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ABSTRACT. Difference equations in the complex domain of the formy(x+ ") y(x) = "f (y(x))=y(x)
are considered. The step size " > 0is a small parameter, and the equation has a singularity aty = 0.
Solutions near the singularity are described using composite asymptotic expansions. More precisely,
it is shown that the derivative vO of the inverse function v of a solution (the so-called Fatou coordinate)
admits a Gevrey asymptotic expansion in powers of the square root of ", denoted by , involving
functions of y and of Y = y= . This also yields Gevrey asymptotic expansions of the so-called Ecalle-
Voronin invariants of the equation which are functions of ". An application coming from the theory of
complex iteration is presented.

RESUME. On considére des équations aux différences dans le plan complexe de la forme y(x +
") y(x) = "f (y(x))=y(x). Le pas de discrétisation " > 0 est un petit parametre, et I'équation a une
singularité en 'y = 0. On décrit les solutions prés de la singularité en utilisant des développements
asymptotiques combinés. Plus précisément, on montre que la dérivée v° de la fonction réciproque
(appelée coordonnée de Fatou) v d'une solution admet un développement asymptotique Gevrey en
puissances de la racine carrée de ", notée , et faisant intervenir des fonctions dey etde Y = y= .
On obtient également des développements asymptotiques Gevrey des invariants d'Ecalle-Voronin de
I'équation, qui sont des fonctions de ". Une application venant de la théorie de I'itération complexe est
présentée.

KEYWORDS : difference equation with small step size, composite asymptotic expansion, Gevrey
asymptotic, Fatou coordinate, Ecalle-Voronin invariants.

MOTS-CLES : Equation aux différences a petit pas, développement asymptotique combiné, asymp-
totique Gevrey, coordonnée de Fatou, invariant d'Ecalle-Voronin.



1. Introduction.

The main purpose of this article is to assemble two theories, which match each other
particularly well, in order to obtain new results on solutions of a difference equation with
singularity. The rst theory,difference equations with small step size in the complex
domain is developed in [3]. It concerns equations of the form

y=f(xy;") (1.1)
wheref : C CN [0;"0]! CN isholomorphicinx andy and continuous iti,
"> 0is asmall parameter, and- is the difference operator given by

X)) = FY(x+T) y(x) (1.2)

The rst main result of [3] is that, on horizontally convex domains, there exist solutions
of (1.1) close to any solution of the limiting differential equation

yO= f(x;y; 0): (1.3)

A domain ofC is calledhorizontally convex, for all its pointsx; x®with Im x = Im x°,
the segmenjx; x9 is contained in it. More precisely, givey : D ! CN a solution
of (1.2) holomorphic on some-domainD such tha(x;yo(x);") 2 forallx 2 D and
all" 2 [0;"o], given an initial condition(xg;d(")), d : [0;"o] ! CN continuous with
d(0) = yo(Xo), and given a horizontally convex domai compactly contained i, it
is shown in [3] that there exigt 2 ]0;" o] and a family of solutiong : D ]0;";]! CN
of (1.1), continuous, holomorphic i, such that/(xp;") = d(") andy(x;") = yo(X) +
O(") onH.

A second result of [3] is that two solutions of (1.1) which coincide at some point
of D are exponentially close one to each other on the domairnThe last main result
is that, provided is holomorpq\_ip in" in a complex neighborhood df andd(") has
an asymptotic expar|§icul(") n odh"" as" ! 0, the above solutiong have an
asymptotic expansion ., ,yn(x)"" as" ! 0 uniformly onD, where the coef cients
yn are holomorphic functions oB and can be determined recursively as solutions of
certain initial value problems of the form

yo = SHxyo(X); O)yn + Fn XiYo(X)ii:iiyn 1(X) 5 Yn(X0) = da: (1.4)

The second theory in the title of the present artictanposite asymptotic expansions
is developed in [4]. It deals with asymptotic expansions of functions of two variables
and , using at the same time functionsyofind functions of the quotiert.

At the origin this theory was developed to study singularly perturbed differential equa-
tions of the form

o= f(X)y+ "P(xy;") (1.5)



near a turning point. Here @rning pointis a zero of the functiofi. Without loss, we
assume that this turning pointis at the origirr 0. Letthe integep 2 be such that the
order of the zero of atx =0 isp 1,andlet = "1*P. One of the main results of [4]
is that there exists a solutignof (1.5) de ned for" in a sector

S( ;;"o)=1f"2C;j"j<"pand < arg"< g

and forx in a so-calledquasi-secto¥ (; ;r; j j), < 0 (hence depending dnj =
i"i*™P), where

V(;;r )=fx2C; < jxj<r and < argx< ¢

with < 0, and that this solution hasamposite asymptotic expansi@mnse for short)
in the following sense. There exist a diBq0; r), an in nite quasi-sectol = V(

; +;1;) ,andholomorphicfunctiors, : D(0;r)! Candg, : V! C,g, having
an asymptotic expansion without constant term at in nity, such that

X
y(") 1 an(x)+gn * ™M (1.6)
n O

The symbol means that a partial sum up to ordérgives an approximation of the
solution to order N, which is uniform in the whole domaih 2 S( ; ;" o); x 2
V(;;rj ). Therefore, formula (1.6) provides an approximation of the solution at
the same time near the turning point and away from it, i.e. at distances of ofd®En

the turning point as well as at distances of orélefThe extra symbol means that we

also have estimates of Gevrey type for the remainders; some details can be found below
Theorem 2.4.

Inthe present article, we use this theoryefes in order to describe solutions of a dif-
ference equation with singularity. For the sake of simplicity, we considew#onomous
difference equation, i.e. with a right hand side depending only. &/e assume that the
equation has a singularity. Fixing this singularityOatve assume that = 0 is a simple
pole of the right hand side. In other words, we consider a difference equation of the form

1
ww= —f ; .
y y (y) (1.7)

wheref : U C! Cisholomorphicin a domaik containingO, f (0) 6= Qand our
purpose is to study the behavior of solutions of (1.7) hawnmal/lvalues. Observe that
the general theory described above applies on domains where the values of a solution are
bounded away fron®, but this theory no longer applies near points where the solution
takes small values.

