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Abstract

BACKGROUND. Drug-induced drug resistance in cancer has been attributed to
diverse biological mechanisms at the individual cell or cell population scale, re-
lying on stochastically or epigenetically varying expression of phenotypes at the
single cell level, and on the adaptability of tumours at the cell population level.

SCOPE OF REVIEW. We focus on intra-tumour heterogeneity, namely between-
cell variability within cancer cell populations, to account for drug resistance. To
shed light on such heterogeneity, we review evolutionary mechanisms that en-
compass the great evolution that has designed multicellular organisms, as well as
smaller windows of evolution on the time scale of human disease. We also present
mathematical models used to predict drug resistance in cancer and optimal control
methods that can circumvent it in combined therapeutic strategies.

MAJOR CONCLUSIONS. Plasticity in cancer cells, i.e., partial reversal to a stem-
like status in individual cells and resulting adaptability of cancer cell populations,
may be viewed as backward evolution making cancer cell populations resistant
to drug insult. This reversible plasticity is captured by mathematical models that
incorporate between-cell heterogeneity through continuous phenotypic variables.
Such models have the benefit of being compatible with optimal control methods
for the design of optimised therapeutic protocols involving combinations of cyto-
toxic and cytostatic treatments with epigenetic drugs and immunotherapies.

GENERAL SIGNIFICANCE. Gathering knowledge from cancer and evolution-
ary biology with physiologically based mathematical models of cell population
dynamics should provide oncologists with a rationale to design optimised thera-
peutic strategies to circumvent drug resistance, that still remains a major pitfall of
cancer therapeutics.
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1. Introduction

Cancer is a disease that has raised many questions and proposals to under-
stand its evolution with time on the basis of biological observations and by using
theoretical and mathematical tools. The obvious aim of such research is to cir-
cumvent cancer, i.e., not necessarily to eradicate it, but often more realistically to
contain it within admissible limits for long-term survival of patients with a good
quality of life. Emergence of resistance to cytotoxic drugs - even to targeted ther-
apies [67, 102] - in cancer cell populations is common in most cancers [228], and
is one of the major pitfalls encountered in oncology (the other major pitfall being
toxic side effects of drugs to healthy cell populations), as it induces tumour re-
currence in spite of therapy and it limits life expectancy. Phenotype or genotype
heterogeneity in tumours may account for such resistance [19, 39, 190].

This review is intended not only for biologists nor only for mathematicians,
but for both, trying to bridge a gap on this specific topic between these two fields
of science. We lead it from the point of view of applied mathematicians who have
gathered as well as they can all available evolutionary, biological and biophysical
knowledge relevant to model evolution of cancer cell populations, with the aim to
optimise cancer treatments by taking into account the role of intra-tumour hetero-
geneity in the development of drug resistance. It is not its object to describe the
molecular mechanisms of drug resistance in single cells, which have been investi-
gated in detail in numerous articles [106, 107, 127] and books [184, 264]. Rather
than on molecular mechanisms, we will focus on the micro-environmental condi-
tions and evolutionary mechanisms by which biological variability with respect to
phenotypes within a given cancer cell population, i.e., intra-tumour heterogeneity,
is implicated in the development of drug resistance, see Table 1. Genetic mu-
tations, either preexisting in the cancer cell population exposed to the drug, or
induced by micro-environmental perturbations due to the drug, have been pro-
posed to account for intratumoral between-cell variability with respect to drug
sensitivity [101, 100]. Hence, drug resistance has been attributed by some to so-
matic evolution whereby somatic mutations in isolated cells (the so-called “rene-
gade cell” hypothesis) are followed by Darwinian selection of the fittest pheno-
types [112, 113, 192]. A competing hypothesis stems from the framework of
“tissue organisational field theory” (TOFT) [236, 237], proposing that the influ-
ence of a diseased surrounding stroma is the real determinant of carcinogenesis,
whereas others try to reconcile the two viewpoints [20, 217].

The influence of the tumour micro-environment (for example vascularisation,
lymphocyte and macrophage infiltrates, fibroblasts, adipocytes) is certainly not to
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be neglected, as it contributes to intra-tumour heterogeneity [148]. In fact, ex-
changes with the micro-environment have been shown in numerous cases to be
responsible for drug resistance in the tumour [118]. However, there are situa-
tions of drug resistance in a priori genetically homogeneous, but phenotypically
diverse, cancer cell populations in which no stromal influence may be evidenced
(e.g., in a Petri dish) and genetic mutations are excluded since reversal to total
drug sensitivity can be obtained after some time following drug washout [231].
Simultaneous evidence of the involvement of reversible epigenetic mechanisms
(i.e., mechanisms that control gene expression without changing the sequence of
base pairs in the DNA) has been ascertained in such cases [231], which sets the
origin of such heterogeneity at the level of epigenetic regulations, in other words
it relates it to cell plasticity [76, 82, 181, 183, 203] with respect to phenotype. By
cell plasticity, we mean here (at the individual cell level) the ability for a cell to
partly reverse its differentiation fate (thus going back in the direction of a stem
cell state), e.g., by mechanisms involving epigenetic enzymes, that may result at
the cell population level in global adaptability to a changing environment in the
organism.

Indeed, this may be achieved at the cancer cell population level by what looks
like a risk-spreading strategy called in evolutionary theory stochastic bet hedg-
ing [18, 38, 62], i.e., stochastic repartition of phenotypes in the cell population
allowing it to face very diverse insults. It may obviously be obtained phylogeneti-
cally (i.e., resulting from successive mutations) by the mechanism of evolutionary
branching of genetically distinct subclones [113], but it may also be of non-genetic
nature, due to random transcription (see in a microbiological context [78]) or to
unequal distribution of proteins at mitosis [137]. Such stochastic phenomenon
has also been proposed to account for heterogeneity with predictable drug re-
sensitisation after transiently established resistance to cellular stress induced by
anti-cancer agents [25].

In order to study heterogeneity in tumours, it is mandatory that biological
observations and mathematical representations of phenomena are captured at the
scale of cancer cell populations since at the single-cell scale between-cell hetero-
geneity is obviously meaningless. Conversely, from a practical point of view, it
should be mentioned that attempts to characterise the expression of genes in can-
cer cells, both at the genetic and epigenetic levels, cannot rely on measurements
performed on populations of thousands of cells, lest they yield average profiles
that mask significant variations in the distribution of such expression [1, 7]. In-
deed, even in genetically homogeneous cell populations, gene expression levels
vary greatly between cells [6, 8, 190]. In order to apprehend such heterogeneity,
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Table 1: Drug resistance in cancer: single-cell molecular and cell-population evo-
lutionary viewpoints. “Cell-population representations” refers to representations
that give rise to mathematical models structured in a continuously evolving trait,
such as phenotype-structured partial differential equation models and agent-based
models, see the last section of this review.

Single-cell molecular representations Cell-population representations

Pros 1. Close to cell biochemical reactions
2. Identifiable drug targets
3. Amenable to systems biology and

(uneasy) whole body physiolog-
ically based pharmacokinetics-
pharmacodynamics representations

4. Amenable to large network simula-
tions

5. The actual levels of drug action

1. Amenable to cell physiology fate rep-
resentation (proliferartion, apoptosis,
differentiation)

2. Amenable to include phenotype
evolvability

3. Simplicity of representation (lumped
variables)

4. Amenable to mathematical analysis
5. The actual level of patient’s disease

observation

Cons 1. Many intricate cellular networks
2. Unable to integrate phenotype evolv-

ability (Darwinian-like evolution of
populations)

3. Qualitative cell physiological fates
absent

4. Hardly amenable to mathematical
analysis

1. Not close to cell biochemical reac-
tions

2. Drug targets are not molecular, only
functional (hence uneasiness to repre-
sent drug effects)

3. Hardly amenable to large network
representations (hubs in large net-
works absent)

it is in our opinion mandatory to perform phenotype analyses at the single-cell
level in the same cell population to reconstruct (by large sampling of individual
cell data through, for instance, fluorescence-activated cell sorting) the probability
distribution of single-cell phenotypes across a cell population.

A second reason to set the magnifying glass on cancer physiopathology at the
cell-population scale is that, by taking into account heterogeneity at the cancer
cell population level, it may be possible to explain why most anticancer drugs,
even recently developed targeted therapies that try to hit intracellular pathways
at supposed hubs, have generally and inexplicably led to so many treatment fail-
ures [67, 102, 228, 254] despite being seemingly efficient at the single-cell level.
Although some targeted therapies such as in chronic myeloid leukaemia by inhi-
bition of the BCR-Abl chimeric protein [74, 123] have been successfully used,
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Table 2: Factors of between-cell functional heterogeneity in cancer cell popula-
tions. We distinguish between intra-tumoral factors that are (A) not directly con-
cerning the tumour cell population itself but rather its local ecosystem, and (B)
intrinsically linked to the tumour cell population itself.

A. External to the cells constituting the cancer cell population

1. Intra-tumour cellular interactions with stromal cells (non-cancer cells): vasculari-
sation and its quality; cancer-associated fibroblasts (and adipocytes); infiltrated by
lymphocytes and macrophages

2. Local metabolic conditions: oxygen, glucose, acidity, growth factors
3. Local biophysical conditions: pressure, temperature

B. Characteristics of the cells constituting the cancer cell population (cell by cell)

1. Cell status with respect to (de)differentiation: stem-like plasticity
2. Cell status with respect to proliferation and apoptosis potentials
3. Methylation status (stable/unstable) of DNA and histones
4. Presence and quality of mitochondria; respiration/fermentation metabolism
5. Presence and quality of functional gap junctions and maintained polarity

with usually few resistances found at the beginning of their introduction in ther-
apy, most of them have eventually met this common pitfall of anticancer drug
therapies [40, 114].

