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ABSTRACT. Difference equations in the complex domain of the form y(x + " ) � y(x) = "f (y(x)) =y(x)
are considered. The step size " > 0 is a small parameter, and the equation has a singularity at y = 0 .
Solutions near the singularity are described using composite asymptotic expansions. More precisely,
it is shown that the derivative v0 of the inverse function v of a solution (the so-called Fatou coordinate)
admits a Gevrey asymptotic expansion in powers of the square root of " , denoted by � , involving
functions of y and of Y = y=� . This also yields Gevrey asymptotic expansions of the so-called Ecalle-
Voronin invariants of the equation which are functions of " . An application coming from the theory of
complex iteration is presented.

RÉSUMÉ. On considère des équations aux différences dans le plan complexe de la forme y(x +
" ) � y(x) = "f (y(x)) =y(x). Le pas de discrétisation " > 0 est un petit paramètre, et l'équation a une
singularité en y = 0 . On décrit les solutions près de la singularité en utilisant des développements
asymptotiques combinés. Plus précisément, on montre que la dérivée v0 de la fonction réciproque
(appelée coordonnée de Fatou) v d'une solution admet un développement asymptotique Gevrey en
puissances de la racine carrée de " , notée � , et faisant intervenir des fonctions de y et de Y = y=� .
On obtient également des développements asymptotiques Gevrey des invariants d'Écalle-Voronin de
l'équation, qui sont des fonctions de " . Une application venant de la théorie de l'itération complexe est
présentée.

KEYWORDS : difference equation with small step size, composite asymptotic expansion, Gevrey
asymptotic, Fatou coordinate, Ecalle-Voronin invariants.

MOTS-CLÉS : Équation aux différences à petit pas, développement asymptotique combiné, asymp-
totique Gevrey, coordonnée de Fatou, invariant d'Écalle-Voronin.



1. Introduction.

The main purpose of this article is to assemble two theories, which match each other
particularly well, in order to obtain new results on solutions of a difference equation with
singularity. The �rst theory,difference equations with small step size in the complex
domain, is developed in [3]. It concerns equations of the form

� " y = f (x; y; " ) (1.1)

wheref : 
 � C � CN � [0; "0] ! CN is holomorphic inx andy and continuous in" ,
" > 0 is a small parameter, and� " is the difference operator given by

� " y(x) = 1
"

�
y(x + " ) � y(x)

�
: (1.2)

The �rst main result of [3] is that, on horizontally convex domains, there exist solutions
of (1.1) close to any solution of the limiting differential equation

y0 = f (x; y; 0): (1.3)

A domain ofC is calledhorizontally convexif, for all its pointsx; x 0 with Im x = Im x0,
the segment[x; x 0] is contained in it. More precisely, giveny0 : D ! CN a solution
of (1.2) holomorphic on somex-domainD such that(x; y0(x); " ) 2 
 for all x 2 D and
all " 2 [0; "0], given an initial condition(x0; d(" )) , d : [0; "0] ! CN continuous with
d(0) = y0(x0), and given a horizontally convex domainH compactly contained inD , it
is shown in [3] that there exist"1 2 ]0; "0] and a family of solutionsy : D � ]0; "1] ! CN

of (1.1), continuous, holomorphic inx, such thaty(x0; " ) = d(" ) andy(x; " ) = y0(x) +
O(" ) onH .

A second result of [3] is that two solutions of (1.1) which coincide at some point
of D are exponentially close one to each other on the domainD . The last main result
is that, providedf is holomorphic in" in a complex neighborhood of0 andd(" ) has
an asymptotic expansiond(" ) �

P
n � 0 dn "n as" ! 0, the above solutionsy have an

asymptotic expansion
P

n � 0 yn (x)"n as" ! 0 uniformly onD, where the coef�cients
yn are holomorphic functions onD and can be determined recursively as solutions of
certain initial value problems of the form

y0
n = @f

@y(x; y0(x); 0)yn + Fn
�
x; y0(x); : : : ; yn � 1(x)

�
; yn (x0) = dn : (1.4)

The second theory in the title of the present article,composite asymptotic expansions,
is developed in [4]. It deals with asymptotic expansions of functions of two variablesx
and� , using at the same time functions ofx and functions of the quotientx

� .
At the origin this theory was developed to study singularly perturbed differential equa-

tions of the form
"y 0 = f (x)y + "P (x; y; " ) (1.5)



near a turning point. Here aturning pointis a zero of the functionf . Without loss, we
assume that this turning point is at the originx = 0 . Let the integerp � 2 be such that the
order of the zero off at x = 0 is p � 1, and let� = "1=p. One of the main results of [4]
is that there exists a solutiony of (1.5) de�ned for" in a sector

S(� �; �; " 0) = f " 2 C ; j" j < " 0 and � � < arg" < � g

and forx in a so-calledquasi-sectorV (�; �; r; �j� j) , � < 0 (hence depending onj� j =
j" j1=p), where

V (�; �; r; � ) = f x 2 C ; � � < jx j < r and� < argx < � g

with � < 0, and that this solution has acomposite asymptotic expansion(CAsE for short)
in the following sense. There exist a discD(0; r ), an in�nite quasi-sectorV = V(� �
�; � + �; 1; �) , and holomorphic functionsan : D (0; r ) ! C andgn : V ! C, gn having
an asymptotic expansion without constant term at in�nity, such that

y(x; " ) � 1
p

X

n � 0

�
an (x) + gn

�
x
�

� �
� n : (1.6)

The symbol� means that a partial sum up to orderN gives an approximation of the
solution to order� N , which is uniform in the whole domain" 2 S(� �; �; " 0); x 2
V (�; �; r; �j� j) . Therefore, formula (1.6) provides an approximation of the solution at
the same time near the turning point and away from it, i.e. at distances of order� from
the turning point as well as at distances of order1. The extra symbol1

p
means that we

also have estimates of Gevrey type for the remainders; some details can be found below
Theorem 2.4.

In the present article, we use this theory ofCAsEs in order to describe solutions of a dif-
ference equation with singularity. For the sake of simplicity, we consider anautonomous
difference equation, i.e. with a right hand side depending only ofy. We assume that the
equation has a singularity. Fixing this singularity at0, we assume thaty = 0 is a simple
pole of the right hand side. In other words, we consider a difference equation of the form

� " y =
1
y

f (y); (1.7)

wheref : U � C ! C is holomorphic in a domainU containing0, f (0) 6= 0, and our
purpose is to study the behavior of solutions of (1.7) havingsmallvalues. Observe that
the general theory described above applies on domains where the values of a solution are
bounded away from0, but this theory no longer applies near points where the solution
takes small values.

A new feature of this type of equations is that the limiting equations are of two dif-
ferent natures: Near the origin, theinner reduced equation(2.6) (see Section 2 below) is



a difference equation, whereas far from the origin theouter reduced equation(2.2) is a
differential equation. A natural question is whether an approximation of solutions of (1.7)
exists, using solutions of the outer reduced equation (2.2) forx of order1 and solutions
of the inner reduced equation (2.6) forx of order" , and which would be uniform, i.e. also
for all intermediatex small with respect to1 and large with respect to" .

Our CAsEs seem to be well adapted for this situation. It turns out, however, that we do
not obtainCAsEs for solutions of (1.7) but, except for a logarithmic term, for their inverse
functions, calledFatou coordinates. Given a solutiony of (1.7), letv = v(z; ") denote the
inverse function ofy with respect to the variablex, i.e. z = y(x; " ) , x = v(z; "). Then
v is a solution of the Schröder equation

v
�
z + " f (z)

z

�
= v(z) + ": (1.8)

An indication why things are much simpler in Fatou coordinates than for the solutions
themselves is the following. In the case of an autonomous equation of the form (1.7)
the existence of one solutiony implies the existence of a family of solutions: Ify is a
solution of (1.7) and� 2 C is �xed, then the shifted functiony� : x 7! y(x + � ) is also
a solution (one could even choose an"-periodic function for� ). If y has an asymptotic
expansion and� depends on" , then this expansion changes considerably under such a
shift. If v = v(z; ") is the inverse function ofy, then the inverse of the shifted solutiony�

is simplyv� : z 7! v(z; ") � � ; this changes the asymptotics not essentially.
In order to obtainCAsEs for the Fatou coordinates, we �rst construct solutions of (1.7),

denotedy1; : : : ; y4, on some domains
 j which will be described in the sequel. Then we
prove that they are invertible; the inverse functionsvj = y� 1

j ;j = 1 ; : : : ; 4, are solutions
of the Schröder equation (1.8) de�ned on some domains containing quasi-sectors which
cover an annulusf z 2 C ; � �j� j < jzj < r g, with some� < 0 < r with � = "1=2. It
turns out that the functionsvj +1 � v� 1

j are of the formid + pj , with pj periodic of period" .
As a consequence we obtain exponentially small estimates for the differencesv0

j +1 � v0
j

of the derivatives. Using a Ramis-Sibuya-type theorem we then obtain aCAsE for the
derivativev0of the Fatou coordinate. By integration, this yields aCAsE for v, except for a
logarithmic term. Using some inversion ofCAsEs, it might be possible to deduce aCAsE

for the solutiony itself, but thisCAsE would contain powers oflogx of any order. To
sum up, an approximation of the solutiony would be much more complicated than the
approximation of its inverse.