A new feature of this type of equations is that the limiting equations are of two dif-
ferent natures: Near the origin, tireer reduced equatid@.6) (see Section 2 below) is



a difference equation, whereas far from the origin theer reduced equatid@.2) is a
differential equation. A natural question is whether an approximation of solutions of (1.7)
exists, using solutions of the outer reduced equation (2.2} fofrorder1 and solutions
of the inner reduced equation (2.6) foof order", and which would be uniform, i.e. also
for all intermediatex small with respect td and large with respect th

OurcAses seem to be well adapted for this situation. It turns out, however, that we do
not obtaincAses for solutions of (1.7) but, except for a logarithmic term, for their inverse
functions, called~atou coordinatessiven a solutioty of (1.7), letv = v(z;") denote the
inverse function ofy with respect to the variabbe, i.e.z = y(x;"), x = v(z;"). Then
v is a solution of the Schréder equation

vV z+ @ =v(z)+ " (1.8)

An indication why things are much simpler in Fatou coordinates than for the solutions
themselves is the following. In the case of an autonomous equation of the form (1.7)
the existence of one solutionimplies the existence of a family of solutions: \ifis a
solution of (1.7) and 2 Cis xed, then the shifted functiog :x 7! y(x + ) is also

a solution (one could even choose'aperiodic function for ). If y has an asymptotic
expansion and depends ori, then this expansion changes considerably under such a
shift. If v = v(z;") is the inverse function of, then the inverse of the shifted solutipn
issimplyv :z 7! v(z;") ; this changes the asymptotics not essentially.

In order to obtaircAses for the Fatou coordinates, we rst construct solutions of (1.7),
denotedys;:::;y4, on some domains; which will be described in the sequel. Then we
prove that they are invertible; the inverse functiops= y, l;j =1;:::;4, are solutions
of the Schréder equation (1.8) de ned on some domains containing quasi-sectors which
coveranannulusz 2 C; j j< jzj<rg, withsome < 0<r with = "172 |t
turns out that the functiong+, v, Lare of the formid + pj , with p; periodic of period'.

As a consequence we obtain exponentially small estimates for the diffel‘éhges vj0

of the derivatives. Using a Ramis-Sibuya-type theorem we then obtaixsa for the
derivativev® of the Fatou coordinate. By integration, this yields4sE for v, except for a
logarithmic term. Using some inversion OAsES, it might be possible to deducecase

for the solutiony itself, but thiscAase would contain powers ofogx of any order. To
sum up, an approximation of the solutigrwould be much more complicated than the
approximation of its inverse.

We are particularly interested in the so-calechlle-Voronin invariant2, 7] of equa-
tion (1.7). These invariants are the Fourier coef cients of the periodic funciprishey
play an important role in the theory of analytic equivalence of diffeomorphisms. The
CAsEs for they; yield also Gevrey asymptotic expansions for these invariants.

Application. In the last Section 7 we use our results in the special cabéf=1+ v,
i.e. the difference equation

1
wy=1+ = 1.9
y y (1.9)



This equation has also solutions on some in nite sectorscédras also Ecalle-Voronin
invariants at in nity. The purpose of Section 7 is to compare these invariants with the
Ecalle-Voronin invariants at the origin. This study shows in particular that the rst Ecalle-
Voronin invariant at in nity, when extended to all arguments'ohas an in nite number

of zeroes, which are asymptotically in an arithmetical sequence close to the imaginary
axis. Section 7 only sketches some ideas of proof; the complete proofs will appear in a
future article.

Equation (7.1) appears in [1] in the form of the iteration of the diffeomorplkgm
Z 7' Z +1+ b=Ztangent to the identity & = 1, i.e. with b= andZ = ¥ in our
notation. The authors prove that the rst Ecalle-Voronin invariant, denote@hyb), an
entire function ofb, has super-exponential growth j tends to in nity which implies
that it has in nitely many zeros. Because of different normalizations, the link between
their invariant and ours contains an additional tep (2ib logb). This explains the
different growth of the two functions and this could also be used to prove the super-
exponential growth o€ (b).

Beyond this last result, our motivation to study equation (2.1) was to illustrate our
theory ofcAsEs in a context where the reduced outer and inner equations are of different
kinds, here a differential outer equation and a difference inner equation. We believe that
our CAsEs can be useful for other types of functional equations, e.g. partial differential
equations or other functional equations where small (or large) parameters occur.

2. Statements of the main results.

We consider the difference equation with small step size (1.7) rewritten below for
convenience

_1
ny = yf(y), (2.1)

wheref : U C ! Cis holomorphic in a domaity containingO, f (0) = 72 6=0,
" > 0is a small parameter, and- is the difference operator given by (1.2). Equation
(2.1) has two limiting equations. The rst one is the so-calteder reduced equation

1
0o_ - .
y yf (y): (2.2)

obtained wheni tends to0. One easily checks that equation (2.2) has a unique solution
Yo, dened in a neighbort&ood dd on the two-sheet Riemann surfaceof the square
root, such thatyg(x) X asx ! 0on . This solution is given implicitely by

x = ao(Yo(x)), with

aoly)= Lo (2.3)



Our purpose is to study the behavior of solutions taking swadlles r5|ear( =0.A
rstidea is to perform the change of variabless "X ,y = Y with = "7 i.e.

Y(X)= Ly("X): (2.4)
This transforms (2.1) into the equation
1
1Y = POV (2.5)

whose limit,as ! 0, is the second limiting equation, thener reduced equation
2

Y(X+1)= Y(X)+ m: (2.6)
Given > Osmall enough and > 0 large enough, consider the sector
(K )=fX2C;jarg(X K)j< g, (2.7)

and letQ. (K; ) denote the image of. (K; ) by the functionX 7! X 172, see Figure
2.1 for a sketch. Herlog is the principal determination of the logarithm on (K; ),
andX 2 = exp(alogX).

Figure 2.1. Thesector . (K; )anditsimage Q« (K; )byX 7! X “2inthecase > 0.

Concerning the inner reduced equation (2.6), we have the following result.

Proposition 2.1. Forall > 0 there exist& > 0 such that (2.6) has a unique solution
Y. denedon . = 4 (K; ) satisfying

Yi(X)= X 2+ gX PlogX + o(X P); X IL X 2 4o



If K is large enough, then the functioéa has an inverse functiowt. : Q. (2K; 2 ) !
+ (K; ) which satis es

Vi(z)= 272 liog Z +0(1);Q:s(2K;2)32 11 (2.8)

and the functional equation

2

V Z+ o =V(Z)+1 (2.9)

wheneveZ andZ + % areinQ. (2K; 2 ).

Remarks. 1. This kind of statement is very classical. For the sake of completeness,
heowever, a detailed proof is given in Section 3.

2. More precisely one has
Yo (X)= X 2+ 5X 2logX + O X 3(logX)?; .3X!1
and the derivative of. satis es
Y2(X)= zX 2+ 0 X 3P(logX)?; +3X!L

3. The functiorV, is a so-calledratou coordinatef (2.6).

+

By symmetry of (2.6), it follows that Y. is the only solutionY of (2.6) on
satisfyingY (X) = X 2 =X 2logX + o(X '72). Its inverse is the function
Z7'Vi( Z)denedon Q:(2K; 2 );italso satis es (2.9).

