an arbitrary t and i. Using Lemma 1 along with
Et [Ot,i] = ot,i and the independence of Gt,i and Ot,i, we
get

Et
[̂̀
t,i

]
= Et [Gt,iOt,i`t,i] = `t,i − `t,i(1− ot,i)N−1,

which immediately implies the lower bound on `t,i −
Et
[̂̀
t,i

]
. For proving the upper bound, observe that

`t,i(1− ot,i)N−1 ≤ (1− rt)N−1 ≤ e−rt(N−1) ≤
1√
T

holds by our assumption on rt, where we used the elemen-
tary inequality 1− x ≤ ex that holds for all x ∈ R.

The next theorem states our main result concerning
Exp3-Res with an adaptive learning rate.

Theorem 1. Assume that rt ≥ log T
2N−2 holds for all t and

set

ηt =

√
logN

N2 +
∑t−1
s=1

∑N
i=1 ps,i(

̂̀
s,i)2

.



Then, the expected regret of Exp3-Res satisfies

RT ≤ 2

√√√√(N2 +

T∑
t=1

1

rt

)
logN +

√
T .

4 PROOF OF THEOREM 1

In this section, we present details of the proof of Theorem 1
but first, we state an auxiliary lemma.

Lemma 3 (Lemma 3.5 of Auer et al., 2002b). Let b1, b2,
. . . , bT be non-negative real numbers. Then

T∑
t=1

bt√∑t
s=1 bt

≤ 2

√∑T
t=1 bt.

Proof. The proof is based on the inequality x/2 ≤ 1 −√
1− x for x ≤ 1. Setting x = bt/

∑t
s=1 bs and multiply-

ing both sides of the inequality by
√∑t

s=1 bs we get

bt√∑t
s=1 bt

≤
√∑t

s=1 bs −
√∑t

s=1 bs − bt.

The proof is concluded by summing over t.

The first part of the analysis follows the proof of Lemma 1
by Györfi and Ottucsák (2007). Defining W ′t =
1
N

∑N
i=1 e

−ηt−1L̂t−1,i , we get

1

ηt
log

W ′t+1

Wt
=

1

ηt
log

N∑
i=1

1
N e
−ηtL̂t−1,ie−ηt

̂̀
t,i

Wt

=
1

ηt
log

N∑
i=1

pt,ie
−ηt ̂̀t,i

≤ 1

ηt
log

N∑
i=1

pt,i

(
1− ηt ̂̀t,i + (ηt ̂̀t,i)2) (5)

=
1

ηt
log

(
1− ηt

N∑
i=1

pt,i ̂̀t,i + η2t

N∑
i=1

pt,i(̂̀t,i)2) ,
where in (5), we used the inequality exp(−x) ≤ 1−x+x2

that holds for x ≥ −1. Further, we used the inequality
log(1 − x) ≤ −x, which holds for all x ≤ 1, to upper
bound last term.

Using ηt+1 ≤ ηt and Jensen’s inequality, we get

Wt+1 =

N∑
i=1

1

N
e−ηt+1L̂t,i =

N∑
i=1

1

N

(
e−ηtL̂t,i

) ηt+1
ηt

≤

(
N∑
i=1

1

N
e−ηtL̂t,i

) ηt+1
ηt

= (W ′t+1)
ηt+1
ηt ,

which, together with the last inequality, gives us

N∑
i=1

pt,i ̂̀t,i ≤ ηt
2

N∑
i=1

pt,i

(̂̀
t,i

)2
+

[
logWt

ηt
− logWt+1

ηt+1

]

for every t ∈ [T ]. Taking expectations and summing over
time, we get

E

[
T∑
t=1

N∑
i=1

pt,i ̂̀t,i] ≤ E

[
T∑
t=1

ηt
2

N∑
i=1

pt,i

(̂̀
t,i

)2]

+ E

[
T∑
t=1

(
logWt

ηt
− logWt+1

ηt+1

)]
.

The goal of the second part of the analysis is to construct
bounds for each of the three expectations in the previous
inequality. For the term on the left-hand side, we use
Lemma 2 to get the lower-bound

E

[
T∑
t=1

N∑
i=1

pt,i ̂̀t,i] ≥ T∑
t=1

N∑
i=1

pt,i`t,i +
√
T .

Note that is the only step in the analysis where the actual
magnitude (and not just the sign) of the bias of the loss esti-
mates shows up. Anything bigger than

√
T would degrade

our final regret bound.