We are particularly interested in the so-calledÉcalle-Voronin invariants[2, 7] of equa-
tion (1.7). These invariants are the Fourier coef�cients of the periodic functionspj . They
play an important role in the theory of analytic equivalence of diffeomorphisms. The
CAsEs for theyj yield also Gevrey asymptotic expansions for these invariants.

Application. In the last Section 7 we use our results in the special case off (y) = 1 + y,
i.e. the difference equation

� " y = 1 +
1
y

: (1.9)



This equation has also solutions on some in�nite sectors, hence has also Écalle-Voronin
invariants at in�nity. The purpose of Section 7 is to compare these invariants with the
Écalle-Voronin invariants at the origin. This study shows in particular that the �rst Écalle-
Voronin invariant at in�nity, when extended to all arguments of" , has an in�nite number
of zeroes, which are asymptotically in an arithmetical sequence close to the imaginary
axis. Section 7 only sketches some ideas of proof; the complete proofs will appear in a
future article.

Equation (7.1) appears in [1] in the form of the iteration of the diffeomorphismFb :
Z 7! Z + 1 + b=Z tangent to the identity atZ = 1, i.e. with b = 1

" and Z = y
" in our

notation. The authors prove that the �rst Écalle-Voronin invariant, denoted byCr=s (b), an
entire function ofb, has super-exponential growth asjbj tends to in�nity which implies
that it has in�nitely many zeros. Because of different normalizations, the link between
their invariant and ours contains an additional termexp (2�i b logb). This explains the
different growth of the two functions and this could also be used to prove the super-
exponential growth ofCr=s (b).

Beyond this last result, our motivation to study equation (2.1) was to illustrate our
theory ofCAsEs in a context where the reduced outer and inner equations are of different
kinds, here a differential outer equation and a difference inner equation. We believe that
our CAsEs can be useful for other types of functional equations, e.g. partial differential
equations or other functional equations where small (or large) parameters occur.

2. Statements of the main results.

We consider the difference equation with small step size (1.7) rewritten below for
convenience

� " y =
1
y

f (y); (2.1)

wheref : U � C ! C is holomorphic in a domainU containing0, f (0) = � 2

2 6=0,
" > 0 is a small parameter, and� " is the difference operator given by (1.2). Equation
(2.1) has two limiting equations. The �rst one is the so-calledouter reduced equation

y0 =
1
y

f (y): (2.2)

obtained when" tends to0. One easily checks that equation (2.2) has a unique solution
y0, de�ned in a neighborhood of0 on the two-sheet Riemann surface� of the square
root, such thaty0(x) � �

p
x as x ! 0 on � . This solution is given implicitely by

x = a0(y0(x)) , with

a0(y) =
Z y

0

t dt
f (t)

: (2.3)



Our purpose is to study the behavior of solutions taking smallvalues nearx = 0 . A
�rst idea is to perform the change of variablesx = "X , y = �Y with � =

p
" , i.e.

Y (X ) = 1
� y("X ): (2.4)

This transforms (2.1) into the equation

� 1Y =
1
Y

f (� Y ); (2.5)

whose limit, as� ! 0, is the second limiting equation, theinner reduced equation

Y (X + 1) = Y (X ) +
� 2

2Y (X )
: (2.6)

Given� > 0 small enough andK > 0 large enough, consider the sector


 + (K; � ) = f X 2 C ; j arg(X � K )j < � � � g; (2.7)

and letQ+ (K; � ) denote the image of
 + (K; � ) by the functionX 7! �X 1=2, see Figure
2.1 for a sketch. Herelog is the principal determination of the logarithm on
 + (K; � ),
andX a = exp( a logX ).

�
� K0

�
2

�
2

0 �
p

K

Figure 2.1. The sector 
 + (K; � ) and its image Q+ (K; � ) by X 7! �X 1=2 in the case � > 0.

Concerning the inner reduced equation (2.6), we have the following result.

Proposition 2.1 . For all � > 0 there existsK > 0 such that (2.6) has a unique solution
Y+ de�ned on
 + = 
 + (K; � ) satisfying

Y+ (X ) = �X 1=2 + �
8 X � 1=2 logX + o(X � 1=2); X ! 1; X 2 
 + :



If K is large enough, then the functionY+ has an inverse functionV+ : Q+ (2K; 2� ) !

 + (K; � ) which satis�es

V+ (Z ) =
�

Z
�

� 2
� 1

2 log
�

Z
�

�
+ o(1); Q+ (2K; 2� ) 3 Z ! 1 (2.8)

and the functional equation

V
�

Z + � 2

2Z

�
= V (Z ) + 1 (2.9)

wheneverZ andZ + � 2

2Z are inQ+ (2K; 2� ).

Remarks. 1. This kind of statement is very classical. For the sake of completeness,
heowever, a detailed proof is given in Section 3.

2. More precisely one has

Y+ (X ) = �X 1=2 + �
8 X � 1=2 logX + O

�
X � 3=2(log X )2�

; 
 + 3 X ! 1

and the derivative ofY+ satis�es

Y 0
+ (X ) = �

2 X � 1=2 + O
�
X � 3=2(logX )2�

; 
 + 3 X ! 1:

3. The functionV+ is a so-calledFatou coordinateof (2.6).

By symmetry of (2.6), it follows that� Y+ is the only solutionY of (2.6) on 
 +

satisfyingY(X ) = � �X 1=2 � �
8 X � 1=2 logX + o(X � 1=2). Its inverse is the function

Z 7! V+ (� Z ) de�ned on� Q+ (2K; 2� ); it also satis�es (2.9).
For K large enough, one proves in a similar way that there exists a unique function

Y� de�ned on
 � = f X 2 C ; j arg(� X � K )j < � � � g satisfying

Y� (X ) = �X 1=2 + �
8 X � 1=2 logX + o(X � 1=2) asX ! 1 in 
 � ;

and satisfying (2.6) for allX 2 
 � such thatX + 1 2 
 � . HerelogX is the analytic
continuation of the principal branch onto
 � in the mathematically positive direction, i.e.
logX = log( � X )+ �i . In the same way, we continue the roots analytically byX � 1=2 =
� i (� X )� 1=2. For K large enough, we have again an inverseV� of Y� de�ned on
Q� (2K; 2� ) = i Q + (2K; 2� ) that satis�es (2.9) andV� (Z ) =

�
Z
�

� 2
� 1

2 log
�

Z
�

�
+ o(1).

In order to prove these statements, the proof in Section 2 has to be modi�ed essentially
only at one point: The operatorT in (3.3) has to be de�ned using summation over all
X � n, n positive integer.

As another solution of (2.6), we consider� Y� . It is also de�ned on
 � and sat-
is�es � Y� (X ) = � �X 1=2 � �

8 X � 1=2 logX + o(X � 1=2). Its inverse is the function
Z 7! V� (� Z ) de�ned on� Q� (2K; 2� ); it also satis�es (2.9). In this manner, we have
obtained four solutions of (2.6) and four solutions of (2.9) of particular interest.