For K large enough, one proves in a similar way that there exists a unique function
Y denedon =fX2C;jarg( X K)j< g satisfying

Y (X)= X 2+ gX logX + o(X )asX !1 in

and satisfying (2.6) for alK 2 such thatX +1 2 . Herelog X is the analytic
continuation of the principal branch onto in the mathematically positive direction, i.e.
logX =log( X)+ i .Inthe same way, we continue the roots analyticallyby'=2 =

i( X) ¥2. ForK large enough, we have again an inveXse of Y de ned on

Q (2K; 2 )= iQ.(2K; 2 ) thatsatises (2.9)an¥ (Z)= Z ° slog £ +o(1).

In order to prove these statements, the proof in Section 2 has to be modi ed essentially
only at one point: The operatdr in (3.3) has to be de ned using summation over all
X n,n positive integer.

As another solution of (2.6), we considefy . Itis also dened on  and sat-
ises Y (X)= X ¥ X '™logX + o(X ). Itsinverse is the function
Z 7'V ( Z)denedon Q (2K; 2);italso satis es (2.9). In this manner, we have
obtained four solutions of (2.6) and four solutions of (2.9) of particular interest.



If K is large enough, the function, = V Y, id is de ned (at least) on the
sector

l+= X2C; ag(X iK) 5 <5 3

Using (2.9), it is easily shown that, is 1-periodic. The choice of the branches of the
logarithms in Proposition 2.1 and the estimate (2.8) ensure thgX) ! Oasl. 3
X 1'1. Therefore the Fourier series of , must have the following form

R _
+(X)= Cre?™ forX 21.; (2.10)

n=1

whereC} 2 C are constants.
Similarly, we treat the composition of the inverseYof with Y . The function
=V, ( Y ) id isdened (atleast) on the sector

I =fX2C,; arg(X + iK)+ > <E 3g
It is also 1-periodic, but only bounded bs 3 X ! 1  because of the choice of the
branches of the logarithms. Its Fourier series is thus

X _
(X) = C,e 2™ forX 21|
n=0

HereC, = '7 the other constantS, ,n 1 are closely related t€ , but the relation
is not interesting in our work. The other analogous compositions of the invers¥ of
with Y™, respectively that of the inverse ¥f* with Y , are identicalto + id
with the above functions and yield no new constants.

The constant€,, are the so-calleécalle-Voronin invariantf2, 7] of equation (2.6).

Let us return to our original equation (2.1). Wekgr; > 0. Letz(")2 [ r;ir ] be
such thatarg(z(") K") = andlet 1 = ( K;r; ;" ) denote the interior of the
(non convex) hexagon with vertic&s'; z (");ir;r; ir; Z(") in this order; see Figure 2.2.
Let = 4= 1=fx2C; x2 igand 3= 1.

We will also use the image of; by x 7! x 72, denoted byQ;, and the domains
Qj =i/ 'Qu,j =2;3;4, obtained by rotations.

Our rst main result is as follows; let us recall thats "172.

Theorem 2.2. With the above notation, for all> 0 there exisK;R;" o;r > 0 with
K" o <r and four solutiongy;y>;Yy3; ya of (2.1), de nedfor' 2]0;"o] andx 2 j, such
thaty1 (K"" ) = ys(K"") = Y4 (K),y2( K%")= ya( K5")= Y ( K),
and

8"2]0;"0]8x 2 1; yi(x") Y.+ % Rjxjand ys(x;")+ Y. = Rixj;
8" 21]0;"0] 8x 2 1 Y2(6") Y

=X
=X

Rjxj and y4(x;")+ Y Rjxj:



Il

Figure 2.2. Left: The domain ; of existence of the solutions y1;ys of (2.1). Right: The
image Q1 of 1 byx 7! x¥*2 (" =1 here).

The proof is in Section 5. Since the domains are no longer in nite, we cannot have

unigueness of the solutions anymore, but they are unique up to exponentially small terms.
We then prove the existence of the inverse functigrs ; 1 analogous to the above

Fatou coordinates. Precisely, Bt = 2K; ’5; 2 ;" be dened as 1, with the con-

stants2K , 5, and2 instead ofK;r; . We assumé, ;. Let ®; denote the image

of €; by the functionX 7! X 172, As before, we also us€; = ( 1) €; and

® =il 1@1,j =2;3;4. On®,, we use the principal value ¢bg(-2-); on the other

®;, we uselog(Z) = log( =it 1) + % i. Thus the branches of the logarithms are

the same on the intersecti@) \ Q;.1 if j =1;2;3, butnoton@,\ @;.

Proposition 2.3. With the above notation, if 2 f1;2;3;4g,r > 0 is small enough
andK > 0is large enough then, for al2 ®;, the equatiory; (x;") = z has a unique
solutionx 2 ;, denoted by = v; (z;"). This gives a holomorphic function de ned

forz 2 ®;; " 2]0;"¢], the values of which are in; . It is a solution of
uf (Z) — ".
vV z+ "= =v(Z)+ ™ (2.12)

Moreover, we have

vi( Y+ (K); 2= K 2 v2(Y ( K); )= K %
va( Y+(K); =K 2 and wu( Y ( K); )= K 2



whereK is the constant of Theorem 2.2, and there eRisto > 0 such that for all
22§, 2]0; o]

vi(z; ) 2Vi (%)  Rjz; va(z; ) 2V ( %) Rizj’;

v2(z; ) 2V (2) Rjzj®; and wi(z; ) 2V ( %) Rjzj*:

The proof is analogous to that of Proposition 2.1; it will be omitted here.

For xed z 6= On the appropriate domains, the limits(z; 0) = lim -, ov;j (z;") are
solutions ofvo(z)@ = 1, this is obtained easily from (2.11) in the limit! 0. The
approximation conditions of the above proposition imply thdk; 0) = ag(z), whereag
is givenin (2.3).

The approximation conditions of the above proposition also imply that, for Zed
suf ciently large such thatZ is in the appropriate domaitim | o 2v;(Z; 2?)isone
of the four functions/ ( 2).

Thus we haveouterapproximations (foz xed) and innerapproximations (foiZ
xed) for v;. The most important result of our article re nes these statements, not only
to the existence of full outer and inner expansions, but to full uniform expansions in the
whole domaing;. This is achieved using so-calledmposite asymptotic expansions
(cases). We refer to [4] for a detailed discussion of this notion and its properties. Never-
theless, we will give explanations below the theorem. In the present article, we adopt the
notationk, of [4] in case of two indices, with one index in superscript; we hope this will
not bring confusion to the reader with the usual powérsil 1, etc.