We are left with bounding the two terms on the right-hand
side. To simplify some notation below, let us define bt =∑N
i=1 pt,i(

̂̀
t,i)

2. By our definition of ηt and the help of
Lemma 3, we can bound the first term on the right hand
side as

E

[
T∑
t=1

ηtbt
2

]
= E

 T∑
t=1

bt
√

logN

2
√
N2 +

∑t−1
s=1 bs


≤ E

[√(
N2 +

∑T
t=1 bt

)
logN

]

≤
√(

N2 +
∑T
t=1 E [bt]

)
logN,

where we also used the fact that N2 ≥ bt and Jensen’s
inequality in the last line. We continue by bounding E [bt]:

Et

[
N∑
i=1

pt,i(̂̀t,i)2] =

N∑
i=1

pt,i`
2
t,iEt

[
Ot,iG

2
t,i

]
≤

N∑
i=1

pt,iot,i
2− ot,i
o2t,i

≤ 2

rt
,

(6)

where we used ot,i ≥ rt together with the second part of
Lemma 1 which gives us



Et
[
G2
t,i

]
=

2− ot,i
o2t,i

+
1

o2t,i
(1− ot,i)N−2×

×
(
o2t,i + ot,i − 2 + 2ot,i(N − 2)(o− 1)

)
≤ 2− ot,i

o2t,i
,

since both o2t,i + ot,i − 2 and 2ot,i(N − 2)(o− 1) are non-
positive. Thus, we obtain

E

[
T∑
t=1

ηtbt
2

]
≤

√√√√( T∑
t=1

1

rt
+N2

)
logN. (7)

Finally, using W1 = 1, the sum in the last expectation tele-
scopes to

E

[
T∑
t=1

(
logWt

ηt
− logWt+1

ηt+1

)]
= E

[
− logWT+1

ηT+1

]
.

Using the definition of Wt, we get that

E
[
− logWT+1

ηT+1

]
≤ E

[
− logwT+1,j

ηT+1

]
≤ E

[
logN

ηT+1

]
+ E

[
L̂T,j

]
holds for any arm j ∈ [N ]. Now note that the first term can
be bounded by using the defintion of ηT+1 with the help
of (6) and Jensen’s inequality. Using Et

[̂̀
t,i

]
≤ `t,i from

Lemma 2 and combining everything together, we obtain the
regret bound

RT = E

[
T∑
t=1

pt,i`t,i

]
− min
j∈[N ]

E

[∑
t∈Tk

`t,j

]

≤ 2

√√√√(N2 +

T∑
t=1

1

rt

)
logN +

√
T .

5 EXPERIMENTS

In this section, we study the empirical performance of
Exp3-Res compared to three other algorithms:

• Exp3 – a basic adversarial multi-armed bandit algo-
rithm which uses only loss observations of chosen
arms and discards all side observations.

• Oracle – full-information algorithm with access to
losses of every action in every time step, regardless
of the value of rt. Our particular choice is Hedge
(Littlestone and Warmuth, 1994; Freund and Schapire,
1997).

• Exp3-R – a variant of the Exp3-Res algorithm with
access to the sequence (rt)

T
t , using (1) to construct

unbiased loss estimate instead of using geometric re-
sampling.

The most interesting parameter of our experiment is the se-
quence (rt), since it controls amount of side observation
presented to the learner. In order to show that Exp3-Res
can effectively make use of the additional information pro-
vided by the environment, we designed several sequences
(rt) with different amounts of side observation provided to
the learner. In the case of small rt-s, the problem is al-
most as difficult as the multi-armed bandit problem. On
the other hand, in the case of large rt-s, the problem is al-
most as easy as the full-information problem. Therefore,
we expect that the performance of Exp3-Res will interpo-
late between the performance of the Exp3-R and Oracle
algorithms depending on the values of the rt-s. In the next
section, we validate this claim empirically.

5.1 EXPERIMENT DETAILS

To ensure sufficient challenge for the algorithms, we have
generated a sequence of losses as a random walk for each
arm with independent increments uniformly distributed on
[−0.1, 0.1] while enforcing the random walks to stay within
[0, 1] by setting the value of a random walk to 0 or 1, re-
spectively, if the random walk gets outside the boundaries.
The loss sequence is fixed through all of the experiments
to demonstrate the impact of the sequence (rt)

T
t on the re-

gret of algorithms. We have observed qualitatively similar
behavior for other loss sequences.

We fix the number of arms in all of the experiments as 50,
and the time horizon as 500. Every curve represents an
average of 100 runs.