If K is large enough, the function� + = V� � Y+ � id is de�ned (at least) on the
sector

I + =
�

X 2 C ;
�
�arg (X � iK ) � �

2

�
� < �

2 � 3�
	

:

Using (2.9), it is easily shown that� + is 1-periodic. The choice of the branches of the
logarithms in Proposition 2.1 and the estimate (2.8) ensure that� + (X ) ! 0 asI + 3
X ! 1. Therefore the Fourier series of � + must have the following form

� + (X ) =
1X

n =1

C+
n e2�inX for X 2 I + ; (2.10)

whereC+
n 2 C are constants.

Similarly, we treat the composition of the inverse ofY + with � Y � . The function
� � = V+ � (� Y� ) � id is de�ned (at least) on the sector

I � = f X 2 C ;
�
�
�arg (X + iK ) +

�
2

�
�
� <

�
2

� 3� g:

It is also 1-periodic, but only bounded asI � 3 X ! 1 because of the choice of the
branches of the logarithms. Its Fourier series is thus

� � (X ) =
1X

n =0

C �
n e� 2�inX for X 2 I � :

HereC �
0 = �i

2 ; the other constantsC �
n , n � 1 are closely related toC+

n , but the relation
is not interesting in our work. The other analogous compositions of the inverse of� Y �

with � Y + , respectively that of the inverse ofY + with � Y � , are identical to� � + id
with the above functions� � and yield no new constants.

The constantsC �
n are the so-calledÉcalle-Voronin invariants[2, 7] of equation (2.6).

Let us return to our original equation (2.1). We �xK; r; � > 0. Let z(" ) 2 [� r; ir ] be
such thatarg(z(" ) � K" ) = � � � and let
 1 = 
( K; r; �; " ) denote the interior of the
(non convex) hexagon with verticesK"; z (" ); ir; r; � ir; z(" ) in this order; see Figure 2.2.
Let 
 2 = 
 4 = � 
 1 = f x 2 C ; � x 2 
 1g and
 3 = 
 1.

We will also use the image of
 1 by x 7! �x 1=2, denoted byQ1, and the domains
Qj = i j � 1Q1, j = 2 ; 3; 4, obtained by rotations.

Our �rst main result is as follows; let us recall that� = "1=2.

Theorem 2.2. With the above notation, for all� > 0 there existK; R; " 0; r > 0 with
K" 0 < r and four solutionsy1; y2; y3; y4 of (2.1), de�ned for" 2 ]0; "0] andx 2 
 j , such
thaty1(K"; " ) = � y3(K"; " ) = �Y + (K ), y2(� K"; " ) = � y4(� K"; " ) = �Y � (� K ),
and

8" 2 ]0; "0] 8x 2 
 1;
�
�y1(x; " ) � �Y +

�
x
"

� �
� � Rjx j and

�
�y3(x; " ) + �Y +

�
x
"

� �
� � Rjx j;

8" 2 ]0; "0] 8x 2 � 
 1;
�
�y2(x; " ) � �Y �

�
x
"

� �
� � Rjx j and

�
�y4(x; " ) + �Y �

�
x
"

� �
� � Rjx j:
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Figure 2.2. Left: The domain 
 1 of existence of the solutions y1 ; y3 of (2.1). Right: The
image Q1 of 
 1 by x 7! x1=2 (� = 1 here).

The proof is in Section 5. Since the domains are no longer in�nite, we cannot have
uniqueness of the solutions anymore, but they are unique up to exponentially small terms.

We then prove the existence of the inverse functionsvj = y� 1
j analogous to the above

Fatou coordinates. Precisely, lete
 1 = 

�
2K; r

2 ; 2� ; "
�

be de�ned as
 1, with the con-
stants2K , r

2 , and2� instead ofK; r; � . We assume"0 � r
4K . Let eQ1 denote the image

of e
 1 by the functionX 7! �X 1=2. As before, we also usee
 j = ( � 1)j � 1 e
 1 and
eQj = i j � 1 eQ1, j = 2 ; 3; 4. On eQ1, we use the principal value oflog( z

�� ); on the other
eQj , we uselog( z

�� ) = log( z
�� i 1� j ) + j � 1

2 � i . Thus the branches of the logarithms are

the same on the intersectioneQj \ eQj +1 if j = 1 ; 2; 3, butnoton eQ4 \ eQ1.

Proposition 2.3 . With the above notation, ifj 2 f 1; 2; 3; 4g, r > 0 is small enough
andK > 0 is large enough then, for allz 2 eQj , the equationyj (x; " ) = z has a unique
solutionx 2 
 j , denoted byx = vj (z; "). This gives a holomorphic functionvj de�ned
for z 2 eQj ; " 2]0; "0], the values of which are in
 j . It is a solution of

v
�

z + " f (z)
z

�
= v(z) + ": (2.11)

Moreover, we have

v1(�Y + (K ); � 2) = K� 2; v2(�Y � (� K ); � 2) = � K� 2;
v3(� �Y + (K ); � 2) = K� 2; and v4(� �Y � (� K ); � 2) = � K� 2;



whereK is the constant of Theorem 2.2, and there existR; � 0 > 0 such that for all
z 2 eQj , � 2 ]0; � 0]

�
�
�v1(z; � 2) � � 2V+ ( z

� )
�
�
� � R jzj3 ;

�
�
�v3(z; � 2) � � 2V+ (� z

� )
�
�
� � R jzj3 ;

�
�
�v2(z; � 2) � � 2V� ( z

� )
�
�
� � R jzj3 ; and

�
�
�v4(z; � 2) � � 2V� (� z

� )
�
�
� � R jzj3 :

The proof is analogous to that of Proposition 2.1; it will be omitted here.
For �xed z 6= 0in the appropriate domains, the limitsvj (z;0) = lim " ! 0 vj (z; ") are

solutions ofv0(z) f (z)
z = 1; this is obtained easily from (2.11) in the limit" ! 0. The

approximation conditions of the above proposition imply thatvj (z;0) = a0(z), wherea0

is given in (2.3).
The approximation conditions of the above proposition also imply that, for �xedZ

suf�ciently large such that�Z is in the appropriate domain,lim � ! 0 � � 2vj (�Z; � 2) is one
of the four functionsV� (� Z ).

Thus we haveouter approximations (forz �xed) and inner approximations (forZ
�xed) for vj . The most important result of our article re�nes these statements, not only
to the existence of full outer and inner expansions, but to full uniform expansions in the
whole domainseQj . This is achieved using so-calledcomposite asymptotic expansions
(CAsEs). We refer to [4] for a detailed discussion of this notion and its properties. Never-
theless, we will give explanations below the theorem. In the present article, we adopt the
notationbj

n of [4] in case of two indices, with one index in superscript; we hope this will
not bring confusion to the reader with the usual powers� n ; i j � 1, etc.

Theorem 2.4. The Fatou coordinatesvj of (2.1) have composite asymptotic expansions
(CAsEs) of Gevrey order12 :

vj (z; � 2) � 1
2

a0(z) + S(� ) log
�

z
��

�
+ Tj (� ) +

X

n � 2

�
an (z) + bj

n

�
z
�

� �
� n (2.12)

as0 < � ! 0 uniformly for z 2 eQj , wherean are analytic onjzj < r= 2, an (0) = 0
andbj

n are holomorphic oni j � 1Q+ (2K; 2� ), cf. above Proposition 2.1. The latter have
consistent asymptotic expansions of Gevrey order1

2

bj
n (Z ) � 1

2

X

m � 1

Bn m Z � m asZ ! 1:

Furthermore, the functionsS, Tj admit asymptotic expansions of Gevrey order1
2 :

S(� ) � 1
2

X

n � 1

Sn � 2n ; Tj (� ) � 1
2

X

n � 2

Tj n � n ;

the functiona0 is given in (2.3) and the functionsbj
0, bj

1 andan , n odd, are identically
zero. Moreover, we haveS1 = � 1

2 , T12 = T22 = 0 , T32 = T42 = 1
2 � i .