Theorem 2.4. The Fatou coordinates of (2.1) have composite asymptotic expansions
(CAsES) of Gevrey ordes :

X .
vi(z; ?) %ao(z)+ S()log = +T()+ a(z)+ b, 2 " (212
n 2

as0 < ! Ouniformly forz 2 ®;, wherea, are analytic orjzj < r=2, a,(0) = 0
andl, are holomorphic ot Q. (2K; 2 ), cf. above Proposition 2.1. The latter have
consistent asymptotic expansions of Gevrey oéder

) X
B, (Z) 1 BymZ M™asz!1:
2

m 1

Furthermore, the functiorss, Tj admit asymptotic expansions of Gevrey oré’er
X X
S() 1 S ™ T() 1 T ™
2h 2h 2

the functionag is given in (2.3) and the functiorl%, Hl anda,, n odd, are identically
zero. Moreover, we havg, = % Ti2= T =0,Tgp = Tgp = % i



By de nition, (2.12) means that there exiat B; o > 0 such that, for all 2]0; o], all
z2 Qj,andallN 2 N,N 2 onehas

X 1 ,
Vi(z; %) a2 S()log =  Ti() an()+ b, = "

ABN 1+% N

The statement on th'\ﬁ means that there exigt B > 0 such that, for all integens
M landallz 2l 'Q.(2K;2),onehas

. W 1
izi" b,(2) BamX ™  ABM*M  Mirny g (2.13)

m=1

Observe that the,, B,m andS are independent gf, whereas thdﬂin andT; are not.

An important consequence of (2.12) (see [4], Proposition 3.7) is the existence of so-
called outer and inner expansions\gf of Gevrey order%. More precisely, for every
ri 2]0; 5[

X
vi (z; ?) %ao(2)+ S()log = S()log +T()+ dn(2) " (2.14)
n 2
as > 0, ! Ouniformly forz 2 ®; with jzj > r4, whered,(z) = an(z) +
K 2
Bn mmz ™, andforevenk; > 2K
m=1
X
vi(Z; 2 1S()log £ +T;()+ hy(2)" (2.15)

1
2 n 2

as > Q, ! Ouniformly for Z 249 with 2K < jZj < K 4, wherehl,(Z) =
B(Z)+ i An mmZ™ifa(2)= o oAk 2. Here we use thay(z) = O(z?)
and thus we also haviyy, = Ap1 =0.

The proof of Theorem 2.4 is given in Section 6. In fact we rst prove, using the main
result of [4], that the derivativeqo(z; ") of the Fatou coordinates haeoases of Gevrey
order%; here no logarithm appears. Because of the initial conditions of Proposition 2.3,
we conclude fow; by integration; in the cage= 1 for example, we have (with=?2)

Z z
vi(z;") = K" + V(i) d:
Y. (K)
The integration of &ASE is again treated in [4]; the logarithms appear because each term
analogous td), (Z) in this CASE contains a multiple o£=Z in its expansion.



Remark.The right hand side of (2.12) is a composite formal series solution of (2.11). It
can be shown that this determines the formal expression excéept fitris will be done on
an example in Section 7. The (Gevrey) asymptotic expansiofigoj are determined by
the initial conditions of the; (see below (2.11)) and the corresponding initial conditions
(on a formal level) for the right hand sides of (2.12). Then Thecan be chosen by
the Borel-Ritt-Gevrey theorem as any functions having these asymptotic expansions of
Gevrey orde.

The additive constantg; ( ) in the expansions depend upon the initial conditions of
thev; ; especially they depend upon the choicekot. To avoid problems in the sequel,
we want to normalize our solutions of (2.11) such that their Gevrey asymptotic expansions
are uniquely determined by the equations and normalize the solutions of (2.1) accordingly
—thus the functions are determined by the equation up to exponentially small terms. More
precisely, we putfoy = 1;:::;4

Vi(z D= vz ?) Ty D= yx+T(); ) (2.16)

Observe that; is inverse toy; and that the domains of andy; are the same, whereas
the domain ofy; is obtained by shifting that of;. Here it is important thaT; ( ) =
O( ?) and thus the domain of is essentially of the same type ag. In the sequel, we
can assume without loss in generality tiiatare de ned on j andy; are de ned ong;

as de ned above, provideld is suf ciently large and > 0 is suf cently small.
It is easy to check that the functiops = v;,; y; id,] = 1;:::4,% are"-

periodic inx. A priori these functions are de ned on the sets ! Qi =fx2

i 3 Y, (x) 2 @41 9. Their periodicity allows to continue them analytically to some strip

x2C; K< (1) Mmx< e withsomei, e> 0. The Fourier coef cients,
of these functions, determined by

X -
pOG") = G (e

n2z

are called Ecalle-Voronin invariants of (2.1). It turns out thatis exponentially small if
( 1) Inis negative. For the other Ecalle-Voronin invariants we have

gorollary 25. If( 1Y k> 0, then the functiom, admits an asymptotic expansion
n 28kn " in powers of =" =2, whereajx » is closely related to the rst Ecalle-
\Voronin invariants of (2.6) de ned in (2.10). More precisely, these are asymptotic expan-

1. They also depend upon the choice of the branch of log %

2. Here and in the sequel, the index j + 1 is taken modulo 4, i.e. vy = v, etc.



sions of Gevrey ordegr in with closely related estimates, i.e. there eRisB > 0 such
that, for all positive integeld , k,

IX 1
cik (") a " ABNYK 14 NN

n=2
If the branches of the logarithms are chosen as above Theorem 24 ftren we have
a2 = Cy ,8: k2=C, ,as2=€ X ZC,:' anday; o= € 2Ck for positive integer
k.
Idea of the proof\We indicate it only foj =1. We have

z X+ "

ci(") = 2 e
X

2 k= (V2 yi(3") )d:

If k < 0, then we can choose amyin the strip with positive imaginary part (independent
of ") and we obtain that;k is exponentially small. Ik > 0, then the change of unknown
= "T,x = "X ,withsome xedX suchthat[X; X +1] isinthe domaino¥, yi(:;"),

ields
y YA X +1

ck(") = ) e 2% v, y,("T;") T dT:

Now we use (2.16) and the inner expansions (2.15yf@andv,. Since the operations of
composition and inversion are compatible with Gevrey asymptotic expansions, this yields
a uniform asymptotic expansion of Gevrey or(%efor v, y.i("T;") "T. Theresult
follows easily integrating the expansion term by term. 0

Remark Observe that the functioqg = vj+1 y; id de ned using the non-normalized
v,y satisfyg (") = pp(x  T;( );")+ Tj+a () Tj( ) and hence their Fourier
coef cientsg, (") are related to the abowg, (") by

Go(")*+ Tjwa () Ti();
exp( 2inT j( )=")cn (") ifn6=0

go(")
&n (")

(2.17)

3. The reduced inner equation: Proof of Proposition 2.1.

The change of unknowl (X)2 = 2X + Tzlogx + U(X) in (2.6) yields the
equation
UX +1)= U(X)+ h X;U(X) (3.1)
with L
h(X;U)= X + XlogX + 2U log 1+ & : (3.2)



Observe that, i) is a solution of (3.1) satisfying(X ) = o(1) as +(K; )3 X I'1,

thenh X; U (X) '3’% as +(K; )3 X !'1.By(3.1), U isofthe same order
as the antiderivative df tendingto0ax ! 1,i.e. U is of order"’gx—x.

