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ABSTRACT
We consider a system of interacting objects that is a gen-
eralization of the model of the cache-replacement policy
RAND(m) policy introduced in [6]. We provide a mean-
field approximation of this system. We show how to use
relative entropy to construct a Lyapunov function for this
model. This guarantees that the mean-field model converges
to its unique fixed point.

1. INTRODUCTION
Mean-field approximation is a powerful tools for study-

ing systems of interacting objects. Many papers have es-
tablished that, under mild condition, a system of interact-
ing objects converges to a deterministic dynamical system
ẋ = f(x) over any finite time interval. However, characteriz-
ing the asymptotic behavior of a differential equation is often
a difficult task: in particular, showing that the differential
equation has a unique fixed point does not guarantee the
convergence of the stochastic system to this fixed point [1].
A sufficient condition is that all trajectories of this dynam-
ical system converge to a fixed point of the equation, which
is often difficult to show. Recently, it has been shown in [3]
that relative entropy can be used to construct a Lyapunov
function that guarantees the convergence of all trajectories
to a fixed point. In this paper, we use a similar idea to
construct a Lyapunov function for a generalization of the
cache-replacement policies RAND(m) introduced in [6].

This paper makes two contributions. First, we finish the
analysis of the mean-field model of [6] by providing a Lya-
punov function for the mean-field model. Second, we illus-
trate a method for constructing explicitly a Lyapunov func-
tion by considering a relative entropy plus a corrective term.
We believe that this method is generic and can be applied
to other mean-field dynamics.

2. MODEL AND APPROXIMATION
We consider a system of n objects that move between

boxes. There are h boxes and the ith box contains mi ob-
jects. If the object k is in box i, then at rate λk,i it is ex-
changed with an object (taken at random) from box i+1. A
configuration of the system is a vector c = (c1 . . . cn) where
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ck is the box in which object k is. The set of possible con-
figurations C is the set of vectors c = (c1 . . . cn) such that
there are exactly mi objects in box i: |{k : ck = i}| = mi.

This model is a generalization of the model of the cache-
replacement policy RAND(m) introduced in [6], where the
authors study a cache that is decomposed into boxes. At
each request, an item that is in box i is exchanged with
another item from box i+ 1. In our setting, this correspond
to λk,i independent of i and equal to the request-rate of
object k.

It can be verified that this system is reversible and that
its stationary measure satisfies, for each c ∈ C:

π(c) = κ

n∏
k=1

ck−1∏
i=1

λk,i,

where κ = (
∑

c∈C
∏n
k=1

∏ck−1
i=1 λk,i)

−1 is the normalizing
constant.

The constant κ can be computed by a dynamic program-
ming algorithm in a time O(n

∏h
i=1(mi + 1)) by using a

similar algorithm as the one of [6]. While this complexity is
polynomial in n and m, it is exponential in the number of
boxes. This calls for an approximation.

2.1 The mean-field approximation
We consider the following set of ODEs (for k ∈ {1 . . . n}, i ∈
{1 . . . h}):

ẋk,i(t) = 1{i>1}

(
λk,ixk,i−1(t)−

∑
` λ`,i−1x`,i−1(t)

mi
xk,i(t)

)
+ 1{i<h}

(∑
` λ`,ix`,i(t)

mi+1
xk,i+1(t)− λk,ixk,i(t)

)
(1)

with initial conditions xk,i(0) = 1{ck(0)=i}, where 1{A} = 1
if A is true and 0 otherwise.

The quantity xk,i is meant to be an approximation of
the probability for an object k to be in box i. For ob-
ject k, this ODE corresponds to the probability measure
of a birth-death process of birth rate λk,i and of death rate
µi(x) =

∑n
`=1 λ`,i−1x`,i−1/mi. This birth-death process is

represented in Figure 1. The intuition behind this ODE is
the following. If object k is in box i, it jumps to box i + 1
at rate λk,i. It jumps to box i− 1 when an object from box
i−1 jumps to box i and is exchanged with this object. This
occurs at rate

∑n
`=1 1{c`=i−1}λ`,i−1.