By de�nition, (2.12) means that there existA; B; � 0 > 0 such that, for all� 2 ]0; � 0], all
z 2 eQj , and allN 2 N, N � 2, one has

�
�
�
�
�
vj (z; � 2) � a0(z) � S(� ) log

�
z

��

�
� Tj (� ) �

N � 1X

n = 2

�
an (z) + bj

n

�
z
�

� �
� n

�
�
�
�
�

�

AB N �
�
1 + N

2

�
� N :

The statement on thebj
n means that there existA; B > 0 such that, for all integersn �

2; M � 1 and allZ 2 i j � 1Q+ (2K; 2� ), one has

jZ jM
�
�
�
�
�
bj

n (Z ) �
M � 1X

m =1

Bnm X � m

�
�
�
�
�

� AB n + M �
�

M + n
2 + 1

�
: (2.13)

Observe that thean , Bnm andS are independent ofj , whereas thebj
n andTj are not.

An important consequence of (2.12) (see [4], Proposition 3.7) is the existence of so-
called outer and inner expansions ofvj of Gevrey order12 . More precisely, for every
r1 2]0; r

2 [

vj (z; � 2) � 1
2

a0(z) + S(� ) log
�

z
�

�
� S(� ) log � + Tj (� ) +

X

n � 2

dn (z)� n (2.14)

as � > 0, � ! 0 uniformly for z 2 eQj with jzj > r 1, wheredn (z) = an (z) +
n � 2X

m =1

Bn � m;m z� m , and for everyK 1 > 2K

vj (�Z; � 2) � 1
2

S(� ) log
�

Z
�

�
+ Tj (� ) +

X

n � 2

hj
n (Z )� n (2.15)

as � > 0, � ! 0 uniformly for �Z 2 eQj with 2K < jZ j < K 1, wherehj
n (Z ) =

bj
n (Z ) +

P n
m =1 An � m;m Z m if aj (z) =

P
k> 0 A jk zk . Here we use thata0(z) = O(z2)

and thus we also haveA00 = A01 = 0 .
The proof of Theorem 2.4 is given in Section 6. In fact we �rst prove, using the main

result of [4], that the derivativesv0
j (z; ") of the Fatou coordinates haveCAsEs of Gevrey

order 1
2 ; here no logarithm appears. Because of the initial conditions of Proposition 2.3,

we conclude forvj by integration; in the casej = 1 for example, we have (with" = � 2)

v1(z; ") = K" +
Z z

�Y + (K )
v0

1(�; " ) d�:

The integration of aCAsE is again treated in [4]; the logarithms appear because each term
analogous tobj

n (Z ) in this CAsE contains a multiple of1=Z in its expansion.



Remark.The right hand side of (2.12) is a composite formal series solution of (2.11). It
can be shown that this determines the formal expression except forTj ; this will be done on
an example in Section 7. The (Gevrey) asymptotic expansions ofTj (� ) are determined by
the initial conditions of thevj (see below (2.11)) and the corresponding initial conditions
(on a formal level) for the right hand sides of (2.12). Then theTj can be chosen by
the Borel-Ritt-Gevrey theorem as any functions having these asymptotic expansions of
Gevrey order12 .

The additive constantsTj (� ) in the expansions depend upon the initial conditions of
thevj ; especially they depend upon the choice ofK 1. To avoid problems in the sequel,
we want to normalize our solutions of (2.11) such that their Gevrey asymptotic expansions
are uniquely determined by the equations and normalize the solutions of (2.1) accordingly
– thus the functions are determined by the equation up to exponentially small terms. More
precisely, we put forj = 1 ; :::; 4

v�
j (z; � 2) = vj (z; � 2) � Tj (� ); y�

j (x; � 2) = yj (x + Tj (� ); � 2): (2.16)

Observe thatv�
j is inverse toy�

j and that the domains ofvj andv�
j are the same, whereas

the domain ofy�
j is obtained by shifting that ofyj . Here it is important thatTj (� ) =

O(� 2) and thus the domain ofy�
j is essentially of the same type as
 j . In the sequel, we

can assume without loss in generality thaty�
j are de�ned on
 j andv�

j are de�ned oneQj

as de�ned above, providedK is suf�ciently large andr > 0 is suf�cently small.
It is easy to check that the functionspj = v�

j +1 � y�
j � id , j = 1 ; :::4, 2 are " -

periodic inx. A priori these functions are de�ned on the sets
�
y�

j

� � 1
�

eQj +1

�
= f x 2


 j ; y�
j (x) 2 eQj +1 g. Their periodicity allows to continue them analytically to some strip

�
x 2 C ; eK" < (� 1)j � 1Im x < er

	
with some eK , er > 0. The Fourier coef�cientscjn

of these functions, determined by

pj (x; " ) =
X

n 2 Z

cjn (" )e2�inx="

are called Écalle-Voronin invariants of (2.1). It turns out thatcjn is exponentially small if
(� 1)j � 1n is negative. For the other Écalle-Voronin invariants we have

Corollary 2.5 . If (� 1)j � 1k > 0, then the functioncjk admits an asymptotic expansionP
n � 2 ajkn � n in powers of� = "1=2, whereajk 2 is closely related to the �rst Écalle-

Voronin invariants of (2.6) de�ned in (2.10). More precisely, these are asymptotic expan-

1. They also depend upon the choice of the branch of log
�

z
��

�
:

2. Here and in the sequel, the index j + 1 is taken modulo 4, i.e. v�
5 = v�

1 etc.



sions of Gevrey order12 in � with closely related estimates, i.e. there existA; B > 0 such
that, for all positive integersN , k,

�
�
�
�
�
cjk (" ) �

N � 1X

n =2

ajkn � n

�
�
�
�
�

� AB N + k �
�
1 + N

2

�
� N :

If the branches of the logarithms are chosen as above Theorem 2.4 foreQj , then we have
a1k2 = C+

k , a2;� k; 2 = C �
k , a3k2 = e� k� 2

C+
k anda4;� k; 2 = ek� 2

C �
k for positive integer

k.

Idea of the proof.We indicate it only forj = 1 . We have

c1k (" ) = 1
"

Z x + "

x
e� 2� ik�=" (v�

2 � y�
1 (�; " ) � � ) d�:

If k < 0, then we can choose anyx in the strip with positive imaginary part (independent
of " ) and we obtain thatc1k is exponentially small. Ifk > 0, then the change of unknown
� = "T , x = "X , with some �xedX such that" [X; X +1] is in the domain ofv2 � y1(:; " ),
yields

c1k (" ) =
Z X +1

X
e� 2�ikT �

v�
2 � y�

1 ("T; " ) � "T
�

dT:

Now we use (2.16) and the inner expansions (2.15) forv1 andv2. Since the operations of
composition and inversion are compatible with Gevrey asymptotic expansions, this yields
a uniform asymptotic expansion of Gevrey order1

2 for v�
2 � y�

1("T; " ) � "T . The result
follows easily integrating the expansion term by term.

Remark.Observe that the functionsepj = vj +1 � yj � id de�ned using the non-normalized
vj ; yj satisfy epj (x; " ) = pj (x � Tj (� ); " ) + Tj +1 (� ) � Tj (� ) and hence their Fourier
coef�cientsecjn (" ) are related to the abovecjn (" ) by

ecj 0(" ) = cj 0(" ) + Tj +1 (� ) � Tj (� );

ecjn (" ) = exp( � 2�inT j (� )=") cjn (" ) if n 6= 0:
(2.17)

3. The reduced inner equation: Proof of Proposition 2.1.

The change of unknownY(X )2 = � 2X + � 2

4 logX + U(X ) in (2.6) yields the
equation

U(X + 1) = U(X ) + � 2

4 h
�
X ; U(X )

�
(3.1)

with
h(X; U ) =

�
X + 1

4 logX + � � 2U
� � 1

� log
�
1 + 1

X

�
: (3.2)



Observe that, ifU is a solution of (3.1) satisfyingU(X ) = o(1) as
 + (K; � ) 3 X ! 1,
thenh

�
X; U (X )

�
� � log X

4X 2 as 
 + (K; � ) 3 X ! 1. By (3.1), U is of the same order
as the antiderivative ofh tending to 0 asX ! 1, i.e. U is of order log X

X .
This leads us to introduce the following space. LetE denote the Banach vector space

of functionsU holomorphic on
 + such thatXU (X )
log X is bounded, endowed with the norm

kUk = sup
X 2 
 +

�
�
�
�
XU (X )
logX

�
�
�
� :

GivenL > 0 large enough, letB0(0; L ) denote the closed ball ofE of center0 and radius
L , i.e. B0(0; L ) = f U 2 E ; kUk � Lg.