This leads us to introduce the following space. Eatenote the Banach vector space
of functionsU holomorphicon . such that%(;() is bounded, endowed with the norm

XU (X)
kUk= su :
><2p+ log X

GivenL > 0 large enough, IeB8Y%0; L) denote the closed ball & of center0 and radius
L,i.e.BYO;L)= fU2E; kUk Lg.

UsingthatX + n2  forallX 2 . andalln 2 N, we now rewrite (3.1) ina xed
point formU = T U, with

X
TUXX)= —+ hX+nU(X +n) (3.3)
n O
whereh is de ned in (3.2). This latter sum converges fordll2 . andallU 2 E since
h X;U(X) =0 X Z2logX .
Lemma3.1. Forall > 0 and allL ﬁ% there exist > 0 such that
T :BY0;L) ! B Y0;L) is a contraction.

Proof. As already seen, we have, for any xed> 0and anyU 2 BY0; L),

: log X :
h X;U (X) Xz B + 3X 11
hence, foK large enough, we have
8U2BY0;L)8X 2 +; h X;U(X) X ZlogX : (3.4)

Now we use, foranxX 2 . ,thatthe quotienjtfq*—j‘n can be written as a convex combi-

nation ofji—j and 1, namely

X+n _ jXj _L+ n
Xi+n  jXj+n'Xj Xj+n’

hence has at least distance- sin 5 from the origin. As a consequence, we have
8X 2 +8n2N; (jXj+n) jX +nj jX j+n (3.5)
If K sin 1, we can also estimate, foradl 2 . andalln 2 N,

jlog(X + n)j +In(jXj+ n):



With (3.3), (3.4) and (3.5), this yields
. NG + In(jXj+ n).
JTU(X)] 72 Xi+mz (3.6)
n 0

By a comparison of the sum and an integral, we estimate the sum of the right hand side
of (3.6) by 7
njxj+ *1 +|ntOlt 2InjXj

X2 iX t2 Xij
if K is large enough. Thanks to the condition brin the statement, we then obtain
JTUX)] L"})’(f.‘ forallX 2 .,i.e.kTUk L. Thereforel (BYO;L)) B 0;L).

Now letU;W 2 BY0;L) E . UsingthatX + logX + 2U(X)  3jXj if
U2BY0;L),X 2 .,andifK is large enough, we estimate similarly

h X;U(X) h X;W(X)

ZW(X) U(X)
X+ XlogX +  2U(X) X+ ZlogX + 2W(X)

4 FXj 2U(X) W(X)
4 ?iXj 3logXjku Wk
hence
X
TU(X) TW(X) kU Wk  (Xj+n)® +In(jXj+n): (3.7
n 0
By a comparison of the sum and an integral, we estimate the sum of the right hand side
of (3.7) by
Z + 1
iXj 3 +InjXj)+ t 3( +Intdt  2iXj ?InjXj 2iXj ?jlogXj;
iX]
if K is large enough, henc&@ U(X) TW(X) 2Xj ! 3kU WKkjXj %jlogXj.
ChoosingK suchtha®jXj ' 3 ZforallX 2 ., wethenobtaikTU TWk
%kU Wk, showing thafl is a contraction irBY0; L). 0
Let us now return to the proof of Proposition 2.1. By lemma thére exists a (unique)
solutionU, of (3.1) in the ballBY0; L) of E. Then the functiorY, given byY, (X) =
2X + TZ logX + U: (X) *% s a solution of (2.6) that satis es

1=2
Yi(X)=  2X + 4 logX + O logX



= 2
- X12 1+I0é;x>< +0 Io)%X +0 Ic;?X

If Y1 is another solution of (2.6) satisfying (X ) = X ¥+ X 1*2jogX +o(X !72)
as + 3 X !1,thenthe function Uj givenbyY?(X)= 2X + TZ logX + Ug(X)is
a solution of (3.1) that satis e (X ) = o(1). It follows thatU; = T Uy, with T given
by (3.3) andh given by (3.2), hencé X;U(X) = %, henceU; 2 E,
henceU; 2 BY0; L) for somel > 0 large enough, hendg; = U, by Lemma 3.1.

For a proof of the statement on the derivati(®, we change& into K + 1 and we
use Cauchy's formula

z :
(2)

1
UX)= — ———dz
) 210 j; xj=sin (2 X)?

applied to the function

PIXTLYL (X)X P X PPlogX:
Since' (z) = O X 32(logX)? uniformly for all z such thatz Xj = sin , we
obtain' 4X)= 0 X 3%2(logX)? as well, hence the wanted estimate Yg. 0

RemarkModifying if necessary, we can also prove that
Y2(X)= 5X 2+ 5(X PlogX)°+ O (X ¥2(logX)?)?; . 3X!IL
In order to prove the statements on the inverse fundtiofZ ) we show rst

Lemma 3.2. If K > 0is large enough, then for evedy 2 Q. (2K; 2 ) there exists a
uniqgueX 2 . (K; ) suchthak, (X)= Z.

Proof. It suf ces to show thatforevery 2 . (2K; 2 ) thereisauniqu¥ 2 . (K; )
such that 2Y, (X)? = U. By the estimate we proved above, we have

2Y, (X)?= X + }logX + o(1); X !1: (3.8)

This suggests to apply Rouché's theorem (X )= 2Y, (X)2 Uandg(X)= X
U. Clearlyg has exactly one zeroin, (K; ). If we showthaif (X) g(X)j < jo(X)j
on the boundary of . (K; ), then the hypotheses of Rouché's theorem are satis ed and
we obtain the wanted statement tfiahas a unique zero in. (K; ). The fact that we
work with in nite domains is not a problem here, because we can (for givpadd a
circular arcjX j = L, jarg(X)j with large radiud_ to the boundary and the
conditionjf (X) g(X)j= %Iogx + 0(1) < jX Uj=jg(X)jis satis ed there.

So we want to show that, K is large enough, then

2Y,(X)? X <jX Ujforu2 ,(2K;2)andX 2 @+ (K; ): (3.9)



By (3.8) and“j’?(—)j( I 0asX !'1 on@ +(K; ),itis suf cientto show that

X Uj jX jsin forUu2 +(2K;2)andX 2 @ +(K; ); (3.10)
if K is suf ciently large. In order to show this estimate, we consider, for exeryn the
rayarg(X K)= , its projectionUp (X ) on therayarg(U 2K ) = 2 . Let
C denote the intersection of the opposite rayg(X K) = andarg(U 2K) =

2 . Since the triangl€K; 2K; C) is isosceles aPK , we havejXj < jX Cj and
X Up(X)j=jX Cjsin foreveryX ontherayarg(X K)= . To sum up,

we have, forall 2 . (2K; 2 ) and allX witharg(X K)=

X Uj jX Up(X)j=jX Cjsin jX jsin:
By symmetry, the same inequality holds f&r on the other half of@ . (K; ), i.e. X
witharg(X K)= + ,and (3.10) is nally proved. 0

Lemma 3.2 shows the existence of an inverse fundfion Q. (2K; 2 ) I (K; ).
Using a classical statement on holomorphic functions (see e.g. [6], Section 10.33) we
prove thaV, is holomorphic. Sinc¥. (X) = X '72(1+0(1)), we rstobtainV; (Z) =
z? (1+0(2)) by replacingX = V. (Z). The estimate foY. (X ) yields more precisely

Z =V, (Z2)7%+ Vi (2) Plog (Vs (Z)) + o(Vs (Z) 2)

and thusv, (2) = 2 ° Zlog £ + o(1). The functional equation fov, follows

immediately from the difference equation (2.6)¥af replacingX = V. (Z).