These observations prompt us to ask whether a cancer cell population within
a tumour is so diverse that we should expect the presence of some resistant cells
capable of giving rise to a progeny that is unbeatable by the drug at hand. In
other words, is heterogeneity in cancer cell populations constitutive of the most
incurable cases of the disease, and the reason for so many treatment failures?
In general, heterogeneity in cell populations is not characteristic of a diseased
state. Indeed, some between-cell heterogeneity is necessary for well-organised
organs to perform their tasks [219]. It is only when such ordered heterogeneity
is perturbed, in particular by loss of quality of intercellular communications that
robustly structure a physiological tissue (see below Biophysics and bioenergetics),
that it may become cancerous [220]. More precisely, it has been proposed that
impaired gap junctions are often associated -through cause or consequence - with
cancer in tissues [249, 250].

Here, we firstly review the different types of heterogeneity encountered in can-
cer cell populations and their known physical, chemical and micro-environmental
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determinants, see Table 2. We then present evolutionary hypotheses that shed
light on the phenotype plasticity of individual cancer cells and on the resulting
phenotype adaptability due to phenotype heterogeneity of cancer cell populations.
We discuss some general concepts regarding evolution and cancer including the
Darwinian evolution of genomes over the course of billions of years, from uni-
cellular organisms to mammals. This sets up a framework for discussing the first
hypothesis - the so-called atavistic theory of cancer - which interprets cancer as
an archeoplasm rather than a neoplasm [253]. We then show how the notion
of an epigenetic landscape, initially described by Conrad Waddington [256] and
recently revisited by Stuart Kauffman, Sui Huang and colleagues [36, 128, 129,
130, 131, 132, 133, 134, 135, 136, 203, 204], offers a complementary view that
adds another necessary temporal component on the time scale of a human life to
this elementary description of the conditions that determine the evolution towards
drug resistance in cancer. Thus, following the metaphor of the epigenetic land-
scape and setting the problem of the evolution of cell populations within a given
genome (one multicellular, in particular human, organism), we show how differ-
ent and rich a perspective this notion of a moving epigenetic landscape adds to
the notion of the Darwinian evolution of genomes. We also mention the impor-
tance, in this developmental process of the control of proliferation, of the immune
response checking to eliminate accidentally occurring non-self elements, as a fail-
safe complementary strategy when other controls have failed.

Finally, we briefly review some mathematical models that have been proposed
to represent evolution in cancer cell populations and we discuss their possible
use to set theoretical therapeutic optimisation in the framework of optimal control
problems, focussing on continuous phenotypically structured models. The built-in
targets for such theoretical therapeutic control in the models we advocate for drug
delivery optimisation are not supposed to represent well-defined molecular effects
of the drugs in use, but rather their functional effects, i.e., related to cell death
(cytotoxic drugs), or to proliferation in the sense of slowing down the cell divi-
sion cycle without killing cells (cytostatic drugs given at low or medium doses),
or even to phenotype plasticity reduction when such drugs are available. Waiting
for combinations of chemotherapies and immunotherapies to be available and ef-
ficient in the clinic, we propose in the meanwhile that a rational combination of
cytotoxics and cytostatics, relying on optimal control theory, may be optimised to
propose therapeutic control strategies to confront the emergence of drug resistance
in cancer and overcome its effects.
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2. Heterogeneity in cancer, or the heterogeneous nature of heterogeneity

Although, as pleasantly stated by Sir David Smithers in The Lancet in 1962 [234],

“Cancer is no more a disease of cells than a traffic jam is a disease
of cars. A lifetime of study of the internal-combustion engine would
not help anyone to understand our traffic problems”,

it is nevertheless possible to collect information about different characteristics of
cells that may account for relevant biological variability in the cell population.
Besides, in the biological case, such characteristics may be dependent on the cell
population environment, which is not the case for the automobile metaphor.

2.1. Diversity of cell characteristics to describe variability in a cell population
Cell populations in tissues are characteristically diverse by many aspects, that

can be physically measured such as location in space (when the cell population is
endowed with a geometrical structure, as is the case of highly ordered organs such
as the liver, or of tumour spheroids), pressure (i.e., stress, when the medium is out
of equilibrium, which is the case in growing tissues), pH, oxygen saturation, glu-
cose concentration or concentration in metabolites that are relevant for biological
phenomena under study. Other variables may also be used to characterise relevant
biological variability at the level of a cell in a proliferating cell population, such
as age (a lumped variable assumed to represent the sum of products of protein
synthesis), size at division or at cell cycle phase transitions, and in any cell popu-
lation, the expression of genes of interest, the activity of cellulular detoxification
enzymes or membrane proteins such as ABC transporters [107], the determinants
of energy metabolism (such as number and quality of mitochondria), to name but
a few. Other characters may be visually assessable by pathologists, such as ep-
ithelial versus mesenchymal phenotypes for cells with the same local origin that
may encompass transitions from one state to the other (EMT or MET) [208, 247].

This is physiologically true of tissues in healthy multicellular organisms as
well as of cancer cell populations in growing tumours. Physiologically, all cells
in a given healthy organism are endowed with the same genome, whereas solid
tumours typically contain multiple genetic clones, and within these clonal popu-
lations there can exist phenotypic diversity across a range of functionalities and
behaviours such as those mentioned above. Heterogeneity in cell populations in
general is thus not pathological as such, provided that it is ordered. However,
observed loss of communications between cells that ensure tissue coherence, i.e.,
disordered heterogeneity, might constitute a main cause of cancer [220, 236, 237,
249, 250].
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Table 3: Factors that determine the physico-chemical conditions for metabolic
reactions in normal cells of evolved multicellular organisms and which are usually
impaired in cancer. These factors have emerged during the course of evolution
from the first Metazoa 1.0 (1000 million years ago, Mya) up to the Metazoa 2.0
(600 Mya).

A. Energetic metabolism (1450 Mya)

Within-cell normal respiration in mitochondria (tricarbolic acid cycle) or fermentation:
dates to a time well-before multicellularity and likely came about through endosymbiosis
leading to mitochondria-bearing cells

B. Physics of multicellularity (850 to 545 Mya)

1. Between–cell collagen glue constituting the extracellular matrix (ECM)
2. Adhesion to the ECM
3. Polarity in epithelial and other cells
4. Tight & gap (+++) junctions (collagen synthesis needs molecular oxygen; adhesion

and dispatching of toxics between cells need junctions)

C. The “multicellularity genetic toolkit” (1000 to 600 Mya)

Genes contributing to physiological intracellular regulatory networks and to between-
cell adhesion and communication physics (B), that emerged during the evolution from
protometazoans (Metazoa 1.0) to evolved metazoans (Metazoa 2.0). Although precise
descriptions of this ‘toolkit’ remain elusive – but would be very helpful to document the
atavistic theory of cancer (see below) and orient therapeutics – one may without doubt
mention among them cMyc, p53, Hox, collagens, connexins, often altered in cancer.
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2.2. Descriptive characters of a physical, chemical and micro-environmental na-
ture

We briefly mention local tissue characteristics related to physics, chemistry, or
other micro-environmental determinants, known to influence phenotype diversity
in cancer (see Table 3); as mentioned in the introduction, we do not detail the
molecular mechanisms themselves that actually modify these phenotypes towards
malignancy.

Biophysics and bioenergetics. Beyond profound modifications of tissue intensive
variables (such as temperature, pressure, concentration in oxygen, glucose, cy-
tokines [60], see below), between-cell communications (such as by variable po-
larisation of the external membrane [165], through microtubules [57] or gap junc-
tions [93, 249, 250]) in cancer tissues have been reported, and even proposed to
be among the causes of malignant transformation.

Poor bioenergetics of cancer cells might be responsible for such defects in in-
formation and energy transfer (that are indefectibly linked [188]) between cells
in cancer tissues, and it has even been hypothesised that cancer may be consid-
ered as a disease of the mitochondrion. The absence of properly working mi-
tochondria has consequences for information and energy transfer between cells
since the ability to sustain high-performance intercellular communication that is
needed in a well-organised tissue and involves expense of energy is then impaired.
Other consequences of defective mitochondria include the so-called Warburg ef-
fect [213, 257] (see below) and the development of resistance to proapoptotic
molecules, as the opening of mitochondrial pores, impaired in cancer, is a neces-
sary step in the apoptotic cascade [159]. The cell mitonchondrial content itself is
also a source of energetic heterogeneity [115].

One may also speculate that the scarcity and bad quality of intercellular infor-
mation and energy transfer leads by natural selection to the survival of the fittest
tumours in an organism, i.e., of those that have stochastically developed a suf-
ficiently varied fan of phenotypically diverse cells to allow them to survive, as
tumours, the most different changes in their micro-environment defined by cellu-
lar stress (see below), resulting in stochastic bet hedging (see above).

Cellular stress. Modifications of the normal physical and chemical tissue con-
ditions mentioned above, that imply metabolic conditions hostile to healthy cells,
include hypoxia, acidity, local pressure increase, inflammation and insult by xeno-
biotics such as cytotoxic drugs. Tumour cells are more able to resist cellular stress
than healthy cells. This is likely due to their plasticity and to bet hedging strategies
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at the level of the cell population; furthermore, cellular stress may even cause can-
cer. For instance, increase in local pressure between cells has been experimentally
evidenced to induce malignant transformation of the tissues [86]. It is also the fun-
damental hypothesis of tissue organisational field theory (TOFT, see above) that
cancer is the result not so much of the progeny of a single renegade cell, but mainly
of a diseased surrounding tissue engendering cellular stress [236, 237]. Another
fact about cellular stress due to high doses of cytotoxic drugs is that it reduces phe-
notype heterogeneity in tumours by selecting highly resistant clones [67, 106].