Using thatX + n 2 
 + for all X 2 
 + and alln 2 N, we now rewrite (3.1) in a �xed
point formU = T U, with

T U(X ) = � � 2

4

X

n � 0

h
�
X + n; U(X + n)

�
(3.3)

whereh is de�ned in (3.2). This latter sum converges for allX 2 
 + and allU 2 E since
h

�
X; U (X )

�
= O

�
X � 2 logX

�
.

Lemma 3.1 . For all � > 0 and all L � j � j 2

2 sin 2 ( � =2) , there existsK > 0 such that
T : B0(0; L ) ! B 0(0; L ) is a contraction.

Proof. As already seen, we have, for any �xedL > 0 and anyU 2 B 0(0; L ),

h
�
X; U (X )

�
� �

logX
4X 2 as 
 + 3 X ! 1;

hence, forK large enough, we have

8U 2 B 0(0; L ) 8X 2 
 + ;
�
�h

�
X; U (X )

� �
� �

�
�X � 2 logX

�
� : (3.4)

Now we use, for anyX 2 
 + , that the quotientX + n
jX j+ n can be written as a convex combi-

nation of X
jX j and1, namely

X + n
jX j + n

=
jX j

jX j + n
:

X
jX j

+
n

jX j + n
:1;

hence has at least distance� = sin �
2 from the origin. As a consequence, we have

8X 2 
 + 8n 2 N; �( jX j + n) � jX + nj � jX j + n: (3.5)

If K sin � � 1, we can also estimate, for allX 2 
 + and alln 2 N,

j log(X + n)j � � + ln( jX j + n):



With (3.3), (3.4) and (3.5), this yields

jT U(X )j �
j� j2

4� 2

X

n � 0

� + ln( jX j + n)
(jX j + n)2 : (3.6)

By a comparison of the sum and an integral, we estimate the sum of the right hand side
of (3.6) by

ln jX j + �
jX j2

+
Z + 1

jX j

� + ln t
t2 dt �

2 ln jX j
jX j

;

if K is large enough. Thanks to the condition onL in the statement, we then obtain
jT U(X )j � L ln jX j

jX j for all X 2 
 + , i.e. kT Uk � L . ThereforeT (B0(0; L )) � B 0(0; L ).

Now let U; W 2 B 0(0; L ) � E . Using that
�
�X + 1

4 logX + � � 2U(X )
�
� � 1

2 jX j if
U 2 B 0(0; L ), X 2 
 + , and ifK is large enough, we estimate similarly

�
�h

�
X; U (X )

�
� h

�
X; W (X )

� �
�

=

�
�
�
�
�

� � 2
�
W (X ) � U(X )

�

�
X + 1

4 logX + � � 2U(X )
��

X + 1
4 logX + � � 2W (X )

�

�
�
�
�
�

� 4� � 2jX j � 2
�
�U(X ) � W (X )

�
�

� 4� � 2jX j � 3j logX j kU � W k

hence
�
�T U(X ) � T W (X )

�
� � � � 3kU � W k

X

n � 0

(jX j + n)� 3�
� + ln( jX j + n)

�
: (3.7)

By a comparison of the sum and an integral, we estimate the sum of the right hand side
of (3.7) by

jX j � 3(� + ln jX j) +
Z + 1

jX j
t � 3(� + ln t) dt � 2jX j � 2 ln jX j � 2jX j � 2j logX j;

if K is large enough, hence
�
�T U(X ) � T W (X )

�
� � 2jX j � 1� � 3kU � W k jX j � 1j logX j.

ChoosingK such that2jX j � 1� � 3 � 1
2 for all X 2 
 + , we then obtainkT U � T W k �

1
2 kU � W k, showing thatT is a contraction inB0(0; L ).

Let us now return to the proof of Proposition 2.1. By lemma 3.1,there exists a (unique)
solutionU+ of (3.1) in the ballB0(0; L ) of E. Then the functionY+ given byY+ (X ) =
�
� 2X + � 2

4 logX + U+ (X )
� 1=2

is a solution of (2.6) that satis�es

Y+ (X ) =
�

� 2X + � 2

4 logX + O
� log X

X

� � 1=2



= � X 1=2
�

1 + log X
8X + O

� � log X
X

� 2
�

+ O
� log X

X 2

� �
:

If Y1 is another solution of (2.6) satisfyingY1(X ) = �X 1=2+ �
8 X � 1=2 logX + o(X � 1=2)

as
 + 3 X ! 1, then the function U1 given byY 2
1 (X ) = � 2X + � 2

4 logX + U1(X ) is
a solution of (3.1) that satis�esU1(X ) = o(1). It follows thatU1 = T U1, with T given
by (3.3) andh given by (3.2), henceh

�
X; U 1(X )

�
= � (1+ o(1)) log X

4X 2 , henceU1 2 E,
henceU1 2 B 0(0; L ) for someL > 0 large enough, henceU1 = U+ by Lemma 3.1.

For a proof of the statement on the derivativeY 0
+ , we changeK into K + 1 and we

use Cauchy's formula

' 0(X ) =
1

2� i

Z

j z� X j=sin �

' (z)
(z � X )2 dz

applied to the function

' : X 7! Y+ (X ) � �X 1=2 � �
8 X � 1=2 logX:

Since' (z) = O
�
X � 3=2(log X )2

�
uniformly for all z such thatjz � X j = sin � , we

obtain' 0(X ) = O
�
X � 3=2(log X )2

�
as well, hence the wanted estimate forY 0

+ .

Remark.Modifying � if necessary, we can also prove that

Y 0
+ (X ) = �

2 X � 1=2 + �
8 (X � 1=2 logX )0+ O

�
(X � 3=2(log X )2)0� ; 
 + 3 X ! 1:

In order to prove the statements on the inverse functionV+ (Z ) we show �rst

Lemma 3.2 . If K > 0 is large enough, then for everyZ 2 Q+ (2K; 2� ) there exists a
uniqueX 2 
 + (K; � ) such thatY+ (X ) = Z .

Proof. It suf�ces to show that for everyU 2 
 + (2K; 2� ) there is a uniqueX 2 
 + (K; � )
such that� � 2Y+ (X )2 = U. By the estimate we proved above, we have

� � 2Y+ (X )2 = X + 1
4 logX + o(1); X ! 1: (3.8)

This suggests to apply Rouché's theorem tof (X ) = � � 2Y+ (X )2 � U andg(X ) = X �
U. Clearlyg has exactly one zero in
 + (K; � ). If we show thatjf (X ) � g(X )j < jg(X )j
on the boundary of
 + (K; � ), then the hypotheses of Rouché's theorem are satis�ed and
we obtain the wanted statement thatf has a unique zero in
 + (K; � ). The fact that we
work with in�nite domains is not a problem here, because we can (for givenU) add a
circular arcjX j = L , jarg(X )j � � � � with large radiusL to the boundary and the
conditionjf (X ) � g(X )j =

�
� 1

4 logX + o(1)
�
� < jX � Uj = jg(X )j is satis�ed there.

So we want to show that, ifK is large enough, then
�
� � � 2Y+ (X )2 � X

�
� < jX � Uj for U 2 
 + (2K; 2� ) andX 2 @
 + (K; � ): (3.9)



By (3.8) andlog X
jX j ! 0 asX ! 1 on@
 + (K; � ), it is suf�cient to show that

jX � Uj � jX j sin � for U 2 
 + (2K; 2� ) andX 2 @
 + (K; � ); (3.10)

if K is suf�ciently large. In order to show this estimate, we consider, for everyX on the
rayarg(X � K ) = � � � , its projectionUP (X ) on the rayarg(U � 2K ) = � � 2� . Let
C denote the intersection of the opposite raysarg(X � K ) = � � andarg(U � 2K ) =
� 2� . Since the triangle(K; 2K; C ) is isosceles at2K , we havejX j < jX � Cj and
jX � UP (X )j = jX � Cj sin � for everyX on the rayarg(X � K ) = � � � . To sum up,
we have, for allU 2 
 + (2K; 2� ) and allX with arg(X � K ) = � � �

jX � Uj � jX � UP (X )j = jX � Cj sin� � jX j sin �:

By symmetry, the same inequality holds forX on the other half of@
 + (K; � ), i.e. X
with arg(X � K ) = � � + � , and (3.10) is �nally proved.