4. A bounded inverse of « on a bounded domain.

Given ;" o > Osmall enough, le = S 5,3, 0 denote the sector
S=f"2Cjarg"j<; J'j<"og

As before, = sin 5 and ; is described in Figure 2.2. Then has the following
property: For allx 2 ; there exists a pathy : [0;1] ! 1[firin K" g, joining

ir andir and passing through, which is( ;d )-ascending for altl 2 5,3 inthe
following sense: Ifs <t thenim ( x(t)  x(s)e d i x(®  x(s)j. Infact 4
can be chosen piecewise polygonal.

AssumeK  1and"g 2r,andlet
& )+ gz = ox* ix2 () 3 2

Let Ho denote the space of bounded holomorphic function€prendowed with the
supremum norm. Observe that, for'alt S and allx 2 €, we have%j"j Xj 2.



Givenxg 2 cl(§ zdepending ort or not, letSy, denote the integration operator
X
de ned by Sy, f (x) = f (t)dt.

X
We reproduce below some results of [3], in particular Theorem 2 and its extension for
" complex described in Section 5 of [3]. These results can be gathered in the following
statement.

Proposition 4.1. There exists a bounded linear operdtbr : Ho | H ¢, satisfying
kU-k  3;suchthat, foralkg 2 cl(§ , the operatov ? = S,, "U- is arightinverse

of ., ie. wehave -V (x)= f(x)forallf 2Hoandallx 2 €\ (¢ ).

In the sequel we present an extension of this result for other normed spacesa@in
let H, denote the same spacetdg of bounded holomorphic functions B, but endowed
with the normkf ks := sup,, e jx 2f(x)j < +1g . Observe that, ii;b2 R, f 2 H,,
andg 2 Hy, thenfg 2 H 5+ p andkfgkas b K f kakgkpk.

Observe also that, & < b andf 2 Hy, thenf 2 H, and

kfka E° 2Kf kp; (4.1)

withe=r + 70 As a consequence, because we can rety@ndr if necessary, in a
sumf + gwithf 2 H, andg 2 Hy, a < b, we will keep in mind thagy can be neglected,
roughly speaking.

Given a bounded linear operatér: Hy ! H ,, we denote bkF kg its norm, i.e. the
best constant such that

KFfky k FKPKfks forall f 2 Hg: (4.2)

The main result of this section is the following.

Theorem 4.2. Foranya 2 Rnf 1g, there exists a linear operatdr : Hy ' H 441
with the following properties.

(i) V- isarightinverse of -, i.e. we have/-f (x+") V-.f(x)="f (x) forallf 2H ,
andallx 2 €\ (¢ ).

(i) V+ is bounded uniformly with respect to More preciselykV -k3*! is bounded by
a constant (a;K;r; ) depending only om, K ,r, and .

(iii) Inthe casea < 1, we haveV-f(r)=0 forallf 2H,. Inthe casa > 1, we
haveV -f (K")=0 forallf 2H,.

Remark. In the casea = 1, one cannot expect a bound independent ébr any
V- :H 1!H o. Indeed, this would give a bound for sorSg, at least on the interval
[K";r ], i.e. a bound for an antiderivative dfx independent of on this interval, which
is impossible.



Idea of proofGivena 2 Rnf 1gandh 2 H ,, we have to solve equation-u = h; u 2
Ha+1 . In order to use Proposition 4.1, we make the change of unkmugwn= x2v(x).
This yields equation
W= CcV+k;vV2H; (4.3)
with
(x+ "2 x
RN

We then consider the right invers&® of - given by Proposition 4.1, with a choice of
Xo depending upon whether< l1lora > 1. Precisely, ifa < 1, then we choose
v?=3S, "U-,andifa> 1,thenwe choos¥? = Sx- "U-. Actually, Lemma
4.3 below says that, in both cas&sis bounded uniformly with respect to The tedious
and lengthy proof is omitted.

Ca(x) = and k(x) =(x+") 2h(x) 2Hy:

Lemma 4.3.
(@ Ifa> 1,thenSk+ : Ha ! H 441 is bounded by a constant depending onlyson
and .

(b)Ifa< 1,thenS; :H, !'H 441 is bounded by a constant depending onlyacemd

In the sequelS alone will denote eithef; or Sk . As a consequence, a solution of
equation
v=VXk cVv)=(S "U: )k cuv)

will be a solution of (4.3). Passing on the left hand side the main part dependingfon
the right hand side, we now rewrite this latter equation in the form

v+ S(cav) = "U-(cav) + VIk:

We then construct a right inverse, of the operatoid + Sc; : v 7! v + S(cyv)
which is bounded in norm by a constant independent.ofNow the operatov 7!

v T, "U-(cav) fromH; toHgy; is close to identity, hence has an inverse, denoted
by P. Lastly, a solution of (4.3) is given by = PT -V %k. The complete proofs will
appear in a forthcoming article.

5. Proof of Theorem 2.2.

We prove the statement only fgi. The symmetries imply the statement fgrand
the proof forys; y4 is analogous. Before the proof, we have to introduce some notation.
Sety. (x) = Y. * ;inthis mannery. is a solution of

2

2y,

Yo = (5.1)



By Proposition 2.1, there exists a const@nt 0, depending only on, such that foK
large enough, andr small enough,andak 2 1,
1=2;

i Cx ¥"log* and jy?(x) »x

122 C x ¥2"(log ¥)? :

(5.2)
In particular, the functiong 7! x =2y, (x) andx 7! x*72y? (x) are bounded above and
below by constants independent'of
The notation - stands for the shift operator given by(x) = x + ". This operator will
be used in the following Leibniz-type rule:

(fg)=( ~Hlg+(f ) -9

LetC; = C; (") denote the constants

Jy+(x) x

Ci=ky?k 1= and Cz=kI=(y? -)ki=: (5.3)

Givena 2 Rnf 1gandf 2 H, andr > 0, the closed ball of centdr and radius is
denoted byBY(f; r ), andB is the closed ball

B=BY, y:; % ., Hiz (5.4)
The functiong is de ned by
9(0) = f40) andg(y) = § f(y) f(0) fory6=0 (5.5)
Our last notations are
G = sup kg(y)ko and G°= sup kg¥y)ko: (5.6)
y2B? y2B O
R =2C,Ckv-k*2G  and 1o = ky;;m i (5.7)
with the notation of (4.2), and
Br = BY(O;R) H 1: (5.8)

Reducing if needed the constafitsandr which de neS and 1, we assume that =
r+ = ro.Inthismanner, foralh 2Br H 3, wehaveu2H,-, and

kuki=» gl™? kuky 'R ré:ZR = y% 1:2;

hencey. + u2B.