Glycolytic metabolism. The Warburg effect is the switch, observed in cancer, from
the normal oxidative phosphorylation phenotype, relying on the tricarboxylic acid
(TCA, or Krebs) cycle occurring in the mitochondrion, that needs oxygen, to
anaerobic glycolysis, that does not need it [186, 213, 257]. This switch allows
cancer cells to survive in hypoxia; furthermore, anaerobic glycolysis produces
lactic acid, which lowers extracellular pH and allows cancer cells to better sur-
vive in comparison to normal cells. It seems to be all the more active as hypoxia
is localised in space [146] or intermittent [252] in tumours. An intensive switch
to anaerobic glycolysis leads cancer cells to recruit glucose from alanin and glu-
tamine in muscle proteins for their metabolism, resulting in cachexia in advanced
cancers [93]; however in general, heterogeneity with respect to oxidative phos-
phorylation or anaerobic glycolysis exists in cancer cell populations [143]. An
increase in anaerobic glycolysis has been shown to be associated with drug re-
sistance, which has led to the proposal of targetting cellular metabolism as an
innovative therapeutic strategy [262].

Epigenetic factors and cell plasticity at the gene expression level. Cell metabolism
strongly conditions for the activity of epigenetic factors [83, 85, 84] that are re-
sponsible for plasticity in cancer cells, i.e., reversibility to a pluripotent state char-
acteristic of stem cells (within the course of differentiation) [44, 186], and con-
nections between mutations of enzymes of the TCA cycle, such as IDH1/2 and
epigenetic control of cell plasticity have been evidenced [235]. Furthermore, the
so-called w factors [245], have been shown to reprogram metabolism [104]. These
epigenetic factors (such as the DNA methyltransferase DNMT3A, which is often
mutated in acute myeloid leukaemia [260]), control DNA methylation [145, 222],
the intensity of which is related to gene expression silencing [224] including the
silencing of tumour suppressor genes [121]. They may also contribute to the
plasticity of tumour cells that can lead to phenotype heterogeneity [119, 227]
within a cancer cell population, proposed to be a source of non-genetic insta-

11



bility [140], in particular with respect to the epithelial versus mesenchymal phe-
notypes [104, 246]. Pluripotent cancer cells, or so-called cancer stem cells, are
also, due to such epigenetically controlled phenotypic plasticity, less sensitive
than differentiated cancer cells to anticancer drugs [63, 72, 79, 258]. Note that
the molecular mechanisms of epigenetic dynamics, which are beyond the scope
of the present review, have been partly unravelled in [31].

Cellular tumour micro-environment and the cancer niche. The tumour micro-
environment is the local ecosystem in which tumour cells thrive [148], thanks
to supply by other cells in oxygen, nutrients, inflammatory cytokines or metabolic
factors. The vasculature is of importance to maintain this micro-environment, al-
though cancer cells are endowed with the ability to survive in hypoxia, thanks
to the Warburg effect mentioned above. Also of importance are infiltrated lym-
phocytes and macrophages, participating in local inflammation, fibroblasts that
may be transformed into cancer-associated fibroblasts [32, 49, 147, 176] or in
specific tumours (breast, prostate) adipocytes transformed into cancer-associated
adipocytes [68, 160]. It has been proposed to make use of physical means specifi-
cally targetting the micro-environment with the aim to revert cancer tissues to nor-
mal [138]. The cancer niche, on the other hand, consists of non-cancer cells living
in symbiosis with tumour stem cells [13]. It is an emergent micro-environment in
tumorogenesis with similarities to the normal micro-environment of stem cells,
whose existence is enforced by the proximity of cancer cells themselves, and that
is conversely conducive to cancer cell survival and proliferation. It is not a part of
a cancer cell population, hence, strictly speaking, it does not participate in its cell
heterogeneity. However, the alteration of the niche through the actions of both
cancer cells and non-cancer cells can modify the natural selection pressures that
act on these resident populations. According to niche construction theory [193],
this type of dynamics can have an evolutionary effect when the modified selection
pressures persist in a localised manner over multiple cell generations. The cancer
niche may favour those stem cells that have evolved towards malignancy [42, 251].

3. Evolutionary mechanisms that contribute to heterogeneity in cancer

Cancer is an evolutionary disease, in the sense that not only can some of its
causes and determinants be found in the history of the evolution of species, but
also because cancer cell populations most often evolve their phenotypes when they
grow in size and malignancy, acquiring de novo properties that render them able to
escape all controls and ultimately invade their host organism. The idea of cancer
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as an evolutionary disease is certainly not new, and it has been set under focus by
many in the last decades [5, 113, 187, 192, 218, 238, 241]. However, theoretical
views on evolution in cancer cell populations that go beyond the description of
evolving genetically distinct cell clones are not so broadcast. Yet they may help
to explain the naturally heterogeneous nature of cancer cell populations and their
ability to develop drug resistance.

Letting the readers interested in the general theory of evolution to deepen their
views by consulting the works of Charles Darwin [58], Steven Jay Gould [108,
109, 110], John Maynard Smith [179, 180] and others, we begin by general con-
siderations on evolution and cancer, and then review in more detail three aspects
of evolutionary theory that shed light on our subject: a) the so-called atavistic the-
ory of cancer [60], b) the epigenetic landscape, starting from Waddington until his
recent epigons, around Sui Huang, and c) hints about the evolution of the immune
system and its possible use in the clinic, “targetting cancer’s weaknesses rather
than its strengths” [168].

3.1. Introducing an evolutionary perspective in cancer biology
“Nothing in biology makes sense except in the light of evolution” (Theodo-

sius Dobzhansky) [69], and this is particularly true in developmental biology and
in cancer, that is firstly an evolutionary disease, more precisely a disease of evo-
lutionary multicellular organisation because it may be considered as a backward
step in the course of evolution towards organised multicellularity, according to the
atavistic theory of cancer [60] (see below).

Cancer thus represents evolution, anatomically localised in the organism (ini-
tially in a given organ, possibly extended to other tissues by remote metastases),
of genetically new species developing, likely with branching [113] by successions
of mutations, their diversity at the expense of the host organism. We contend
that the disappearance of successive physiological control mechanisms described
below puts cancer cell populations in the state of a very primitive multicellular
organisation.

Evolution from unicellular to well-organised multicellular organisms (such
as mammals) has involved in the course of billions of years layers of growing
complexity which support their proper function. These include: 1) the simple
regulation between proliferation and apoptosis at the single cell level to allow a
population of initially identical cells to expand and survive in changing micro-
environmental conditions; 2) the development of specialisation in cells (already
evidenced at elementary levels of evolution towards multicellularity, for example,
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Figure 3.1: Tentative approximate reconstruction of the evolution of life on planet Earth,
from [22], [60], [103], [125], [152, 153], [157], [168], [171], [177], [194], [215, 216],
[223], [226], [233], [248], [249, 250], and others. Time is in millions of years (My).
We have only set on this rough timeline widely known biological and geological episodes
such as in the late Precambrian the Ediacaran [156] fauna, first metazoa 2.0 that needed
atmospheric or oceanic oxygen and the so-called Cambrian explosion [109]. Although
oxygenation of the oceans and atmosphere began before -850 My, we have mentioned here
only the period during which it became significant enough to allow for the progressive
constitution of evolved metazoans [125] (see also [195]). In the perspective of this “mul-
ticellularity genetic toolkit” well established by -600 My, nothing fundamentally new for
genes altered in cancer is hypothesised to occur after the so-called Cambrian explosion;
only the body plans of animals may have then encompassed considerable enrichment,
see [90] for a biophysical hypothesis on this subject. See also [225] for a hypothesis on
the transition between the extinction of the Ediacaran fauna and the Cambrian explosion.

in colonies of Dictyostelium discoideum [2], or bacterial films [117]) to yield dif-
ferentiated cell states with different functions; 3) the development of higher levels
of control such as transcription factors to organise and regulate such differenti-
ation; 4) the control of transcription factors by epigenetic (genes and resulting)
enzymes in a coherent way to achieve harmonious functioning between the dif-
ferentiated cell populations; and 5) the immune system to eliminate possible er-
rors in proliferation when it becomes uncontrolled. Indeed, in the evolution of
genomes from unicellular to sophisticated multicellular organisms, proliferation
– which is the fundamental biological mechanism through which life exists as
such – has been physiologically more and more strictly controlled by transcrip-
tion factors and epigenetic mechanisms that ensure the cohesion of such multi-
cellular constructions. Note, however, that, sophiscated as they are, these layers
of control do not result from the design of a harmoniously conceived plan, but
rather, as pointed out by François Jacob, from ‘tinkering’ [142], and that, as in
all tinkerings, local failures are always possible. Local escape from these con-
trols during cancer, resulting in uncontrolled proliferation in anatomically iso-
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lated parts of the organism, has been hypothesised to be a localised return to the
ancestral state of unicellular organisms or, rather, to very elementary forms of
multicellularity [59, 139, 168, 242, 243, 253, 254] (“Metazoa 1.0”, see below
about the atavistic theory of cancer). This has been individualised in cancer as
an intermediate state of coarse cooperation between grossly differentiated cells in
a tumour [144, 178, 207, 244], that organises itself to survive as an independent
entity.