The following result guarantees that xk,i is indeed a good
approximation of the stochastic process. It can be proven
by adapting the proof of [6, Theorem 6], that is based on
stochastic approximation arguments.
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Figure 1: The birth-death process approximation
of the box in which object k is, where µi(x) =∑n
`=1 λ`,i−1x`,i−1/mi.

Theorem 1. For any T , there exists a constant C inde-
pendent of the parameters λi,k and mi,k such that

E

[
sup

t≤T/ε,i,α≥0

∥∥∥∥∥∑
k

(λk,i)
α(xk,i(t)− 1{ck(t)=i})

∥∥∥∥∥
∞

]
≤ Cε,

where ε = maxi,k λi,k + maxi(mi)
−1.

This theorem guarantees that the content of the boxes of the
stochastic process converges to the one of the ODE approx-
imation as the values (λk,i)s go to 0 and the box sizes (mi)s
go to infinity. Note that the values of (λi,k)s can be made
arbitrarily small by multiplying all of them by a constant
τ < 1. Hence, the main assumption for the convergence to
hold is that the box sizes (mi)s go to infinity.

2.2 Fixed point analysis
The differential equation (1) has the following form:

d

dt
xk,i(t) =

h∑
j=1

xk,j(t)Γ
(k)
j,i (x(t)),

where Γ(k)(x) is the transition kernel of a birth-death pro-
cess with a birth rate λk,i and a death rate that depends on
x: µi(x) =

∑n
`=1 λ`,i−1x`,i−1/mi.

For a fixed x, the stationary measure of the birth-death
process of kernel Γ(k)(x) is πk,.(x), where for i ∈ {1 . . . h}:

πk,i(x) =

∏i−1
j=1 λk,j/µj(x)∑h

j′=1

∏j′−1
j=1 λk,j/µj(x)

(2)

A fixed point of the ODE (1) satisfies x = π(x). By mono-
tonicity arguments similar to the proof of [6, Theorem 7], it
can be shown that this equation has a unique fixed point,
that we denote x∗. This fixed point can be efficiently com-
puted by an iterative procedure (see [6, Section 5.3]).

3. LYAPUNOV FUNCTION
In this section, we show that, any solution of (1) con-

verges to the unique fixed point x∗. We construct explicitly
a Lyapunov function, by using relative entropy.

3.1 The reason to use relative entropy
As we recall below, relative entropy between a Markov

chain and its stationary measure decreases with time. We
will see that this implies that it is natural to consider the
relative entropy between x and π(x) plus a corrective term.

Recall that for two discrete distributions p and q over a
finite set {1 . . . h}, the relative entropy of p with respect to
q (also called Kullback-Leibler divergence) is

R(p‖q) :=
h∑
i=1

pi log
pi
qi

If x(t) is the probability distribution at time t of a contin-
uous time Markov process that has kernel Γ and if π is its
steady-state distribution, then the relative entropy of x(t)
with respect to π decreases with time:

d

dt
R(x(t)‖π) =

h∑
i=1

(
d

dt
xi(t)

)(
1 + log

xi(t)

πi

)
≤ 0, (3)

where d
dt
xi(t)=

∑
j xk,j(t)Γj,i. The equality holds only when

x(t) = π. A simple proof of this result is in [3, Lemma 3.1].
For a given object k, the process xk,. is a Markovian model

with kernel Γ(k)(x) that depends on x. The stationary mea-
sure of this kernel is πk,.(x), defined in (2).