Let us now begin the proof. The change of unknown= y. + uyields -y, +
«u= —~_f (y+ + u). Using (5.1) and using given by (5.5), we obtain

y+t+u
i " gy +u) Mgy +
U= ——  — uy= —— u):
2. vu) 2y, O 202 + uyys | O
We rewrite this equation as follows
2u 20,2
U= — -+ + Uu): 5.9
27 " 26, vy T Y 59)
In a rsttime, we consider the following linear equation
i Yk (5.10)
- 2y‘% . .
In order to solve (5.10), rst observe that the derivatyfeis a solution of the associated
2,,0
homogeneous equation. Indeed, differentiating (5.1) yieldg? = ?yy— We then
use the method of variation of constant, i.e. the changey? v. Since
?y?
s yVEY? ) vE v () )
2y%

equation (5.10) yields for the equation v = 370"— This latter equation can be solved

using the operatdv - given by Theorem 4.2. '
We therefore consider the operaior : Ho ! H ; given by

k
T"kzyg Vo yoi

+

To sum up, the operatdr- solves (5.10), i.eu = T~k is a solution of this equation.

Lemmab5.1. The operatod - : Ho ! H 1 is bounded uniformly with respect ta
Precisely, we have

KT-k§  C1CokV-K325;
with C1; C, given by (5.3).

Proof Letk 2 Hy; thenygk—” 2 H,-,, henceV - yok— 2 Hj-p, henceT -k 2 H 4,
and

k ok -
5 CikV Ko C1CokV - k32 Kkkko:

yi " 322 Vi wo1=2

kT-kky Cy V-

ad
Let us now return to equation (5.9). Recall tBat is de ned in (5.8).



Lemmab5.2. Ifr> 0and"og > 0 are small enough ardl is large enough then, for all
" 210;"o[, the map

20,2

M: Br!B g U7l Tr — 4
ROE R 2(y+ + u)y?

+ g(y+ + u)

is a contraction.

Proof. Letu 2 Bg andr;" o be suchthae=r + 70 ro. We havey. + u 2 B, hence

ka(y+ + u)kg G. We also havﬁf 2 Hy—p and

2u? 2 2 1 3 2p2 |, 1 3,
B Ty e Uk gk T RO K
hence, by (4.1),

2u2 2u2

1=2 ; 2 2p2 |1 3
s — e Gife G R% k=k,-

20y« + U)y: 0 2(y+ + U)YZ 122 | y. 172
SinceR = 2C1CykV « king k T-k} G, this proves thaM -(u) 2 Br. We prove
similarly thatM - is a contraction. 0

To conclude, the unique xed point of M - in Bg is a solution of (5.9). Moreover,

since we are in the case= % > 1of Theorem 4.2(iii), we hava (K" ) =0. Therefore

the functiony; = y+ + u satis es the conditions of Theorem 2.2.

6. Fatou coordinates: Proof of Theorem 2.4.

We begin this section with some auxiliary results, which are useful not only for this
section but also for Section 7. The proofs are straightforward but the details are a bit
cumbersome.

To simplify notation, we do not indicate thedependence of most functions. At some
instances during the proofs, the domains must be reduced slightly, for example to allow a
derivative of a bounded function to still be bounded. For the sake of simplicity, we will
also not indicate this here.

Lemma6.1. Forj =1;2, lety; : D; ! C be solutions of (2.1) on domaifts not
containing 0. We suppose thgt(x) = yo(x) + O(") uniformly forx 2 D; and that
D1\ D, is connected. Lef", resp.b 2 R denote the maximum, resp. minimum, of
Imx onD1\ D,.

Then, for any small enough, there exists arperiodic functionp : S! C de ned
onthestri=fx2C;b + < Imx<b™*™ gandsatisfying(x) = y1 x+ p(x)
forallx 2 D1\ D>\ S.



By Rouché's theorem, it can be proved tlyatis locally invertible; letv; denote such a
local inverse. The functiop is then simply given by(x) = vi(y2(x)) X. As bothy;
andy, are close tg/p, we havep(x) = O("). Since both satisfy (2.1), tHeperiodicity
of p follows.

Corollary 6.2 . With the notation of Lemma 6.1,let (D1[ D)\ S be a horizontally
convex domain (i.ex;x°2  andim x = Im x%imply [x; x°] ). Then the solution
y» can be analytically continued onby the formula of Lemma 6.1.

Of courseyy: is still a solution of (2.1) on . By symmetryy; can also be analytically
continued on by the formulay;(x) = y, x+ q(x) with the"-periodic functiomy(x) =

Va(yi(x))  Xx.

Corollary 6.3 . With the above notation, there exists a function s(") such that the
functionR : ! C; x 7! yi(x) Y2 x+ s(") is exponentially small. More precisely,
ifdx)=minlm x b + ;b* Imx ), thenwehav®(x)= O e 294 ()=" |

The functions is simply the constant terigy in the Fourier expansion qf

X
p)=  ce'

2Z

The functions is called theshiftin Section 7. The next result is based on general results
of [3].

Corollary 6.4 . LetD;1 D be horizontally convex domains. Assume that there exists
asolutiory; : D1 ! C of (2.1) and that the solutioyy = a, L of (2.2) is de ned orD 5.
Letb", respb 2 R denote the maximum, resp. minimum,lofx onD .

Then, for any compact subget of D, and any > 0, there exist8y > 0 such that,
forall" 210;"o], y1 can be analytically continued oro\ S, with

S=fx2C;b + < Imx<b* g
Actually, by Theorem 7 of [3], there exists a solutipnonK . Therefore, by Corollary 6.2
abovey; can be continued ok \ S.

Proof of Theorem 2.4. A consequence of Proposition 2.3 and of the estimaté&/foin
Proposition 2.1 is that, if > 0 arbitrarily small is xed, then for small enough an&
large enough, the function satis es

8u2®: (1 )UY? jvau)j @+ )u?% (6.1)

Now we consider other arguments forand thus of' = 2). It can be shown that
Theorem 2.2 and Proposition 2.3 are also valid if the intddl] is replaced by a sector
with suf ciently small opening angle bisected by the positive real axis.