The Darwinian evolution that leads to the constitution of genetically well de-
fined genomes, adapted to their (macro-) environment (i.e., in this occurrence, on
our planet Earth) should be clearly distinguished from evolution – in a general
sense – in the phenotype of cells within a given genome in the corresponding mul-
ticellular organism (one of us). This physiological differentiation and maturation
of cells within one genome occurs over the timeframe of a human life, not of bil-
lions of years, and can be metaphorically represented by Waddington’s epigenetic
landscape [256].

Following this metaphor, the epigenetic landscape is initially (in the embryo)
the same for every tissue to be. However, as the organism develops, so too do
the epigenetic landscapes for each tissue through a process of local adaptation. In
particular, an epigenetic landscape is locally (in an organism) modified when a
mutation occurs in a given genome in an isolated part of the organism; conversely
when it is energetically too costly for the local landscape to maintain epigenetic
barriers that ensure its cohesion under repeated attacks (of cellular stress, in par-
ticular by anticancer drugs), natural selection in the population of dividing cells
may act on viable epimutations (at the molecular level, usually by methylation
of the DNA), or even mutations, yielding locally (in the landscape) new epige-
netic barriers that are adapted to the stress and solidly established. This point of
view, that focuses on irreversible genetic changes as a response to cellular stress,
has been popularised by Henry Heng and colleagues, using the term of “genome
chaos” [122, 126, 169]. However, even in this perspective, drug-induced drug re-
sistance, in as much as it may have been shown to be due to mutations, may have
been preceded by transient epigenetic modifications [155], while in other cases
it may rely only on such epimutations, without established genetic mutations. In
both cases, such perspective opens up paths for the investigation of innovative
cancer therapies relying on modifying epigenetic regulations either directly or
indirectly by acting on the cell metabolism on which they depend. In fact, ge-
netic and non-genetic instability seem to be not independent of one another [232].
Even only epigenetic modifications, i.e., without mutations, can be responsible
for firmly established drug resistance [37]. Can epimutations furthermore pro-
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voke subsequent mutations on the same genes? It has been proposed that muta-
tions occur before the onset of epimutations [206], but it has also been reported
that epigenetic silencing by methylation makes single nucleotide C to T mutations
on the DNMT3A locus highly probable, entraining in turn more epigenetic alter-
ations [261]. This example at least may give some consistency to the hypothesis of
mutations being possible consequences of epimutations, and, metaphorically, cel-
lular stress being a possible cause of firstly transient and subsequently irreversible
modifications of the landscape.

An interesting observation is that when there is actual development of geneti-
cally distinct resistant subclones, their number does not grow indefinitely; in fact,
only a relatively small number of them survive [67]. This has been explored by
using mathematical modelling approaches [240, 255]. However, the mechanism
of such evolution towards a relatively scarce number of resistant subclones re-
mains unknown. One might speculate that mutations yielding defects in DNA
repair enzymes can produce different mutations in different parts of the DNA,
some of which only proving to be viable in the tumour mass, due to natural selec-
tion. Biological evidence is to our best knowledge still lacking to support such a
hypothesis.

3.2. Evolution from unicellular organisms and the atavistic theory of cancer
Noting that some cohesion, even cooperativity, between cancer cells always

exists in tumours [144, 178, 207] does not shed much light on tumorigenesis.
Therefore, to understand the role of cohesion in tumorigenesis, we shall review
hypotheses about the emergence of such cooperativity.

Self-organisation has been evidenced in primitive forms of interaction between
agents supposed to represent the “Game of Life” invented by John Conway in
1970 [12]. The Game of Life is a cellular automaton (i.e., a program) constituted
of agents that can show multiple global patterns according to the rules that define
it. Of note, the structures that emerge during the Game of Life are only dynamic
and represent far from equilibrium dynamics. These can present what physicists
call criticality, and inevitably evolve towards more complex forms of organisa-
tion. This is a phenomenon similar to abrupt phase transitions that are well known
in physics, and are reversible but potentially with a high energetic cost for such
reversion. In the theory of evolution that we are interested in here, such phenom-
ena have been depicted by John Maynard Smith and Eörs Szathmáry under the
term of major transitions in evolution (MTE) [179, 180, 195].

It has been proposed that such a transition took place when amorphic agglom-
erations of single cells first evolved into primitive, but robust, forms of multicel-
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lularity (“proto-metazoans, or Metazoa 1.0” according to Paul Davies and Charles
Lineweaver [59, 226]) that could spontaneously show patterns favouring com-
munication between cells, possibly due to the enrichment of the atmosphere in
oxygen and collagen formation, that needs molecular oxygen [226].

Multicellular life is supposed to have remained in this primitive state until
more organised forms of multicellularity (“Metazoa 2.0”) emerged, about 600
million years ago, see Fig. 3.1, with extended differentiation processes and their
epigenetic sophisticated controls, eventually yielding modern animals by silenc-
ing many of the genes on which the existence of Metazoa 1.0 relied. This second
transition, to Metazoa 2.0, shows the same criticality as the first one, and is also
reversible. The idea that oncogenesis is a tissue phenomenon presenting many
characters of a phase transition is developed in detail from a physicist’s point of
view in [60]. In the atavistic theory of cancer, oncogenesis is likened to a lo-
cal reversal of this phenomenon [60]. Specifically, cancer is seen as a result of
a backward evolution from a tissue normally constituting sophisticated Metazoa
2.0 to the more robust Metazoa 1.0 (their atavistic ancestors [59]), which qualifies
cancer to be an archeoplasm rather than a neoplasm (Mark Vincent [253]). By
“archeoplasm” is meant a reversion, or backward evolution, to an archaic, early
multicellular, form of life. This viewpoint has recently been experimentally as-
sessed in mice [45].

Each cell endowed with a given healthy human genome bears all programs
that can lead to the terminally differentiated cell states in the adult organism. Ac-
cording to the atavistic theory, we bear in particular in our genome all repressed
elements of genetic material (“unused attractors”, according to Sui Huang, in the
epigenetic landscape created in each one of us constituted as a coherent multi-
cellular organism, see below) that, in the absence of sufficient control, can be
de-repressed and set to work, resulting in cancer as a de novo Metazoon 1.0 inside
a Metazoon 2.0 organism. The risk of its occurrence is thus the price we must pay
for the constitution of sophisticated coherent multicellular organisms [59, 70, 71],
which are dynamic constructions always far from equilibrium [210].

The internal coherence between cells and organs of a healthy multicellular or-
ganism is hence non-genetic (possibly epigenetic or of a totally different nature
[205]) and it relies on dynamic programs that may have a limited – in time – role
to play (in embryogenesis and morphogenesis [165]) or on the contrary for some
of them, are conserved in active form in stem cells in the adult and can produce
organisation at the tissue level (TOFT [236, 237]). Such coherence in the differen-
tiation of cells is initiated from totipotent cells in the first stages of embryogenesis,
letting subsist in the adult only a limited number of pluripotent stem cell types,
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corresponding to the great functions of the organism (haematopoietic stem cells,
intestinal stem cells, cardiac stem cells, and many others). These dynamic pro-
grammes have epigenetic enzymes as their effectors at the gene expression level,
and mutations in their genes, such as TET2 or DNMT3A, are frequent in early
oncogenesis [64, 211, 212, 235, 261].

Note that in the framework of this evolutionary schedule that may explain can-
cer and its inevitable increase in tissue heterogeneity when regression to Metazoa
1.0 occurs, open questions remain: apart from Darwinian selection that has elim-
inated non-viable multicellular organisms in the course of evolution to Metazoa
2.0, what mechanisms keep together so phenotypically different cells in a viable
Metazoon 2.0 organism (about 200 different cell types in a human body1). On
what informational grounds is such coherence based? Is it synchronisation be-
tween cells? Are circadian clocks and the central circadian pacemaker (known to
be disrupted in cancer, all the more so as the cancer is more advanced, such en-
hanced disruption resulting both in poor prognosis and poor response to anticancer
drugs [164, 221], which has been also evidenced experimentally in mice [88, 89])
actual effectors and organisers or plain witnesses of such coherent organisation?
Or is such cohesion due to the transfer of information on principles of classic ther-
modynamics [93] or of quantum mechanics [205]? In the metaphoric Wadding-
ton’s landscape (see below), quasi-potential barriers establish tissue differentia-
tion with normal cooperation between cells within coherent tissues constituted as
organs, and between organs that build together an organism; however this says
nothing about the mechanisms of the global cohesion of the scenery.

What leads such cohesion, certainly necessary for health, but still not ex-
plained, astray in cancer? According to the fundamental theoretical work of Au-
gust Weismann (1834–1914), the only mission of the soma of sexually reproduc-
ing animals is to serve, preserve and transmit the germ line (or germ plasm, i.e.,
the genome as contained in germinal cells). This needs a high degree of coher-
ence in the soma of a multicellular organism for it to be able to faithfully fulfill
such “dirty work” [105] without errors. Tumours are in this perspective local
cheater tissues (selfish cell populations) that unfaithfully leave this cooperative
program to proliferate in an organised form for themselves. To this end, they
unmask genes that have normally been silenced in individual cells since the tran-
sition to Metazoa 2.0, and this results in escaping normal antiproliferative and
differentiating messages that are necessary to maintain multicellular coherence.

1as reported e.g., in https://www.unifr.ch/biology/assets/files/albrecht/lectures/chapter23.pdf
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Such regression also allows cancer cells to use primitive defence mechanisms,
that have normally been silenced in Metazoa 2.0, but were atavistically designed
for Metazoa 1.0 cells to survive in hostile conditions, such as hypoxia, starvation,
or ionising radiations [59]. These mechanisms lead to stochastically organised
(with respect to phenotype) tumour cell populations (because of the poor quality
of intercellular communications), although this may be efficient due to bet hedg-
ing (see above). Such an explosion of stochastic functional heterogeneity includes
tolerance to xenobiotics, i.e., drug resistance.