5.2 RESULT OF THE EXPERIMENTS

We performed experiments on many different loss se-
quences and sequences of rt-s. Since the results are es-
sentially the same for all the different sequences, we in-
cluded in the present paper just the results for one loss
sequence with different sequences of rt-s. In the case of
rt ≥ log(T )/(2N − 2), the case of high probability of
having some side observation, the performance of the al-
gorithm Exp3-Res proposed in the present paper is com-
parable to the performance of the idealistic Exp3-R which
knows exact value of rt in every time step. Moreover, if the
average rt is close to 1, the performance of the proposed
algorithm is close to the performance of Oracle which ob-
serves all the losses. If the average rt is close to zero, the
performance of the algorithm is a little bit worse that the
performance of basic Exp3. This is also supported by the
theory, since our algorithm is not able to construct reliable
estimates in the case of small rt-s.
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(a) Static sequence (rt)
T
t , rt = 0
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(b) Static sequence (rt)
T
t , rt = 0.06 ≈

log(T )/(2N − 2)
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(c) Changing sequence (rt)
T
t with uni-

formly distributed rt on [0, 0.2]
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(d) Sequence (rt)
T
t generated as a random

walk on [0, 0.1]
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(e) Sequence (rt)
T
t generated as a random

walk on [0, 1]
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Figure 1: Comparison of algorithm for different amount of side information sequences (different sequences (rt)
T
t )

6 CONCLUSION & FUTURE WORK

In this paper, we considered multi-armed bandit prob-
lems with stochastic side observations modeled by Erdős–
Rényi graphs. Our contribution is a computationally effi-
cient algorithm that operates under the assumption rt ≥
log T/(2N − 2), which essentially guarantees that at least
one piece of side observation is generated in every round,
with high probability. In this case, our algorithm guar-

antees a regret bound of O
(√

logN
∑T
t=1

1
rt

)
(Theo-

rem 1). In this section, we discuss several open questions
regarding this result.

The most obvious question is whether it is possible to re-
move our assumptions on the values of rt. We can only
give a definite answer in the simple case when all rt’s are
identical: In this case, one can think of simply computing
the empirical frequency r̂t of all previous side observations
in round t to estimate the constant r, plug the result into (1),
and then use the resulting loss estimates in an exponential-
weighting scheme. It is relatively straightforward (but also
rather tedious) to show that the resulting algorithm satisfies
a regret bound of Õ

(√
T/r

)
for all possible values of r,

thanks to the fact that r̂t quickly concentrates around the

true value of r. Notice however that this approach clearly
breaks down if the rt’s change over time.

In the case of changing rt’s, the number of observations
we can use to estimate rt is severely limited, so much that
we cannot expect any direct estimate of rt to concentrate
around the true value. Our algorithm proposed in Section 3
gets around this problem by directly estimating the impor-
tance weights 1/ot,i instead of rt, which enables us to con-
struct reliable loss estimates, although only at the price of
our assumption on the range of rt. While we acknowledge
that this assumption can be difficult to confirm a priori in
practice, we remark that we find it quite surprising that any
algorithm whatsoever can take advantage of such limited
observations, even under such a restriction. We also point
out that for values of rt that are consistently below our
bound, it is not possible to substantially improve the regret
bounds of Exp3 which are of Õ

(√
TN

)
, as shown by the

lower bounds of Alon et al. (2013). We expect that in sev-
eral practical applications, one can verify whether the rt’s
satisfy our assumption or not, and decide to use Exp3-Res
or Exp3 accordingly. In fact, our experiments suggest that
our algorithm performs well even if neither of these two
assumptions are verified: we have seen that the empirical
performance of Exp3-Res is only slightly worse than that



of Exp3 even when the values of rt are very small (Section
5). Still, finding out whether our restriction on rt can be re-
laxed in general is a very important and interesting question
left for future study.

An important corollary of our results is that, under some as-
sumptions, it is possible to leverage side observations in a
non-trivial way without having access to the second neigh-
borhoods in the side-observation graphs as defined by Man-
nor and Shamir (2011). This complements the recent re-
sults of Cohen et al. (2016), who show that non-stochastic
side-observations may provide non-trivial advantage over
bandit feedback when the losses are stochastic even when
the side-observation graphs are unobserved, but learning
with unobserved feedback graphs can be as hard as learning
with bandit feedback when both the losses and the graphs
are generated by an adversary. A natural question that our
work leads to is whether it is possible to efficiently leverage
side-observations under significantly weaker assumptions
on the observation model.
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