Thenlet(S)L ; be agood covering of the origin (in theplane) by sectors of opening
at most2 . Since each-sectorS; can be reduced to a sector bisected by the positive real
axis using a rotation, the previous results can be carried ov8r.té\s such a rotation
changes toexp(2il=L ) , this leads to functions], j = 1;:::;4 on domaing} =
exp(2il=L )Qj, Q; de ned above Theorem 2.2, that are analogous to the functions of
Proposition 2.3; especially they satisfy (2.11) and are inverse to solytiosfy2.1).

Next we show that, on the intersectio@s\ Ql,, , we have

; 0 ;
vihb (2 v (20 Kexp e (6.2)
whereas, on the intersectio@#é \ Q{ 1, we have

j+1o jO .n H Z2
vt @ M @Y Kjjexp

(6.3)

with some positive constanis _ _

For the proof, xj;|. Applying Corollary 6.3 toy] andyy,, , we obtain the existence
of some functions = s(") such thaty! (x) yl,, x+ s(") isO e " onthe
intersection of their domains, with some constanfThis implies tha(vf;l vf )(2)
s(")isalsoO e "1 onQ \ Ql,, . Now we obtain (6.2) by differentiation.

For the proof of (6.3), we have to re ne Corollary 6.3 and its proofybrandy{ 1
The functionp de ned byp(x) = ( v{ 1 yf )(x) xis"-periodic and bounded on some
strip one boundary of which passes at a distancK §fj from the origin. Using the
Fourier series fop, its constant terng and estimates for the other coef cients, we prove
thatp(x) co(")= O j'je X1 with some positive. The factor" comes from the
estimate fon/f near the origin and the corresponding estimates for Fourier coef cients.

Carrying this over t()/{ * andvf , We obtain that

M VN2 ()= 0 jje &F

with some positive constarg Here some estimate analogous to (6.1) has been used.

Differentiation yields(V **  v1)%z) = O jzje €Z*="i | This nally gives (6.3) for
any positive < e

The estimates (6.2) and (6.3) are exactly the important hypotheses of the Main The-
orem 4.1 of the memoir [4]. We obtain composite asymptotic expansionse§) of

Gevrey order 1 for the functions = (v|)°. Especially, we obtaicAses forv{ = (v;)®
3

pa
VjO(Z;") 1 An(z)+ BL(2) " (6.4)
2 h=0

3. Starting here, we have to indicate the dependence of functions on " again.



where the functiong\, are holomorphic on some disk centered at the origdh, are
holomorphic oni! Q. (2K; 2 ) and have consistent asymptotic expansions of Gevrey
order
_ X
BL(Z) 1 DoymZ ™asz !1:
2 m 1
We refer to the explanations below Theorem 2.4 for details.
Finally, we use the initial conditions fof . In the casg = 1 (the others are analo-

gous), we have z,

vi(z;") = K" + vi(;")d:
Y. (K)
Now we separate the leading term of e&h i.e. we writeB1(Z) = Dy1Z 1+ C}(2),
g,}(Z) =0 2Z ? and Eltzegrate (6.4) term by term (for details see [4]). Weasge) =
z

An()d ,bB(Z2) = Cl(u) du and we collect the terms independentzah T

T(r)ms we nally obtain_thelz wantedAsE for v;.

The statement oty, and b}, follows from the factor in (6.3): Theorem 4.1 of [4]
applies to the familyl(vf YO j = 1,254,101 = 1L, The leading termag(z) can be
determined using the Schroder equation (7.4). The fact that the right hand side of the
outer expansion (2.14) is a formal solution of (7.4) implies that it contains only powers of

2

7. Application.

We present in this section an informal study of equation (1.9), rewritten below for
convenience:

1
=1+ = 7.1
y y (7.1)

It is well known that, for xed" > 0, the difference equation (7.1) has solutions
holomorphic on sectors with vertex at in nity. The dependencg,drowever, is not clear.
We start our study with the subsequent proposition. We use the notation of the somewhat
similar study of the inner reduced equation of Section 3. In particuldK; ) is de ned
in (2.7) and shown on Figure 2.1.

Proposition 7.1. Fix"g > 0: For all > 0 there exist& > 0 such that (7.1) has a
unique solutiory; de ned for" 210;"0],x 2 +(K; ) holomorphic with respect to
satisfying

yl (x;")= x+logx+o(l)asx!'1 in +(K; ): (7.2)
Similarly, there is a unique solutigt on . (K; ) satisfyingy® (x;") = x+log x+
o(l)asx!'1l in L+(K; ).On .(K; ) we usethe branch of the logarithm given
bylogx =log( x)+ i;o0on .(K; ) we use the principal value.



The proof is similar to that of Proposition 2.1 and is omittéfdK is suf ciently large,

then the solutiong® have inverse functiong' also called Fatou coordinates. These are

holomorphic functions of their rst variable in some domain containing in nite sectors
+ (K, ©) with somel€ > K ,€> | They satisfy

vl (z;"Y=z logz+ o(l)asz!1l (7.3)

and the functional equation

vz+" 1+ =v@)+m™ (7.4)
The formulav® y!  id de nes two functionsp! on the sectod . introduced
above (2.10), respectively dn = 1 .. They are bounded ardperiodic and hence
there exist Fourier expansions
1 .n X 1 inx="
pl(x")= o € (7.5)
n=0

with functionsct  :]0;"o] ! C which we callEcalle-Voronin invariants of (7.1) 4t

The choice of the branches of the logarithms in Proposition 7.1 impliesihat 0 and
1 - ;

GG = 2i.

We want to study the relation between these invariants of (7.1) at in nity and its
Ecalle-Voronin invariants near 0 introduced above Corollary 2.5 which will be denoted
by i, (*).

To this purpose, we rst prove that can be continued up to the doma@ of our
local solutionv,; given by Proposition 2.3 and by (2.16). The outer reduced equation of
(7.1)isy?=1+ % whose solutions are implicitely given by

y log(l+y)=x+ C: (7.6)

Then Corollary 6.4 shows thgt can be continued along the level linagy) = y
logl+y) = t+ Ci,t 2 [ty;tz], for anyt;;t5;C 2 R, t; <t,,C 6= 0 Asa
consequence; can be continued analytically onto any compact set included in the dark
region displayed on Figure 7.1 top right, whexgis locally invertible. In particulaw}

can be continued on the set 2 @, ; jzj > r, for an arbitraryr; 2]0;r[. We then

apply Lemma 6.1 t; andyi . This allows to continue: on ®; in its whole. By
Corollary 6.3, there exists = s(") = O(") such that the function? v, s(")is

exponentially small in any compact subset®f. We call this functiors the shiftin the
sequel. We will now compare some asymptotic expansions ahdv? .

Therefore, we rst indicate how to prove tha} does have an asymptotic expansion.
For this, we consider all arguments'ofUsing (7.5), we prove thgwv: )°and(v! )%are
exponentially close one to each otherlonandl , and then we apply Ramis-Sibuya's
theorem (classical, see for example [4], Lemma 4.4).




