With this evolutionary perspective in mind, cancer is thus a disease, certainly
not only of a single “renegade cell” (nor of a whole organism), but rather of a cell
population localised in an organism. Tumours are not collections of identical cells
that plainly proliferate. Not only is the distribution of their phenotypes nonuni-
form among cells in a given tumour, but also phenotype heterogeneity in these
cell populations is meaningful, as they are at least roughly organised. Indeed,
cooperation between cancer cells in a tumour exists [53], and it likely relies, as
mentioned above, on reversion to an atavistic, primitive and robust form of mul-
ticellularity. As such forms of multicellularity do not need (and escape) sophis-
ticated controls that physiologically ensure coherent organisation at the level of
the organism, much room is left for increased heterogeneity in cancer cell popula-
tions. In fact, such heterogeneity may have been selected for in early evolutionary
life as a risk-spreading strategy in fluctuating environments [18, 38]. This may be
true of all forms of between-cell heterogeneity in cancer tissues mentioned ear-
lier, and in particular of cell plasticity that may open the way for some cells in a
population to develop a drug resistance phenotype.

3.3. Evolution in a given genome: Waddington’s epigenetic landscape revisited
The epigenetic landscape imagined by Conrad Waddington as illustrated in his

book of 1957 “The strategies of the genes” [256], see Fig. 3.2, was originally a
simple graphic metaphor of cell differentiation fate. It is intended to represent at
the cell population level cells on their way to differentiation from the stem-cell
state as balls rolling down a scenery of bifurcating valleys, the last subdivisions
of which end in fully differentiated states. It has been revisited by Sui Huang and
colleagues in a series of articles [128, 129, 130, 132, 131, 133, 134, 135, 136,
203, 204], which link the bifurcations occurring between the valleys of the epige-
netic landscape to bistable – or multistable [81] – switches in ordinary differential
equations of systems biology representing the expression of antagonistic genes,
such as PU.1 and GATA1 for the choice between myeloid and erythroid fates in
the haematopoietic differentiation tree [46, 111, 136].
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Figure 3.2: The Waddington epigenetic landscape (a), and one of its possible interpreta-
tions as a soft, plasticine-like sculpture, moving under environmental - in particular drug
- pressure: the delivery of anticancer drugs may lower normally constituted epigenetic
barriers (b), allowing cells to trespass them and fill “unused attractors” (c), a scenario
proposed by Sui Huang, see, e.g. [133].

Sui Huang proposes, reversing the quote of Theodosius Dobzhansky [69], that
“nothing in evolution makes sense except in the light of systems biology” [132].
Such representation and its mathematical formalisation are designed on the prin-
ciple of a quasi-potential mimicking gravity, at its highest in stem cells and at its
lowest in fully differentiated cells [263]. Note that in the framework of dynamical
systems, the classic Waddington epigenetic landscape is compatible with the con-
cept of pitchfork bifurcations (see, for e.g., [73] or [200]) where two valleys are
created from one. However, it has been suggested that cell differentiation should
instead suppress a valley; rather than leaving the choice berween two valleys at
bifurcations corresponds better to a saddle-node and not to a pitchfork bifurca-
tion [87].

Let us stress that, unlike a genetic landscape describing all genomes in a pop-
ulation of individuals to highlight their relative fitness, the epigenetic landscape is
attached to one given genome [133]. Metaphorically describing differentiation of
somatic cells in a given tissue, it should be thought of as a moving, plasticine-like
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landscape. Its motion depends on changes in gene expression, due to reversible
epigenetic changes, that are influenced by the tissue metabolic environment (and
cytokines or other determinant molecules) and to possible irreversible local muta-
tions.

When the quasi-potential hills that separate valleys are of a genetic nature,
they are hard-wired and impossible to move (i.e., the plasticine is dry and as rigid
as rock). However quasi-potential hills of an epigenetic nature can be lowered or
heightened through, for instance, the silencing of gene expression. In the same
way, plasticity with possible reversal to less differentiated cell states (e.g., ex-
perimentally, at the single-cell level, making use of Yamanaka factors [245], or
conceptually, at the cell population level, by cellular stress-induced epimutations
and selection [48]) can be represented by changes in the quasi-potential of differ-
entiation that alter the direction of its gradient (i.e., reverting the flux of differenti-
ation). Note that from a modelling point of view, according to the tissue and to the
epigenetic control under study, one can design by equations relevant local parts
of such landscapes (“Draw me a landscape” [191]) to help predict cell population
fate under the influence of factors modifying the quasi-potential of differentiation.

The basic sculptors of such moving landscapes are (not forgetting the Ya-
manaka factors used to produce experimentally induced pluripotent stem (iPS)
cells [245]) at the gene expression level epigenetic enzymes, already mentioned
earlier about metabolism. Epigenetic events result in single cells at the gene ex-
pression level from methylation or demethylation of histones or bases, and they
are under the dependence of these enzymes, among which are known in particu-
lar demethylases (HDMs), acetyltransferases (HATs) and deacetylases (HDACs)
for histones, and DNA methyltransferases (DNMTs) or DNA demethylases (such
as TET2 [158]) for the DNA (reviewed, e.g., in [121]). At the cell population
level, these enzymes are not necessarily homogeneously distributed in cells and
can alter gene expression. Therefore, extended heterogeneity in the fitness levels
of cells is possible, and this, in a given environment (such as cellular stress due
to drug insult), can determine the evolutionary trajectory of a whole cell popula-
tion. Nevertheless, such evolution is reversible since all epigenetic events, based
on methylation or acetylation of aminoacids on histones or gene methylation on
the DNA, are reversible.

With this perspective, phenotype plasticity in cells may be speculated to be
a capacity to quickly unmask normally silenced genes, which can be related to
e.g., heavy loads of histone aminoacid demethylases and DNA methyltransferases
(such as KDM5A or DNMT3A) in individual cells. Indeed, if such special cells
exist in a cell population (and there is no reason, on the basis of a stochastic, un-
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controlled, distribution of protein load between cells – see above about bet hedg-
ing [18, 38] – that it should not be the case in cancer), they should be candidates,
rare as they may be, for the most highly plastic cells that can quickly adapt by
unmasking atavistic resistance genes to face a life-threatening event. Such het-
erogeneity may help to explain reversible drug resistance phenomena as observed
in [231], and reviewed in [76].

Indeed, when cancer cell populations are confronted by life-threatening events,
such as high doses of cytotoxic drugs (as in [231]), it is highly likely that, due to
their plasticity, which is mainly of an epigenetic nature, some of them (a tiny pro-
portion is enough) develop a drug-resistant phenotype that can later expand and
drive repopulation; this has also been recently hypothesised in [120] about resis-
tance to EGFR antagonists. It has also been proposed that even when the drug
concentration is only locally high, this may yield resistant cells that subsequently
diffuse to zones in the tumour where less hostile conditions (in drug concentra-
tion) prevail, and eventually contribute to the development of global resistance in
the tumour [94].

3.4. Evolution of the adaptive immune response in multicellular organisms
Heterogeneity – and reversibility – of the distribution of surface antigens in

a cancer cell population, a feature that may account for resistance of cancer cell
populations to monoclonal antibodies, has been known for some time [77, 80].
Although evolution of the immune system is not, strictly speaking, a feature of
heterogeneity in cancer cell populations, it should be mentioned en passant in the
perspective of theoretical treatments of cancer that take an evolutionary perspec-
tive into account.

In the framework of Darwinian evolution in multicellular organisms, adaptive
immunity is among the most achieved and sophisticated means designed to fight
cancer progression, even though native immunity is known to exist in primitive
forms of multicellularity, such as sponges [239] . The most effective countermea-
sures of cancer cells are either to mask their surface antigens (by internalising
them) or to increase the heterogeneity of their distribution in the tumour, in an-
other bet hedging strategy against their attack by immunocompetent cells. The
adaptive immune response is also a weapon that tumour cell populations cannot
develop in an analogous way for themselves.

With this evolutionary perspective, it has been proposed that cancer treatments
should not so much focus on fighting proliferation of cancer cells – as their return
to an atavistic state of evolution renders them very powerful to resist cytotoxic
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insults (as stated in [203]) by, for instance, maintaining drug-tolerant subpopu-
lations as long as they need it – but on targeting cancer weaknesses (immunod-
eficiency) rather than its strengths (proliferation unabashed) [168]. Along this
line, it was proposed, firstly and long ago by William Coley, who is considered as
the father of immunotherapy (reviewed, e.g., in [198]), to use pathogenic agents
against cancer, and later, as a practical way to increase the differences in therapy
sensitivity between healthy and cancer cells. For the latter proposal, the aim is to
expose healthy cells and the naturally immuno-deficient cancer cells to an active
pathogenic agent which, due to vaccination against the same agents, renders only
healthy cells immunocompetent to defend themselves from the viruses [150, 168].
Oncolytic viruses, that are active against cancer cells, but harmless to healthy
cells, are also an active subject of research nowadays (see, e.g., [259]). Another
treatment proposal is to first administer a combination of cytostatic and cytotoxic
drugs to reduce the tumour burden, and then to deliver therapies which boost the
immune system, with the hope that the immune response will be less overwhelmed
by a heavy and heterogeneous mass of tumour cells [10, 230].

