R. Anguelov, Y. Dumont, and A. J. Lubuma, Mathematical modeling of sterile insect technology for control of anopheles mosquito, Computers & Mathematics with Applications, vol.64, issue.3, pp.374-389, 2012.
DOI : 10.1016/j.camwa.2012.02.068

URL : https://hal.archives-ouvertes.fr/halsde-00732800

J. Arino, C. C. Mccluskey, A. P. Van, and . Driessche, Global Results for an Epidemic Model with Vaccination that Exhibits Backward Bifurcation, SIAM Journal on Applied Mathematics, vol.64, issue.1, pp.260-276, 2003.
DOI : 10.1137/S0036139902413829

N. H. Barton and M. Turelli, Spatial Waves of Advance with Bistable Dynamics: Cytoplasmic and Genetic Analogues of Allee Effects, The American Naturalist, vol.178, issue.3, pp.48-75, 2011.
DOI : 10.1086/661246

G. Bian, Y. Xu, P. Lu, Y. Xie, and A. Z. Xi, The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti, PLoS Pathogens, vol.17, issue.4, p.1000833, 2010.
DOI : 10.1371/journal.ppat.1000833.s001

M. S. Blagrove, C. Arias-goeta, A. Failloux, and A. S. Sinkins, Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus, Proceedings of the National Academy of Sciences, vol.109, issue.1, pp.255-260, 2012.
DOI : 10.1073/pnas.1112021108

URL : https://hal.archives-ouvertes.fr/pasteur-00647866

B. Bossan, A. Koehncke, and A. P. Hammerstein, A New Model and Method for Understanding Wolbachia-Induced Cytoplasmic Incompatibility, PLoS ONE, vol.391, issue.Pt 2, p.19757, 2011.
DOI : 10.1371/journal.pone.0019757.s001

M. A. Braks, S. A. Juliano, and A. L. Lounibos, Superior reproductive success on human blood without sugar is not limited to highly anthropophilic mosquito species, Medical and Veterinary Entomology, vol.29, issue.1, pp.53-59, 2006.
DOI : 10.1016/0022-1910(86)90009-0

F. Brauer, Backward bifurcations in simple vaccination models, Journal of Mathematical Analysis and Applications, vol.298, issue.2, pp.418-431, 2004.
DOI : 10.1016/j.jmaa.2004.05.045

J. S. Brownstein, E. Hett, and A. S. O-'neill, The potential of virulent Wolbachia to modulate disease transmission by insects, Journal of Invertebrate Pathology, vol.84, issue.1, pp.24-29, 2003.
DOI : 10.1016/S0022-2011(03)00082-X

M. H. Chan and P. S. Kim, Modelling a Wolbachia Invasion Using a Slow???Fast Dispersal Reaction???Diffusion Approach, Bulletin of Mathematical Biology, vol.137, issue.7144, pp.1501-1523, 2013.
DOI : 10.1007/s11538-013-9857-y

N. Chitnis, J. M. Hyman, and A. J. Cushing, Determining Important Parameters in the Spread of Malaria Through the Sensitivity Analysis of a Mathematical Model, Bulletin of Mathematical Biology, vol.101, issue.Suppl. 4, pp.1272-1296, 2008.
DOI : 10.1007/s11538-008-9299-0

P. R. Crain, J. W. Mains, E. Suh, Y. Huang, P. H. Crowley et al., Wolbachia infections that reduce immature insect survival: Predicted impacts on population replacement, BMC Evolutionary Biology, vol.310, issue.5746, p.290, 2011.
DOI : 10.1126/science.1117607

M. R. David, R. Lourenco-de, A. R. Oliveira, and . Freitas, Container productivity, daily survival rates and dispersal of Aedes aegypti mosquitoes in a high income dengue epidemic neighbourhood of Rio de Janeiro: presumed influence of differential urban structure on mosquito biology, Mem??rias do Instituto Oswaldo Cruz, vol.104, issue.6, pp.927-932, 2009.
DOI : 10.1590/S0074-02762009000600019

Y. Dumont, F. Chiroleu, and A. C. Domerg, On a temporal model for the Chikungunya disease: Modeling, theory and numerics, Mathematical Biosciences, vol.213, issue.1, pp.80-91, 2008.
DOI : 10.1016/j.mbs.2008.02.008