Lemma 3.2 shows the existence of an inverse functionV+ : Q+ (2K; 2� ) ! 
 + (K; � ).
Using a classical statement on holomorphic functions (see e.g. [6], Section 10.33) we
prove thatV+ is holomorphic. SinceY+ (X ) = �X 1=2(1+ o(1)) , we �rst obtainV+ (Z ) =
�

Z
�

� 2
(1+ o(1)) by replacingX = V+ (Z ). The estimate forY+ (X ) yields more precisely

Z
� = V+ (Z )1=2 + 1

8 V+ (Z )� 1=2 log (V+ (Z )) + o(V+ (Z )� 1=2)

and thusV+ (Z ) =
�

Z
�

� 2
� 1

2 log
�

Z
�

�
+ o(1). The functional equation forV+ follows

immediately from the difference equation (2.6) ofY+ replacingX = V+ (Z ).

4. A bounded inverse of � " on a bounded domain.

Given�; " 0 > 0 small enough, letS = S
�

� �
2 ; �

2 ; "0
�

denote the sector

S = f " 2 C ; j arg" j < �; j" j < " 0g:

As before,� = sin �
2 and 
 1 is described in Figure 2.2. Then
 1 has the following

property: For allx 2 
 1 there exists a path x : [0; 1] ! 
 1 [ f� ir; ir; K" g, joining
� ir andir and passing throughx, which is(�; d )-ascending for alld 2

�
� �

2 ; �
2

�
in the

following sense: Ifs < t thenIm
�
( x (t) �  x (s))e� id

�
� �j x (t) �  x (s)j. In fact  x

can be chosen piecewise polygonal.
AssumeK � 1

2 and"0 � 2r , and let

e
 = 
 1(" ) +
�

� "
2 ; "

2

�
=

�
x + � ; x 2 
 1(" ); � "

2 � � � "
2

	
:

Let H 0 denote the space of bounded holomorphic functions one
 , endowed with the
supremum norm. Observe that, for all" 2 S and allx 2 e
 , we haveK

2 j" j� � jx j � 2r .



Given x0 2 cl( e
) , depending on" or not, letSx 0 denote the integration operator

de�ned bySx 0 f (x) =
Z x

x 0

f (t) dt.

We reproduce below some results of [3], in particular Theorem 2 and its extension for
" complex described in Section 5 of [3]. These results can be gathered in the following
statement.

Proposition 4.1 . There exists a bounded linear operatorU " : H 0 ! H 0, satisfying
kU " k � 5

� 2 ; such that, for allx0 2 cl(e
) , the operatorV 0
" = Sx 0 � "U " is a right inverse

of � " , i.e. we have� " V 0
" f (x) = f (x) for all f 2 H 0 and allx 2 e
 \ ( e
 � " ).

In the sequel we present an extension of this result for other normed spaces. Givena 2 R,
let H a denote the same space asH 0 of bounded holomorphic functions ine
 , but endowed
with the normkf ka := supx 2 e
 jx � a f (x)j < + 1g . Observe that, ifa; b 2 R, f 2 H a ,
andg 2 H b, thenfg 2 H a+ b andkfg ka+ b � k f kakgkbk.

Observe also that, ifa < b andf 2 H b, thenf 2 H a and

kf ka � er b� akf kb; (4.1)

with er = r + " 0
2 . As a consequence, because we can reduce"0 andr if necessary, in a

sumf + g with f 2 H a andg 2 H b, a < b, we will keep in mind thatg can be neglected,
roughly speaking.

Given a bounded linear operatorF : H a ! H b, we denote bykF kb
a its norm, i.e. the

best constant such that

kF f kb � k F kb
akf ka for all f 2 H a : (4.2)

The main result of this section is the following.

Theorem 4.2. For anya 2 R n f� 1g, there exists a linear operatorV " : H a ! H a+1

with the following properties.
(i) V " is a right inverse of� " , i.e. we haveV " f (x+ " ) � V " f (x) = "f (x) for all f 2 H a

and allx 2 e
 \ ( e
 � " ).
(ii) V " is bounded uniformly with respect to" . More precisely,kV " ka+1

a is bounded by
a constantL(a; K; r; � ) depending only ona, K , r , and� .
(iii) In the casea < � 1, we haveV " f (r ) = 0 for all f 2 H a . In the casea > � 1, we
haveV " f (K" ) = 0 for all f 2 H a .

Remark. In the casea = � 1, one cannot expect a bound independent of" for any
V " : H � 1 ! H 0. Indeed, this would give a bound for someSx 0 at least on the interval
[K"; r ], i.e. a bound for an antiderivative of1=x independent of" on this interval, which
is impossible.



Idea of proof.Givena 2 Rnf� 1gandh 2 H a , we have to solve equation� " u = h; u 2
H a+1 . In order to use Proposition 4.1, we make the change of unknownu(x) = xav(x).
This yields equation

� " v = � cav + k; v 2 H 1 (4.3)

with

ca (x) =
(x + ")a � xa

" (x + " )a and k(x) = ( x + ") � ah(x) 2 H 0:

We then consider the right inverseV 0
" of � " given by Proposition 4.1, with a choice of

x0 depending upon whethera < � 1 or a > � 1. Precisely, ifa < � 1, then we choose
V 0

" = Sr � "U " , and ifa > � 1, then we chooseV 0
" = SK" � "U " . Actually, Lemma

4.3 below says that, in both cases,S is bounded uniformly with respect to" . The tedious
and lengthy proof is omitted.

Lemma 4.3 .
(a) If a > � 1, thenSK" : H a ! H a+1 is bounded by a constant depending only ona
and� .

(b) If a < � 1, thenSr : H a ! H a+1 is bounded by a constant depending only ona and
� .

In the sequel,S alone will denote eitherSr or SK" . As a consequence, a solution of
equation

v = V 0
" (k � cav) = ( S � "U " )(k � cav)

will be a solution of (4.3). Passing on the left hand side the main part depending onv of
the right hand side, we now rewrite this latter equation in the form

v + S(cav) = "U " (cav) + V 0
" k:

We then construct a right inverseT a of the operatorid + Sca : v 7! v + S(cav)
which is bounded in norm by a constant independent of" . Now the operatorv 7!
v � T a

�
"U " (cav)

�
from H 1 to H 1; is close to identity, hence has an inverse, denoted

by P. Lastly, a solution of (4.3) is given byv = PT " V 0
" k. The complete proofs will

appear in a forthcoming article.

5. Proof of Theorem 2.2.

We prove the statement only fory1. The symmetries imply the statement fory2 and
the proof fory3; y4 is analogous. Before the proof, we have to introduce some notation.
Sety+ (x) = �Y +

�
x
"

�
; in this manner,y+ is a solution of

� " y+ =
� 2

2y+
: (5.1)



By Proposition 2.1, there exists a constantC > 0, depending only on� , such that forK
large enough,� 0 andr small enough, and allx 2 
 1,

jy+ (x)� �x 1=2 j � C
�
�x � 1=2" log x

"

�
� and jy0

+ (x)� �
2 x � 1=2j � C

�
�x � 3=2" (log x

" )2
�
�:

(5.2)
In particular, the functionsx 7! x � 1=2y+ (x) andx 7! x1=2y0

+ (x) are bounded above and
below by constants independent of" .
The notation� " stands for the shift operator given by� " (x) = x + " . This operator will
be used in the following Leibniz-type rule:

� " (fg ) = (� " f )g + ( f � � " )(� " g):

Let Cj = Cj (" ) denote the constants

C1 = ky0
+ k� 1=2 and C2 = k1=(y0

+ � � " )k1=2: (5.3)

Givena 2 R n f� 1g andf 2 H a andr > 0, the closed ball of centerf and radiusr is
denoted byB0

a(f; r ), andB is the closed ball

B = B0
1=2

�
y+ ;


 y+

2




1=2

�
� H 1=2; (5.4)

The functiong is de�ned by

g(0) = f 0(0) andg(y) = 1
y

�
f (y) � f (0)

�
for y 6= 0: (5.5)

Our last notations are

G = sup
y2B 0

+

kg(y)k0 and G0 = sup
y2B 0

+

kg0(y)k0; (5.6)

R = 2 C1C2kV " k3=2
1=2G and r0 =

�
ky+ k1=2

2R

� 2

(5.7)

with the notation of (4.2), and

BR = B0
1(0; R) � H 1: (5.8)

Reducing if needed the constants"0 andr which de�ne S and
 1, we assume thater =
r + " 0

2 � r0. In this manner, for allu 2 BR � H 1, we haveu 2 H 1=2 and

kuk1=2 � er 1=2kuk1 � er 1=2R � r 1=2
0 R =


 y+

2




1=2
;

hencey+ + u 2 B .