The derivative with respect to time of R(xk,., πk,.(x)) is

d

dt
R(xk,.(t)‖πk,.(x(t))) =

h∑
i=1

(
d

dt
xk,i(t)

)(
1 + log

xk,i(t)

πk,i(x)

)

−
h∑
i=1

xk,i(t)
d

dt
log πk,i(x(t))

≤ −
h∑
i=1

xk,i(t)
d

dt
log πk,i(x(t)) (4)

This inequality holds because of Equation (3).
If h(x) be a primitive integral of (4), then the function t 7→

R(x(t)‖π(x(t)))−h(x(t)) decreases with time. When h(x) is
upper bounded, this function decreases to some value, which
by Equation (3), implies that x(t) converges to a fixed point.
Hence, exhibiting a bounded primitive integral of (4) suffices
to guarantee the convergence of the ODE to a fixed point.

3.2 Main result and proofs
We say that a vector x is admissible if xk,i ≥ 0 and if∑n
k=1 xk,i = mi and

∑h
i=1 xk,i = 1. The first condition

corresponds to having mi objects per box and the second
that the object k is in one of the h boxes.

Theorem 2. For any admissible initial condition x(0),
the ODE (1) has a unique solution x. Moreover, for all t,
x(t) is admissible and limt→∞ x(t) = x∗.

Proof. The existence and uniqueness of the solution is
due to the Lipchitz-continuity of the right-hand side of Equa-
tion (1). The fact that x(t) remains admissible when x(0)

is admissible can be verified by showing that
∑h
i=1 ẋk,i =∑n

k=1 ẋk,i = 0 when x is admissible.
We prove in Lemma 1 and 2 that the function (5) is a

Lyapunov function: it is non increasing and lower bounded.
Hence, limt→∞

d
dt
L(x(t)) = 0. By Lemma 1 and the conti-

nuity of π(x), this shows that limt→∞ x(t) = x∗.

We define the function L(x) be by:

L(x) =

n∑
k=1

R(xk‖πk(x))−
h∑
i=1

mi log

(
i−1∏
j=1

µj(x)

)

−
n∑
k=1

log

(
h∑
i=1

i−1∏
j=1

λk,j/µj(x)

)
(5)

The first term is the relative entropy and the other two
form a primitive integral of Equation (4).

Lemma 1. Let x be a solution of the ODE (1). Then
d
dt
L(x(t)) ≤ 0 with equality if and only if x(t) = π(x(t)).



Proof. By definition of π(x) in Equation (2), we have

log πk,i(x) = log

(
i−1∏
j=1

λk,j

)
− log

(
i−1∏
j=1

µj(x)

)

− log

(
h∑
i=1

i−1∏
j=1

λk,j/µj(x)

)
(6)

As d
dt

log(
∏i−1
j=1 λk,j) = 0, this implies that

h∑
i=1

n∑
k=1

xk,i(t)
d

dt
log(πk,i(x(t)))

=

h∑
i=1

n∑
k=1

xk,i(t)︸ ︷︷ ︸
=mi

d

dt
log

(
i−1∏
j=1

µj(x)

)

n∑
k=1

h∑
i=1

xk,i(t)︸ ︷︷ ︸
=1

d

dt
log

 h∑
j′=1

j′−1∏
j=1

λk,j/µj(x)


This is equal to the the derivative with respect to time of
the last two additional terms of Equation (5).

Applying this and Equation (4) implies that

d

dt
L(x(t)) =

h∑
i=1

n∑
k=1

(
d

dt
xk,i(t)

)(
1 + log

xk,i(t)

πk,i(x(t))

)
.

By Equation (3), this implies that d
dt
L(x(t)) ≤ 0 with equal-

ity only if x(t) = π(x(t)).

Lemma 2. For any admissible x, we have

L(x) ≥ −n log(h)−
n∑
k=1

h∑
i=1

∣∣∣∣∣log

i−1∏
j=1

λk,j

∣∣∣∣∣ .
Proof. Expanding the definition of the relative entropy,

we have:

L(x) =

n∑
k=1

h∑
i=1

xk,i log xk,i −
n∑
k=1

h∑
i=1

xk,i log πk,i(x)

−
h∑
i=1

mi log

(
i−1∏
j=1

µj(x)

)
−

n∑
k=1

log

(
h∑
i=1

i−1∏
j=1

λk,j/µj(x)