URL : https://hal.archives-ouvertes.fr/cirad-00454695

Y. Dumont and J. M. Tchuenche, Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus, Journal of Mathematical Biology, vol.47, issue.6, pp.809-854, 2012.
DOI : 10.1007/s00285-011-0477-6

J. Engelstadter, A. Telschow, and A. P. Hammerstein, Infection dynamics of different Wolbachia-types within one host population, Journal of Theoretical Biology, vol.231, issue.3, pp.345-355, 2004.
DOI : 10.1016/j.jtbi.2004.06.029

J. E. Fader and S. A. Juliano, Oviposition habitat selection by container-dwelling mosquitoes: responses to cues of larval and detritus abundances in the field, Ecological Entomology, vol.34, issue.2, pp.245-252, 2014.
DOI : 10.1111/een.12095

J. Z. Farkas-and-p and . Hinow, Structured and Unstructured Continuous Models for??Wolbachia Infections, Bulletin of Mathematical Biology, vol.42, issue.8, pp.2067-2088, 2010.
DOI : 10.1007/s11538-010-9528-1

D. A. Focks, D. G. Haile, E. Daniels, and A. G. Mount, Dynamic Life Table Model for Aedes aegypti (Diptera: Culicidae): Simulation Results and Validation, Journal of Medical Entomology, vol.30, issue.6, pp.1018-1028, 1993.
DOI : 10.1093/jmedent/30.6.1018

F. D. Frentiu, J. Robinson, P. R. Young, E. A. Mcgraw, and A. S. O-'neill, Wolbachia-Mediated Resistance to Dengue Virus Infection and Death at the Cellular Level, PLoS ONE, vol.30, issue.10, p.13398, 2010.
DOI : 10.1371/journal.pone.0013398.g003

K. Hadeler, P. Van, and . Driessche, Backward bifurcation in epidemic control, Mathematical Biosciences, vol.146, issue.1, pp.15-35, 1997.
DOI : 10.1016/S0025-5564(97)00027-8

P. A. Hancock and H. C. Godfray, Modelling the spread of Wolbachia in spatially heterogeneous environments, Journal of The Royal Society Interface, vol.178, issue.3, pp.3045-3054, 2012.
DOI : 10.1086/661247

P. A. Hancock and H. C. Godfray, Modelling the spread of Wolbachia in spatially heterogeneous environments, Journal of The Royal Society Interface, vol.178, issue.3, pp.3045-3054, 2012.
DOI : 10.1086/661247

P. A. Hancock, S. P. Sinkins, and A. H. Godfray, Strategies for Introducing Wolbachia to Reduce Transmission of Mosquito-Borne Diseases, PLoS Neglected Tropical Diseases, vol.106, issue.4, p.1024, 2011.
DOI : 10.1371/journal.pntd.0001024.s008

M. Hertig and S. B. Wolbach, Studies on rickettsia-like micro-organisms in insects, J Med Res, vol.44, pp.329-374, 1924.

M. Hirsch, The dynamical systems approach to differential equations, Bulletin of the American Mathematical Society, vol.11, issue.1, pp.1-64, 1984.
DOI : 10.1090/S0273-0979-1984-15236-4

M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J Reine Angew. Math, vol.383, pp.1-53, 1988.

M. W. Hirsch and H. L. Smith, Monotone dynamical systems, Handbook of differential equations: ordinary differential equations, pp.239-357, 2005.

A. A. Hoffmann, B. L. Montgomery, J. And-popovici, I. And-iturbe-ormaetxe, P. H. Johnson et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, vol.53, issue.7361, pp.454-457, 2011.
DOI : 10.1038/nature10356

P. I. Howell-and-b and . Knols, Male mating biology, Malaria Journal, vol.8, issue.Suppl 2, p.8, 2009.
DOI : 10.1186/1475-2875-8-S2-S8

G. L. Hughes, R. Koga, P. Xue, T. Fukatsu, and A. J. Rasgon, Wolbachia Infections Are Virulent and Inhibit the Human Malaria Parasite Plasmodium Falciparum in Anopheles Gambiae, PLoS Pathogens, vol.21, issue.5, p.1002043, 2011.
DOI : 10.1371/journal.ppat.1002043.s005

H. Hughes and N. F. Britton, Modelling the Use of Wolbachia to Control Dengue Fever Transmission, Bulletin of Mathematical Biology, vol.310, issue.5, pp.796-818, 2013.
DOI : 10.1007/s11538-013-9835-4