4. Mathematical models to predict treatment outcomes and drug resistance

4.1. What sort of heterogeneity, and what type of mathematical model?
Compared with the quantity of biological observations as well as of evolution-

ary observations and hypotheses on the involvement of heterogenity in drug resis-
tance that have been presented in the previous sections, studies of mathematical
nature are thus far scarce. However, in particular in the last decade, mathematical
models coming from ecology, namely models of adaptive dynamics [65, 66], have
been developed to take account of drug resistance in cancer cell populations by
proposing cell population models structured by traits to describe relevant hetero-
geneity in those cell populations. Furthermore, optimal control methods [26] are
also being proposed to circumvent drug resistance by combined therapies.

The choice of which between-cell heterogeneity to incorporate into a mathe-
matical model of carcinogenesis will be dependent on the question of interest, the
biological observations of the system, available data, and whether it is likely to be
influencing, to a large degree, the observed dynamics. When studying evolution-
ary dynamics of cancer, it is also important to consider whether this heterogeneity
is itself evolving, and if this evolution is occurring on a relevant timescale. For
instance, the development of reversible drug tolerance (through epigenetic mech-
anisms) in cancer cell populations can occur over the timeframe of days [231],
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whereas 20 years can elapse between carcinogen exposure and the clinical detec-
tion of a solid tumour [170].

What type of between-cell heterogeneity should be represented? Structure
variables describing biological variability in physiologically based models may
include relevant phenotypes such as size, age in the division cycle since last di-
vision, stemness markers, epithelial vs. mesenchymal visual shape, or any cell
character relevant to the question at stake, see an illustration on some of the deter-
ministic models that have been proposed on Fig. 4.1. The question of whether or
not to include spatial dependence in the model to choose is also dependent on the
conditions in which the biological phenomenon of interest is observed. Cells in
the centre of a tumour, for instance, will have a very different set of selective pres-
sures from those at its periphery, and in this case it makes sense to include space
when some geometry of the tumour is known [141] – which is far from being the
general case. When modelling cells in a Petri dish, on the other hand, it may be
sufficient to assume that the cells are well-mixed and thus equally exposed to their
environment.

4.2. What mathematical models should be used? Deterministic or stochastic?
Clearly, as we focus on evolution towards drug resistance, whatever the type

of heterogeneity considered, it should not be static, but amenable to changes
with time (evolution in the general sense). This point of view excludes purely
static models of heterogeneity, and it favours models based on differential equa-
tions (ODEs), integro-differential equations (IDEs), partial differential equations
(PDEs) or stochastic differential equations (SDEs). Stochastic agent-based mod-
els (ABMs) may also be used, endowed with evolution rules that make them useful
tools to simulate tumour growth or other phenomena, however are much harder
to analyse than differential models2. Among deterministic models, a fundamental
difference exists between ODE compartmental models, in which heterogeneity is
represented by the number of compartments, inside each one of which there is no
variability (i.e., total homogeneity is present), and PDE models, in which vari-
ability is present everywhere and is represented by a continuous (possibly multi-
dimensional) structure variable, that may be spatial or phenotypic, or both (see
Fig. 4.1).

2in particular, because no deterministic predictability based on the Cauchy-Lipschitz (also
known as Picard-Lindelöf) theorem, i.e., nothing like existence and unicity of the trajectory solu-
tion to a differential equation with given initial conditions, exists for them
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Figure 4.1: Deterministic mathematical models adapted to describe cell population
growth. Ordinary Differential Equation (ODE) Models are not per se amenable to de-
scribe evolution of heterogeneity in cell populations, except by juxtaposing them in com-
partmental models, with exchanges between them, thus representing evolution only in dis-
crete steps (see below Fig. 4.2). Spatially or phenotypically (or both, mixed) structured
models, on the other hand, can represent evolution in a more realistic way, taking into ac-
count continuous variations of the biologically relevant structure variables, i.e., 2D or 3D
space x and / or continuously evolving phenotype ξ due, e.g., to dynamic methylation of
histones or of the DNA in each single cell. Mixed discrete and continuous models are also
available, as for instance continuous age-structured models (McKendrick-like transport
equations, see below) of the cell cycle with discrete phases G1, S, G2, M and exchanges
between them at cell cycle phase checkpoints [27, 28, 29, 30, 201].

In general, deterministic models are useful for modelling the expected be-
haviour of population-level phenomena, such as the emergence of resistance or
the formation of large-scale spatial patterns. Studying the asymptotic (i.e., long-
time) behaviour of a system is important, and for this reason deterministic models
have the advantage of being readily amenable to asymptotic analysis by using
many available methods. ABMs, on the other hand, are typically better at mod-
elling a small number of (cell, in our case) entities where stochastic effects have
a greater importance. They also offer a more natural description of a system, are
more flexible than deterministic models while still capturing emergent evolution-
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ary phenomena. Unlike deterministic models, ABMs can capture extinction and
the occurrence of unusual events; however, they are generally more computation-
ally expensive, which imposes limitations on the size of the population modelled.
A study comparing ABMs and PDE models is [41]. Hybrid mathematical models
(see below), that may mix – according to the scale and the environment consid-
ered – ODEs, PDEs and ABMs or probabilistic models, are another option for
modelling cancer progression and response to treatments. These types of models
are often useful when tissue-level dynamics (represented by PDEs or ABMs) are
influencing dynamics at a cellular scale (represented by ODEs). This is the case
when, for instance, intra-tumour heterogeneity, extrinsic to cells, such as local
nutrient and metabolite concentrations, pressure, spatial position, etc., are influ-
encing cell behaviours.

Beyond the question of the type of variables used to structure the model and
the type of model (deterministic or stochastic) lies the question of how the dynam-
ics of the physiopathological system itself must be represented in the equations,
according to how close to the molecules one intends to describe it. In more de-
tail, what are the reciprocal influences between different types of cell populations:
are they due to direct competition (as, e.g., in the case of tumour cells and NK
lymphocytes) or to intercellular signalling molecules, how do they proliferate and
die, and how are these dynamics influenced by environmental conditions? The
closer to the molecular level, the more difficult it is to take into account all inter-
acting agents by identifying parameters of the dynamics, and this can hardly be
done beyond the single-cell level. As we advocate the cell-population level as the
only really relevant one to mathematically describe between-cell variability and
its evolution, we are led to favour a functional representation rather than a molec-
ular one to describe the dynamics [27]. For instance, rather than representing
the detailed chain of pharmacokinetic reactions from the infusion of a cytotoxic
molecule in the general circulation until actual physical changes in cells (e.g., cre-
ation of double-stranded breaks in the DNA), one may represent in a mathematical
model its effects by an increase in the death rate at the cell-population level.

It is nevertheless possible, in cases where the single-cell molecular level and
the cell-population level must both be considered, to integrate ODEs at the single-
cell level into physiologically structured PDEs at the cell-population level (e.g.,
T-bet and GATA-3 in helper T-cells, variables at the former becoming structure
variables describing between-cell heterogeneity at the latter, examples cited in [91,
92]). However, such upscaling should be focussed on a specific phenomenon of
interest, in particular cell fate balance due to antagonism of expression between
two competing genes. Another way to proceed is to use hybrid ODE-PDE-ABM
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models, with ODEs at the single-cell level, PDEs for diffusion of molecules in the
interstitium, and an ABM to represent proliferation at the cell-population level, as
advocated, e.g., in [9], nevertheless yielding quite complex models to analyse and
simulate.

We will illustrate in the following sections these ideas by discussing some of
the models published in the literature.

4.3. Some mathematical models to represent heterogeneity in cancer
Probabilistic and hybrid probabilistic-deterministic models. Probabilistic mod-
els stated in terms of branching processes, that recapitulate a famous drawing
by Charles Darwin in his notebook of 1837 mentioned in [113], are commonly
used to study cancer evolution (that leads to stochastic bet hedging in tumours) in
particular by the accumulation of passenger and driver mutations during tumour
growth [34, 35]. Such models are based on the assumption that cell behaviour
is fully determined by cell-intrinsic properties and, as such, a cell will behave in
the same way alone as it would as part of a population. Therefore, while branch-
ing processes can describe the evolution of cell populations towards irreversible
malignancy, they cannot capture reversible drug resistance, local regulations nor
epigenetic adaptations. We refer to the book [151] for their use in general biolog-
ical settings.

Evolutionary game theory models [14, 15, 16, 166, 167] are another type of
probabilistic model that can represent evolution in cancer cell populations, both
with and without treatments. In evolutionary game theory, cancer cell phenotypes
are the players of the game, their choices of interaction with other phenotypes are
their strategies, and pay-offs refer to the fitness gain or loss from such interactions.
The model calculates the relative abundance of phenotypes through time and se-
lection corresponds to the most abundant phenotype at equilibrium (a so-called
“evolutionary stable strategy”). However, evolutionary game theory models are
restricted to considering a finite number of phenotypes and are limited in their
ability to capture cell-environment interactions. Despite this, they are useful in
teasing apart the intra-tumour interactions that lead to the relative abundance and
coexistence of distinct phenotypic variants [149].

ODE models and heterogeneity. Using non physiologically structured differential
models, i.e., ODE models, makes it compulsory to divide the cell population into
a finite number of compartments, in each of which the phenotype representing
biological variability is a constant parameter, see an example in Fig. 4.2.
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dx
dt

= x f (y) + α f (y)(y − x),

dy
dt

= y f (y) − u(t)g(y − x),

dn
dt

= n f1(n) − u(t)g1(n),

x(0) = x0, y(0) = y0, n(0) = n0.