)
By using the same transformation as in (6), we get:

n∑
k=1

h∑
i=1

xk,i log πk,i(x) =

n∑
k=1

h∑
i=1

xk,i log

(
i−1∏
j=1

λk,j

)

−
n∑
k=1

h∑
i=1

xk,i log

(
i−1∏
j=1

µj(x)

)

−
n∑
k=1

h∑
i=1

xk,i log

 h∑
j′=1

j′−1∏
j=1

λk,j/µj(x)


This shows that

L(x) =

n∑
k=1

h∑
i=1

xk,i log xk,i +

n∑
k=1

h∑
i=1

xk,i log

(
i−1∏
j=1

λk,j

)

≥ −n log h−
h∑
i=1

n∑
k=1

∣∣∣∣∣log

i−1∏
j=1

λk,j

∣∣∣∣∣ ,

where the first part of inequality comes from the entropy
the second from the fact that |xi,k(t)| ≤ 1.

4. CONCLUSION AND DISCUSSION
In this paper, we constructed a Lyapunov function for a

generalization of the RAND(m) model of [6]. This Lya-
punov function is composed of a term of relative entropy
term R(x‖π(x)) plus an additive correction term that com-
pensate for the variation of π(x). This function guarantees
that the ODE approximation converges to its unique fixed
point and hence justifies the fixed point analysis.

The construction of the Lyapunov function proposed in
this paper is generic. We believe that similar ideas can be
applied to many other mean-field systems. The two additive
terms in the expression of the Lyapunov function (5) form a
primitive integral of Equation (4). Their simple expression
comes form the fact that in the stationary measure π(x),
the quantity µi(x) does not depend on the object k while
λk,i is does not depend on time. Note that the Lyapunov
function of the model of [5, Section 3] has the same form.

The stationary measure of the original system is of Gibbs
type since it is a product form measure on the set of possible
configuration C. However, this measure has not the same
form as the Gibbs type measure of Section 4 of the papers
[3, 4]. Hence, it seems that their Lyapunov function [3,
Equation (4.14)] is not directly applicable here although the
expression are close.

Finally, it is shown in [2] that, a sequence of reversible pro-
cess that converges to the solution of an ODE has a sequence
of stationary measures that concentrates on the fixed point
of the ODE, regardless of the asymptotic behavior of this
ODE. A benefit of exhibiting a Lyapunov function is that
we are also able to characterize the asymptotic behavior of
the ODE. It is not clear if the reversibility has an impact on
the particular form of the Lyapunov function L.
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[1] M. Benäım and J. Le Boudec. A class of mean field in-

teraction models for computer and communication sys-
tems. Performance evaluation, 65(11-12):823–838, 2008.

[2] J.-Y. L. Boudec. The stationary behaviour of fluid lim-
its of reversible processes is concentrated on stationary
points. Arxiv:1009.5021, 2010.

[3] A. S. Budhiraja, P. Dupuis, M. Fischer, and K. Ra-
manan. Limits of relative entropies associated with weakly
interacting particle systems. Electronic journal of prob-
ability, 20, 2015.

[4] A. S. Budhiraja, P. Dupuis, M. Fischer, and K. Ra-
manan. Local stability of kolmogorov forward equations
for finite state nonlinear markov processes. Electronic
journal of probability, 20, 2015.

[5] C. Fricker and N. Gast. Incentives and redistribution
in homogeneous bike-sharing systems with stations of
finite capacity. Euro journal on transportation and lo-
gistics:1–31, 2014.

[6] N. Gast and B. Van Houdt. Transient and steady-state
regime of a family of list-based cache replacement algo-
rithms. In Proceedings of the 2015 ACM SIGMETRICS
international conference on measurement and modeling
of computer systems. ACM, 2015, pp. 123–136.


	Introduction
	Model and approximation
	The mean-field approximation
	Fixed point analysis

	Lyapunov function
	The reason to use relative entropy
	Main result and proofs

	Conclusion and discussion