I. Iturbe-ormaetxe, T. Walker, and A. S. O-'neill, Wolbachia and the biological control of mosquito-borne disease, EMBO reports, vol.43, issue.6, pp.508-518, 2011.
DOI : 10.1128/IAI.00376-09

J. Kamgang-and-g and . Sallet, Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE), Mathematical Biosciences, vol.213, issue.1, pp.1-12, 2008.
DOI : 10.1016/j.mbs.2008.02.005

M. J. Keeling, F. M. Jiggins, and A. J. Read, The invasion and coexistence of competing Wolbachia strains, Heredity, vol.91, issue.4, pp.382-388, 2003.
DOI : 10.1038/sj.hdy.6800343

J. Koiller, M. Da, M. Silva, C. Souza, A. Codeço et al., Aedes, Wolbachia and Dengue, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00939411

P. M. Luz, C. T. Codeco, J. Medlock, C. J. Struchiner, D. Valle et al., Impact of insecticide interventions on the abundance and resistance profile of Aedes aegypti, Epidemiology and Infection, vol.68, issue.08, pp.1203-1215, 2009.
DOI : 10.1590/S0037-86822005000400007

A. Macia, Differences in performance of Aedes aegypti larvae raised at different densities in tires and ovitraps under field conditions in Argentina, Journal of Vector Ecology, vol.99, issue.2, pp.371-377, 2006.
DOI : 0074-0276(2004)099[0351:SPOAOA]2.0.CO;2

R. Maciel-de-freitas, C. T. Codeco, A. R. Lourenco-de, and . Oliveira, Daily survival rates and dispersal of aedes aegypti females in rio de janeiro, brazil, Am J Trop Med Hyg, vol.76, pp.659-665, 2007.

C. J. Mcmeniman, R. V. Lane, B. N. Cass, A. W. Fong, M. Sidhu et al., Stable Introduction of a Life-Shortening Wolbachia Infection into the Mosquito Aedes aegypti, Science, vol.323, issue.5910, pp.141-144, 2009.
DOI : 10.1126/science.1165326

C. J. Mcmeniman and S. L. O-'neill, A Virulent Wolbachia Infection Decreases the Viability of the Dengue Vector Aedes aegypti during Periods of Embryonic Quiescence, PLoS Neglected Tropical Diseases, vol.103, issue.7, p.748, 2010.
DOI : 10.1371/journal.pntd.0000748.t001

O. Neill, A wolbachia symbiont in aedes aegypti limits infection with dengue, chikungunya, and plasmodium, Cell, vol.139, pp.1268-1278, 2009.

M. Z. Ndii, R. I. Hickson, D. Allingham, and A. G. Mercer, Modelling the transmission dynamics of dengue in the presence of Wolbachia, Mathematical Biosciences, vol.262, pp.157-166, 2015.
DOI : 10.1016/j.mbs.2014.12.011

M. Otero, H. G. Solari, and A. N. Schweigmann, A Stochastic Population Dynamics Model for Aedes Aegypti: Formulation and Application to a City with Temperate Climate, Bulletin of Mathematical Biology, vol.99, issue.8, pp.1945-1974, 2006.
DOI : 10.1007/s11538-006-9067-y

J. Popovici, L. A. Moreira, A. Poinsignon, I. Iturbe-ormaetxe, D. Mc-naughton et al., Assessing key safety concerns of a Wolbachia-based strategy to control dengue transmission by Aedes mosquitoes, Mem??rias do Instituto Oswaldo Cruz, vol.105, issue.8, pp.957-964, 2010.
DOI : 10.1590/S0074-02762010000800002

J. L. Rasgon, Using Predictive Models to Optimize Wolbachia-Based Strategies for Vector-Borne Disease Control, Adv Exp Med Biol, vol.627, pp.114-125, 2008.
DOI : 10.1007/978-0-387-78225-6_10

J. L. Rasgon and T. W. Scott, Impact of population age structure on Wolbachia transgene driver efficacy: ecologically complex factors and release of genetically modified mosquitoes, Insect Biochemistry and Molecular Biology, vol.34, issue.7, pp.707-713, 2004.
DOI : 10.1016/j.ibmb.2004.03.023

L. J. Rasgon, A. T. Styer, and . Scott, <I>Wolbachia</I>-Induced Mortality as a Mechanism to Modulate Pathogen Transmission by Vector Arthropods, Journal of Medical Entomology, vol.40, issue.2, pp.125-132, 2003.
DOI : 10.1603/0022-2585-40.2.125