Figure 4.2: Example of a compartmental ODE model [54] of a growing cell population
divided into 3 subpopulations: cancer drug-resistant (x), total cancer (y) and normal (n);
f (y) (respectively f1(n)) stands for the instantaneous growth rate of the total cancer pop-
ulation (y) – the same as for the resistant cancer subpopulation –, (respectively for the
normal population (n)), exchanges from the drug-sensitive (y − x) towards the resistant
compartment (x) are represented by a fixed rate α, u(t) represents an instanteneous anti-
cancer drug delivery flow, g(y − x) and g1(n) are drug sensitivity functions in cancer and
normal cell subpopulations, respectively. This ODE model, published in 1997 by Michel
Iskin da Silveira Costa and José Luı́z Boldrini, was likely the first used to study optimal
control strategies (see below) taking into account both resistance in cancer cell popula-
tions and unwanted side effects in healthy cell populations as a toxicity constraint, with
the objective to minimise the total cancer cell population.

A recent review of classic ODE models of tumour growth and their experimen-
tal assessment is [24]. Such a modelling setting has proved interesting to study
the impact of a change of parameters on the whole cell population. This has been
the case, for instance of [240] in which the effect of an increase of self-renewal on
the growth of a leukaemic clone is studied, of [185] in which the glucose-lactate
metabolism is studied, especially in glioma cell populations, and of [99] in which
a non-local Lotka-Volterra ODE model is the basic set of equations proposed to
represent between-cell population interactions in a tumour micro-environment.
This latter model, as other models of evolutionary game theory (see above), may
be considered as variants of the replicator equation [124, 197], that has been ex-
tensively studied in mathematical ecology.

Integro-differential (IDE) models. IDE models are structured in a phenotype vari-
able that describes heterogeneity in a continuous way, but as regards differential
terms, they differ from ODE models only in as much as an integral term represent-
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ing non local interactions (i.e., of one cell with all the others in the population,
whatever their phenotype) is present. Recently, modelling techniques borrowed
from mathematical ecology [66, 65] have been used to study the adaptation of
cancer cell populations to the deleterious effects of anti-cancer therapy by using
such models. Rather than considering two cancer-cell types that are either drug-
sensitive or drug-resistant, instead in these models cancer cells are assumed to
reside within a continuous spectrum of phenotypic states ranging from complete
sensitivity to complete resistance to the therapy. In this framework, a continuous
variable encapsulates the level of drug resistance of a given cell, and could be
related for observation purposes in experimental settings to a specific molecular
mechanism of cellular resistance (such as the expression levels of ABC transporter
family proteins which can pump a variety of drugs out of cells [107]), or plainly
to the minimum dose of a drug that kills a given percentage of the cell population
in a controlled environment, but also, simultaneously assessing plasticity in indi-
vidual cells, to stem cell membrane markers. Furthermore, the distribution of a
phenotypic trait across a cell population evolves in time according to IDEs which
incorporate both population dynamics (evolution with time of the number of cells
disregarding their phenotypes) and adaptive dynamics (evolution with time of the
probability distribution of the phenotypic trait in the population). See an illustra-
tion in Fig. 4.3.

The model proposed in [161] used such an approach to investigate how intratu-
mour heterogeneity affects multi-drug resistance. The cancer cell population was
assumed to be well-mixed with uniform exposure to a cytotoxic drug, and the level
of drug resistance of a cell in the model was assumed to undergo small changes
between cell generations through, for instance, genetic or epigenetic mechanisms.
In the model, the level of resistance and the total size of the cell population deter-
mined the net growth rate of cells during therapy. Numerical simulations of the
model equation indicated that therapy acts as a selection process causing the ex-
pansion of resistant clones. The phenotype-alteration process, on the other hand,
was found to act as a diffusion process in the phenotypic space, effectively increas-
ing stable heterogeneity and the likelihood of the presence of resistant clones that
can survive therapy. The authors thus proposed that treatment which reduces phe-
notype alteration rates may improve targeted therapy.

In [175], the authors considered a model with a structure similar to that men-
tioned above [161] with the addition of an extra population of healthy cells that
compete with the cancer cells for space and resources and are also exposed to the
therapy. In this way, the model is able to incorporate the natural idea (mentioned
below about therapeutic optimisation) that a therapy should exploit dynamic dif-
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∂

∂t
nH(x, t) =

[
rH(x)

1 + kHu2(t)
− dH(x)IH(t) − u1(t)µH(x)

]
nH(x, t),

∂

∂t
nC(x, t) =

[
rC(x)

1 + kCu2(t)
− dC(x)IC(t) − u1(t)µC(x)

]
nC(x, t),

Environment: IH(t) = aHH · ρH(t) + aHC · ρC(t), IC(t) = aCC · ρC(t) + aCH · ρH(t),

with ρH(t) =

∫ 1

0
nH(x, t)dx, ρC(t) =

∫ 1

0
nC(x, t)dx,

u1 cytotoxic drug, u2 cytostatic drug.

Figure 4.3: Example of an Integro-Differential Equation (IDE) nonlocal Lotka-Volterra
model with drug resistance phenotype structure [175]. In this IDE model, the two cell
populations, healthy (nH) and cancer (nC), are represented with a quantitative structure
trait x, standing for the expression of a drug resistance phenotype that impinges on both
the intrinsic proliferation rates rH(x) and rC(x), on the death rates dH(x) and dC(x) and
on the drug sensitivity functions µH(x) and µC(x) (in numerical simulations: weakly on
healthy cells and strongly on cancer cells). The two cell populations interact only by
competing - in a non-local way, each cell with all the others - for space and nutrients, as
can be seen on the logistic terms dH(x).IH(t) and dC(x).IC(t), however with no direct con-
frontation (no bilinear law-of-mass-action-like encounter term). This model is amenable
to optimal control strategies for the combined delivery of the two anticancer drugs (see
below Fig. 5.1 and reference [209]).

ferences between healthy and cancer cell populations. A combination of two ther-
apies was considered: a cytotoxic drug which acts to increase the death rate of
all cells according to their drug-resistance levels, and a cytostatic drug, which re-
duces the proliferation rate of all cells but preferentially affects cancer cells. Also,
a cost was assumed to be associated with adopting increased levels of cytotoxic-
drug resistance so that, in the absence of therapy, cells more sensitive to therapy
are selected, whilst during therapy they are not. Numerical results of this model
show that it is possible to drive the cancer cells to extinction and maintain a fi-
nite population of healthy cells only for certain combinations of drugs. Therefore,
the authors propose that an important aim of anti-cancer therapy, to avoid the se-
lection of resistant clones, should be to optimise drug doses rather than applying
the so-called maximum tolerated dose (MTD), which is in accordance with the
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principle of metronomic therapy [199].

Simple first-order PDEs: McKendrick-like transport equations. Transport equa-
tions are PDEs with only first-order differential terms. They have been extensively
studied in their applications to biology in [201]. One of the most famous transport
models is the McKendrick equation for the cell division cycle [182], in which the
structure variable is age in the cell cycle, on which the focus is thus set to represent
the relevant heterogeneity in the cell population. This modelling frame has been
used in many other settings (e.g., [4, 21, 95, 30, 201]), to represent cell population
growth by progression in the cell cycle in a population of cells, tumour or healthy,
but never thus far, to our knowledge, to study evolution towards drug resistance.

∂n
∂t

(x, y, t) +
∂

∂y

(
v(x, c(t); v̄)n(x, y, t)

)
︸                        ︷︷                        ︸

stress-induced adaptation
of the proliferation level

=
[
p(x, y, %(t)) − d(x, c(t))

]
n(x, y, t)︸                                     ︷︷                                     ︸

selection

+ β∆n(x, y, t),︸        ︷︷        ︸
non-genetic

phenotype instability

with %(t) =
∫ 1

0

∫ 1

0
n(x, y, t)dxdy.

Figure 4.4: IDE-PDE model with 2D- phenotype structure [48] to represent reversible
drug resistance in a cancer cell population exposed to massive drug doses, as reported
in [231]. Here, n(x, y, t) is the population density of cells with phenotypic expression (x, y)
at time t. The drug resistance phenotype is 2-dimensional, x standing for a potential of
survival in extreme conditions (possibly linked to a plasticity capacity of a small number
of cells) and y standing for a proliferation potential. The 2D nature of the drug resistance
phenotype was suggested by the observations reported in [231] (see also Fig. 4.5). The
Darwinian selection term has the same nonlocal Lotka-Volterra-like structure as shown
on Fig. 4.3, except that here only cancer cells are present. It is shown on simulations
in [48] that the non-genetic phenotype instability term is mandatory to obtain evolution
from sensitive (PC9) to established resistant (DTEP) cells, whereas the stress-induced
adaptation, ‘Lamarckian-like’ term is dispensable, provided that resistant cells are al-
ready present in the initial population, but mandatory if there are none.

IDE-PDE models. When one wants to include instability in the structure variable
(e.g., a phenotypic trait), one may do so by using an integral term with a mutation-
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like kernel as in [175], but one may also use a second-order term (a Laplacian)
with respect to the structure variable (when the structure variable is space, insta-
bility is called diifusion), and optionally a first-order one (gradient or advection
term) to represent fast evolution with respect to the structure variable [202].