Let us now begin the proof. The change of unknowny1 = y+ + u yields � " y+ +
� " u = 1

y+ + u f (y+ + u). Using (5.1) and usingg given by (5.5), we obtain

� " u =
� 2

2(y+ + u)
�

� 2

2y+
+ g(y+ + u) = �

� � 2u
2(y+ + u)y+

+ g(y+ + u):

We rewrite this equation as follows

� " u = �
� 2u
2y2

+
+

� 2u2

2(y+ + u)y2
+

+ g(y+ + u): (5.9)

In a �rst time, we consider the following linear equation

� " u = �
� 2u
2y2

+
+ k: (5.10)

In order to solve (5.10), �rst observe that the derivativey0
+ is a solution of the associated

homogeneous equation. Indeed, differentiating (5.1) yields� " y0
+ = �

� 2 y 0
+

2y 2
+

. We then

use the method of variation of constant, i.e. the changeu = y0
+ v. Since

� " u = (� " y0
+ )v + ( y0

+ � � " )� " v = �
� 2y0

+

2y2
+

v + (y0
+ � � " )� " v;

equation (5.10) yields forv the equation� " v = k
y 0

+ �� "
. This latter equation can be solved

using the operatorV " given by Theorem 4.2.
We therefore consider the operatorT " : H 0 ! H 1 given by

T " k = y0
+ � V "

� k
y0

+ � � "

�
:

To sum up, the operatorT " solves (5.10), i.e.u = T " k is a solution of this equation.

Lemma 5.1 . The operatorT " : H 0 ! H 1 is bounded uniformly with respect to" .
Precisely, we have

kT " k1
0 � C1C2kV " k3=2

1=2;

with C1; C2 given by (5.3).

Proof. Let k 2 H 0; then k
y 0

+ �� "
2 H 1=2, henceV "

�
k

y 0
+ �� "

�
2 H 3=2, henceT " k 2 H 1,

and

kT " kk1 � C1



 V "

� k
y0

+ � � "

� 



3=2
� C1kV " k3=2

1=2





k
y0

+ � � "





1=2
� C1C2kV " k3=2

1=2 kkk0:

Let us now return to equation (5.9). Recall thatBR is de�ned in (5.8).



Lemma 5.2 . If r > 0 and"0 > 0 are small enough andK is large enough then, for all
" 2 ]0; "0[, the map

M " : BR ! B R ; u 7! T "

� � 2u2

2(y+ + u)y2
+

+ g(y+ + u)
�

is a contraction.

Proof. Let u 2 BR andr; " 0 be such thater = r + " 0
2 � r0. We havey+ + u 2 B , hence

kg(y+ + u)k0 � G. We also have � 2 u2

2(y+ + u)y 2
+

2 H 1=2 and





� 2u2

2(y+ + u)y2
+





1=2
� � 2�

kuk1
� 2 �

k 1
y+

k1=2
� 3

� � 2R2�
k 1

y+
k1=2

� 3
;

hence, by (4.1),





� 2u2

2(y+ + u)y2
+





0
�





� 2u2

2(y+ + u)y2
+





1=2
er 1=2 � G if er � G2

�
� 2R2�

k 1
y+

k1=2
� 3

� � 2
:

Since R = 2 C1C2kV " k3=2
1=2 G � k T " k1

0 G, this proves thatM " (u) 2 BR . We prove
similarly thatM " is a contraction.

To conclude, the unique �xed pointu� of M " in BR is a solution of (5.9). Moreover,
since we are in the casea = 1

2 > � 1of Theorem 4.2(iii), we haveu� (K" ) = 0 . Therefore
the functiony1 = y+ + u� satis�es the conditions of Theorem 2.2.

6. Fatou coordinates: Proof of Theorem 2.4.

We begin this section with some auxiliary results, which are useful not only for this
section but also for Section 7. The proofs are straightforward but the details are a bit
cumbersome.

To simplify notation, we do not indicate the"-dependence of most functions. At some
instances during the proofs, the domains must be reduced slightly, for example to allow a
derivative of a bounded function to still be bounded. For the sake of simplicity, we will
also not indicate this here.

Lemma 6.1 . For j = 1 ; 2, let yj : D j ! C be solutions of (2.1) on domainsD j not
containing 0. We suppose thatyj (x) = y0(x) + O(" ) uniformly for x 2 D j and that
D1 \ D2 is connected. Letb+ , resp.b� 2 R denote the maximum, resp. minimum, of
Im x onD1 \ D2.

Then, for any� small enough, there exists an" -periodic functionp : S ! C de�ned
on the stripS = f x 2 C ; b� + � < Im x < b + � � g and satisfyingy2(x) = y1

�
x + p(x)

�

for all x 2 D1 \ D2 \ S.



By Rouché's theorem, it can be proved thaty1 is locally invertible; letv1 denote such a
local inverse. The functionp is then simply given byp(x) = v1(y2(x)) � x. As bothy1

andy2 are close toy0, we havep(x) = O(" ). Since both satisfy (2.1), the" -periodicity
of p follows.

Corollary 6.2 . With the notation of Lemma 6.1, let
 � (D1 [ D2) \ S be a horizontally
convex domain (i.e.x; x 0 2 
 andIm x = Im x0 imply [x; x 0] � 
 ). Then the solution
y2 can be analytically continued on
 by the formula of Lemma 6.1.

Of course,y2 is still a solution of (2.1) on
 . By symmetry,y1 can also be analytically
continued on
 by the formulay1(x) = y2

�
x + q(x)

�
with the" -periodic functionq(x) =

v2(y1(x)) � x.

Corollary 6.3 . With the above notation, there exists a functions = s(" ) such that the
functionR : 
 ! C; x 7! y1(x) � y2

�
x + s(" )

�
is exponentially small. More precisely,

if d(x) = min(Im x � b� + �; b+ � Im x � � ), then we haveR(x) = O
�
e� 2�d (x )="

�
.

The functions is simply the constant termc0 in the Fourier expansion ofp

p(x) =
X

� 2 Z

c� e2�i�x=" :

The functions is called theshift in Section 7. The next result is based on general results
of [3].

Corollary 6.4 . Let D1 � D2 be horizontally convex domains. Assume that there exists
a solutiony1 : D1 ! C of (2.1) and that the solutiony0 = a� 1

0 of (2.2) is de�ned onD2.
Let b+ , resp.b� 2 R denote the maximum, resp. minimum, ofIm x onD1.

Then, for any compact subsetK of D2 and any� > 0, there exists"0 > 0 such that,
for all " 2 ]0; "0], y1 can be analytically continued ontoK \ S, with

S = f x 2 C ; b� + � < Im x < b + � � g:

Actually, by Theorem 7 of [3], there exists a solutiony2 onK . Therefore, by Corollary 6.2
above,y1 can be continued onK \ S.

Proof of Theorem 2.4.A consequence of Proposition 2.3 and of the estimate forV+ in
Proposition 2.1 is that, if > 0 arbitrarily small is �xed, then forr small enough andK
large enough, the functionv1 satis�es

8u 2 eQ1; (1 �  )
�
� u

�

�
�2

� jv1(u)j � (1 +  )
�
� u

�

�
�2

: (6.1)

Now we consider other arguments for� (and thus of" = � 2). It can be shown that
Theorem 2.2 and Proposition 2.3 are also valid if the interval]0; " ] is replaced by a sector
with suf�ciently small opening angle bisected by the positive real axis.