J. R. Rey and S. M. O-'connell, : Influence of congeners and of oviposition site characteristics, Journal of Vector Ecology, vol.25, issue.1, pp.190-196, 2014.
DOI : 10.1111/j.1948-7134.2014.12086.x

S. A. Ritchie, B. L. Montgomery, and A. A. Hoffmann, Releases, Journal of Medical Entomology, vol.50, issue.3, pp.624-631, 2013.
DOI : 10.1603/ME12201

P. Schofield, Spatially Explicit Models of Turelli-Hoffmann Wolbachia Invasive Wave Fronts, Journal of Theoretical Biology, vol.215, issue.1, pp.121-131, 2002.
DOI : 10.1006/jtbi.2001.2493

H. L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Mathematical Surveys and Monographs, vol.41, 1995.
DOI : 10.1090/surv/041

M. O. Souza, Multiscale analysis for a vector-borne epidemic model, Journal of Mathematical Biology, vol.137, issue.8, pp.1269-1293, 2014.
DOI : 10.1007/s00285-013-0666-6

A. S. Spielman, M. G. Leahy, and A. V. Skaff, Failure of effective insemination of young female Aedes aegypti mosquitoes, Journal of Insect Physiology, vol.15, issue.9, pp.1471-1479, 1969.
DOI : 10.1016/0022-1910(69)90168-1

L. M. Styer, S. L. Minnick, A. K. Sun, and A. T. Scott, (Diptera: Culicidae) Fed Human Blood, Vector-Borne and Zoonotic Diseases, vol.7, issue.1, pp.86-98, 2007.
DOI : 10.1089/vbz.2007.0216

M. Turelli, CYTOPLASMIC INCOMPATIBILITY IN POPULATIONS WITH OVERLAPPING GENERATIONS, Evolution, vol.13, issue.1, pp.232-241, 2010.
DOI : 10.1111/j.1558-5646.2009.00822.x

A. P. Turley, L. A. Moreira, S. L. O-'neill, and A. E. Mcgraw, Wolbachia Infection Reduces Blood-Feeding Success in the Dengue Fever Mosquito, Aedes aegypti, PLoS Neglected Tropical Diseases, vol.75, issue.5, p.516, 2009.
DOI : 10.1371/journal.pntd.0000516.s001

P. Van, . J. Driessche, and . Watmough, A simple SIS epidemic model with a backward bifurcation, J Math Biol, vol.40, pp.525-540, 2000.

P. Van, . J. Driessche, and . Watmough, reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, vol.180, pp.29-48, 2002.

T. Walker, P. H. Johnson, L. A. Moreira, I. Iturbe-ormaetxe, F. D. Frentiu et al., SUPPLEMENT, Nature, vol.476, 2011.
DOI : 10.4159/harvard.9780674865341.c13

R. K. Walsh, L. Facchinelli, J. M. Ramsey, J. G. Bond, and A. F. Gould, Assessing the impact of density dependence in field populations of Aedes aegypti, Journal of Vector Ecology, vol.45, issue.Suppl. S, pp.300-307, 2011.
DOI : 10.1111/j.1948-7134.2011.00170.x

C. R. Williams, P. H. Johnson, T. S. Ball, and A. S. Ritchie, Productivity and population density estimates of the dengue vector mosquito aedes aegypti

J. Wong, S. T. Stoddard, H. Astete, A. C. Morrison, and A. T. Scott, Oviposition Site Selection by the Dengue Vector Aedes aegypti and Its Implications for Dengue Control, PLoS Neglected Tropical Diseases, vol.106, issue.4, p.1015, 2011.
DOI : 10.1371/journal.pntd.0001015.s002

H. M. Yang, M. D. Macoris, K. C. Galvani, and A. M. Andrighetti, Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings, Biosystems, vol.103, issue.3, pp.360-371, 2011.
DOI : 10.1016/j.biosystems.2010.11.002

H. L. Yeap, P. Mee, T. Walker, A. R. Weeks, S. L. O-'neill et al., Dynamics of the "Popcorn" Wolbachia Infection in Outbred Aedes aegypti Informs Prospects for Mosquito Vector Control, Genetics, vol.187, issue.2, pp.583-595, 2011.
DOI : 10.1534/genetics.110.122390