Then let(Sl )L
l= 1 be a good covering of the origin (in the� -plane) by sectors of opening

at most2� . Since each� -sectorSl can be reduced to a sector bisected by the positive real
axis using a rotation, the previous results can be carried over toSl . As such a rotation
changes� to exp(2�i l=L )� , this leads to functionsvj

l , j = 1 ; :::; 4 on domainsQj
l =

exp(2�i l=L )Qj , Qj de�ned above Theorem 2.2, that are analogous to the functions of
Proposition 2.3; especially they satisfy (2.11) and are inverse to solutionsyj

l of (2.1).
Next we show that, on the intersectionsQj

l \ Qj
l+1 , we have

�
�
�

vj
l+1

� 0
(z) �

�
vj

l

� 0
(z)

�
� � K exp

�
� �

j � j 2

�
(6.2)

whereas, on the intersectionsQj
l \ Qj +1

l , we have

�
�
�

vj +1
l

� 0
(z) �

�
vj

l

� 0
(z; ")

�
� � K j� j exp

�
� �

�
� z

�

�
�2�

(6.3)

with some positive constantsK; � .
For the proof, �x j; l . Applying Corollary 6.3 toyj

l andyj
l+1 , we obtain the existence

of some functions = s(" ) such thatyj
l (x) � yj

l+1

�
x + s(" )

�
is O

�
e� �=j " j

�
on the

intersection of their domains, with some constant� . This implies that(vj
l+1 � vj

l )(z) �
s(" ) is alsoO

�
e� �=j " j

�
onQj

l \ Qj
l+1 . Now we obtain (6.2) by differentiation.

For the proof of (6.3), we have to re�ne Corollary 6.3 and its proof foryj
l andyj +1

l .
The functionp de�ned byp(x) = ( vj +1

l � yj
l )(x) � x is " -periodic and bounded on some

strip one boundary of which passes at a distance ofK j" j from the origin. Using the
Fourier series forp, its constant termc0 and estimates for the other coef�cients, we prove
thatp(x) � c0(" ) = O

�
j" j e� � jx j=j " j

�
with some positive�. The factor " comes from the

estimate forvj
l near the origin and the corresponding estimates for Fourier coef�cients.

Carrying this over tovj +1
l andvj

l , we obtain that

(vj +1
l � vj

l )(z) � c0(" ) = O
�

j" j e� e� jzj 2 =j" j
�

with some positive constante�. Here some estimate analogous to (6.1) has been used.

Differentiation yields(vj +1
l � vj

l )0(z) = O
�

jzj e� e� j zj 2 =j " j
�

. This �nally gives (6.3) for

any positive� < e�.
The estimates (6.2) and (6.3) are exactly the important hypotheses of the Main The-

orem 4.1 of the memoir [4]. We obtain composite asymptotic expansions (CAsEs) of
Gevrey order 1 for the functionswj

l = ( vj
l )0. Especially, we obtainCAsEs forv0

j = ( vj
0)0:

3

v0
j (z; ") � 1

2

1X

n = 0

�
An (z) + B j

n ( z
� )

�
� n (6.4)

3. Starting here, we have to indicate the dependence of functions on " again.



where the functionsAn are holomorphic on some disk centered at the origin,B j
n are

holomorphic oni j � 1Q+ (2K; 2� ) and have consistent asymptotic expansions of Gevrey
order 1

2

B j
n (Z ) � 1

2

X

m � 1

Dn m Z � m asZ ! 1:

We refer to the explanations below Theorem 2.4 for details.
Finally, we use the initial conditions forvj . In the casej = 1 (the others are analo-

gous), we have

v1(z; ") = K" +
Z z

�Y + (K )
v0

1(�; " ) d�:

Now we separate the leading term of eachB 1
n , i.e. we writeB 1

n (Z ) = Dn 1Z � 1 + C1
n (Z ),

C1
n (Z ) = O

�
Z � 2

�
and integrate (6.4) term by term (for details see [4]). We usean (z) =

Z z

0
An (� ) d� , b1

n (Z ) =
Z Z

1
C1

n (u) du and we collect the terms independent ofz in Tj .

Thus we �nally obtain the wantedCAsE for v1.
The statement onbj

0 andbj
0 follows from the factor� in (6.3): Theorem 4.1 of [4]

applies to the family1
� (vj

l )0, j = 1; :::; 4, l = 1 :::; L . The leading terma0(z) can be
determined using the Schröder equation (7.4). The fact that the right hand side of the
outer expansion (2.14) is a formal solution of (7.4) implies that it contains only powers of
" = � 2.

7. Application.

We present in this section an informal study of equation (1.9), rewritten below for
convenience:

� " y = 1 +
1
y

: (7.1)

It is well known that, for �xed " > 0, the difference equation (7.1) has solutions
holomorphic on sectors with vertex at in�nity. The dependence on" , however, is not clear.
We start our study with the subsequent proposition. We use the notation of the somewhat
similar study of the inner reduced equation of Section 3. In particular
 + (K; � ) is de�ned
in (2.7) and shown on Figure 2.1.

Proposition 7.1 . Fix "0 > 0: For all � > 0 there existsK > 0 such that (7.1) has a
unique solutiony1

+ de�ned for " 2 ]0; "0], x 2 
 + (K; � ) holomorphic with respect tox
satisfying

y1
+ (x; " ) = x + log x + o(1) asx ! 1 in 
 + (K; � ): (7.2)

Similarly, there is a unique solutiony1
� on � 
 + (K; � ) satisfyingy1

� (x; " ) = x +log x +
o(1) asx ! 1 in � 
 + (K; � ). On � 
 + (K; � ) we use the branch of the logarithm given
by logx = log( � x) + �i ; on 
 + (K; � ) we use the principal value.



The proof is similar to that of Proposition 2.1 and is omitted.If K is suf�ciently large,
then the solutionsy1

� have inverse functionsv1
� also called Fatou coordinates. These are

holomorphic functions of their �rst variable in some domain containing in�nite sectors
� 
 + ( eK; e� ) with someeK > K , e� > � . They satisfy

v1
� (z; ") = z � logz + o(1) asz ! 1 (7.3)

and the functional equation

v
�
z + "

�
1 + 1

z

� �
= v(z) + ": (7.4)

The formulav1
� � y1

+ � id de�nes two functionsp1
� on the sectorI + introduced

above (2.10), respectively onI � = �I + . They are bounded and"-periodic and hence
there exist Fourier expansions

p1
� (x; " ) =

1X

n =0

c1
n � e2�inx=" (7.5)

with functionsc1
n � : ]0; "0] ! C which we callÉcalle-Voronin invariants of (7.1) at1.

The choice of the branches of the logarithms in Proposition 7.1 implies thatc1
0+ = 0 and

c1
0� = � 2�i .

We want to study the relation between these invariants of (7.1) at in�nity and its
Écalle-Voronin invariants near 0 introduced above Corollary 2.5 which will be denoted
by c0

jn (" ).

To this purpose, we �rst prove thatv1
+ can be continued up to the domaineQ1 of our

local solutionv�
1 given by Proposition 2.3 and by (2.16). The outer reduced equation of

(7.1) isy0 = 1 + 1
y , whose solutions are implicitely given by

y � log(1 + y) = x + C: (7.6)

Then Corollary 6.4 shows thaty1
+ can be continued along the level linesa0(y) = y �

log(1 + y) = t + Ci , t 2 [t1; t2], for any t1; t2; C 2 R, t1 < t 2, C 6= 0. As a
consequence,v1

+ can be continued analytically onto any compact set included in the dark
region displayed on Figure 7.1 top right, wherea0 is locally invertible. In particularv1

+

can be continued on the set
�

z 2 eQ1 ; jzj > r 1
	

for an arbitraryr1 2 ]0; r [. We then
apply Lemma 6.1 toy1 andy1

+ . This allows to continuev1
+ on eQ1 in its whole. By

Corollary 6.3, there existss = s(" ) = O(" ) such that the functionv1
+ � v�

1 � s(" ) is
exponentially small in any compact subset ofeQ1. We call this functions theshift in the
sequel. We will now compare some asymptotic expansions ofv�

1 andv1
+ .

Therefore, we �rst indicate how to prove thatv1
+ does have an asymptotic expansion.

For this, we consider all arguments of" . Using (7.5), we prove that(v1
+ )0 and(v1

� )0 are
exponentially close one to each other onI + andI � , and then we apply Ramis-Sibuya's
theorem (classical, see for example [4], Lemma 4.4).