In the IDE models discussed above [161, 175], the spatial structure of the can-
cer cell population is ignored and all cells are assumed to be equally exposed to the
therapy. However, chemotherapeutic drugs often have poor penetration into solid
tumours for a variety of reasons including the physico-chemical properties of the
drug and the complex tumour microenvironment [189]. Nutrient and metabolite
concentrations also vary across solid tumours [3], creating distinct niches that may
favour different cell clones and hence diversification within a solid tumour. There-
fore, to better understand the principles underlying how intratumour heterogeneity
affects the emergence of drug resistance in solid tumours, the spatial arrangement
of cells should be included in models. Motivated by these considerations, in the
next generation [174] of the model proposed in [175], the authors incorporated an
additional structuring variable to represent the spatial positions of cells inside a
radially symmetric tumour spheroid. Only cancer cells were modelled. However,
as with the previous model, the response of the cancer cell population to a com-
bination of cytotoxic and cytostatic drugs was considered, although in this case
the drug infusion was modelled as a diffusion process from the external boundary
of the tumour towards its interior. The concentration of a resource that is as-
sumed to be necessary for cell proliferation was also modelled in this way. Extra
insight gained by adding space structure in the model included that it is possi-
ble for heterogeneity in cytotoxic-drug resistance levels to be present across the
tumour both with and without therapy: a gradient of increasing drug sensitivity
towards the boundary of the tumour was found without therapy, while during cy-
totoxic drug therapy this gradient was reversed so that more drug-resistant clones
were found at the exterior (confirming in this model setting that high drug doses
decrease heterogeneity in cancer cell populations [106]). Interestingly, when cy-
tostatic drugs were infused in both of these systems (with and without cytotoxic
drugs), the selection gradient along the radius of the tumour become less steep.

The IDE-PDE framework is also amenable to study the emergence of re-
versible drug tolerance in cancer cells populations. For instance, in [48], see
Fig. 4.4, this framework was used to study an in vitro system where the emergence
and subsequent reversal of drug-tolerance was observed during the administration
and following the washout of high-doses of chemotherapeutic drugs [231]. In-
stead of structuring the cell population according to the level of drug-resistance
(which is usually considered to be irreversible), this time the population was struc-
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tured by a phenotypic trait variable related to the survival potential of cells during
therapy (which can be reversed). As the average proliferation rate of surviving
cells was observed to change throughout the in vitro experiments, an additional
structuring variable was incorporated into the model to represent the proliferative
potential of cells. Both phenotypic variables were allowed to vary, and in this case
the rate of phenotypic variation was not limited by the cell proliferation rate since
variation was assumed to be non-genetic by nature, and therefore not highly corre-
lated to cell division events. The inclusion of the extra phenotypic variable meant
that the model was able to capture the observed experimental dynamics whereby
the proliferative but drug sensitive cells were transiently replaced by a small pop-
ulation of slowly proliferating and drug tolerant variants during therapy that then
changed their phenotype to resume normal proliferation (still in the constant pres-
ence of the drug) and repopulate the sample. Furthermore, the appearance of a
slowly proliferating cell population during therapy was found to be dependent on
administering a high enough drug dose; when low-dose therapy was administered
during in silico experiments, the average proliferation rate of the surviving cell
population failed to drop during the experiment which is suggestive of an inherent
risk of chemotherapy failure if the drug dose is too low. This first study [48] has
been followed by others using the same principles, studying particular aspects of
the initial model [47, 172].

ABMs to represent heterogeneity. In its simplest form, modelling drug resistance
levels in a cancer cell population has been proposed as an “all or nothing” trait
such that cells are classified as either completely sensitive to the drug or wholly
resistant. This was the approach used in particular by the authors in [255] to inves-
tigate the role of short-range cell dispersal in the progression of metastatic legions
and primary tumours. When considering dispersal, it is natural to consider spatial
variables and in this paper the authors structured their cell population according to
their position on a three-dimensional lattice. In this ABM, cancer cells proliferate
at a rate proportional to the number of empty neighbouring lattice sites and die at
a constant rate. Hence, cells proliferate more often near the edge of the tumour
since there are more sites empty of cancer cells. If a cancer cell proliferates, one
offspring cell moves with a small probability M to a nearby space on the lattice
and there is a small probability that the progeny will mutate. Simulations of the
model showed that when driver mutations were linked to resistance to anti-cancer
treatment, the capacity of cells to move over short distances was found to impact
on the regrowth rate of tumours following cessation of the therapy. This insight
into carcinogenesis was captured by the spatial model. However, an assumption
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of the model is that the drug concentration was distributed uniformly throughout
the tumour which is unlikely, as mentioned above [189]. Therefore, incorporating
between-cell heterogeneity in exposure to the drug may influence these results.

Another way to represent heterogeneity in cancer cell populations in agent-
based models (ABMs) is with a continuous variable. The model [48] shown in
Fig. 4.5 did exactly this by using a two-dimensional phenotypic trait describing
the survival potential (likely corresponding to a high plasticity of the concerned
tumour cells, making them able to adapt to extremely hostile conditions such as
massive doses of a cytotoxic drug) and the proliferation potential of cells. These
continuous traits influenced the proliferation and death rates of individual cells
and were made to fluctuate in time in each cell according to a discretised set of
stochastic differential equations. The model was formulated to describe the pop-
ulation dynamics and phenotype evolution of a cell population exposed to a drug
insult in a Petri dish. It was inspired by the striking results on reversibility of drug
resistance reported in [231], and could qualitatively reproduce these experimental
results.

Hybrid models. Hybrid models offer a more complex approach to modelling het-
erogeneity and drug resistance in cancer by coupling models which are determin-
istic in one sense and probabilistic in another. For instance, hybrid models may
describe cells as discrete entities that can proliferate, die and migrate according to
probabilities, and couple this process to a continuum description of the distribu-
tion of diffusing nutrients and metabolites in space, which may be influenced by,
and influence, the metabolism of cells. These types of hybrid models are partic-
ularly useful when considering the evolutionary feedback between tumour cells
and their micro-environment .

These ideas were explored by the authors in [214] who were interested in how
intra-tumour metabolic heterogeneity impacts treatment outcomes. In this study,
a hybrid cellular automaton mathematical model in two spatial dimensions was
used to model the evolution of a tumour and its micro-environment: individual
cells were modelled as discrete agents in a two dimensional lattice, while reaction-
diffusion equations modelled the distribution of oxygen, glucose and protons. Two
continuous variables, not related to drug resistance, but instead to metabolism
preference and resistance to acidity characterised individual cells. These traits
were assumed to undergo small variations during proliferation, and influence the
rate of tumour cell death, proliferation, proton production and oxygen and glucose
consumption. Simulations of the model reveal predictable patterns of cellular
phenotypes along the radial dimension of the tumour that change in time and are

34



perturbed during therapy. Based on insights gained from repeated simulations of
the model, the authors proposed that early treatment with cytotoxic therapy causes
a subtle restructuring of the spatial heterogeneity of phenotypes which essentially
limits the ability of more aggressive cells to invade. However, later treatment more
effectively strips away a layer of less aggressive cells that initiates fast tumour
growth. In this case, the hybrid model revealed that some instances of resistance
to anticancer therapies may be related to the evolving architecture of the tumour.

Another class of hybrid models are the piecewise deterministic Markov pro-
cesses (PDMPs) [61], which might be used to represent continuous in time, de-
terministic – and reversible, i.e., in particular amenable to the representation of
epigenetic modifications – cell population models of cell proliferation separated
by stochastic jumps representing irreversible driver mutations in the DNA; to our
best knowledge, although PDMPs are an active field in mathematical biology,
this still remains to be done. The basic deterministic dynamics in this scenario
could be a hidden phenotype-structured cell population PDE model with bista-
bility and hysteresis (as is, e.g., PU.1/GATA1 in haematopoiesis [46, 111, 136])
to represent evolution of the cell population according to a manifest phenotype
(in this instance, red or white blood cells). Forsaking bistability (hence at the
cell-population level stochastic balance according to random choice of initial con-
ditions), e.g., due to change in environmental conditions leading to a saddle-node
bifurcation [87], would lead to an unbalanced cell fate. The overwhelming choice
of one fate leading to non sustainable dynamics on the long term, makes it more
probable that an irreversible jump from the deterministic and reversible dynamics
of the cell population occurs. In such a PDMP, the probability of a jump, of course
(since it is Markovian) cannot depend on the previous jump, but should depend
on the state of the intermediate deterministic model describing the between-jump
population dynamics.

5. Perspective: possible consequences for therapeutic optimisation

In light of this review of cancer models, how can we represent relevant tar-
gets for drugs, and how can we design optimised therapeutic strategies to control
these targets [27]? Should we have as an objective the complete eradication of
cancer cells? Or, remembering that they are very good at proliferation and sur-
vival in extreme conditions, and that for them “what does not kill me strengthens
me” [203], should we not, on the contrary, forsake the pursuit of this eradication
goal and drive the targeted cancer cell population away from acute, uncontrol-
lable proliferation and establish cancer as a chronic disease? With this view, the
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aim would be to contain it within limits compatible with the patients quality of
life. Should treatments thus be tailored to allow survival of “nicer” cancer cells,
maintaining on the long run such situations by“adaptive therapy”, as proposed by
Robert Gatenby [96, 97, 98]?

These are some of the questions control scientists are confronted with. In con-
trol science, a dynamical system represents an evolving phenomenon that mathe-
maticians or engineers want to keep within prescribed limits (control) or lead to
a desired endpoint (optimal control) by exerting external means that have known
effects on known targets in some of its constituents. In clinical control of tissue
growth, drugs are the main means of action, their functional targets are prolif-
eration, death and differentiation rates, and cell populations should be kept under
control or sent to a desired equilibrium point, with either zero cancer cell, or, more
realistically, with a very small population of them, with little impact on the quality
and number of healthy cells.

5.1. Exploiting structural differences between healthy and cancer cells
In designing optimal strategies to deliver anticancer drugs, one can just con-

sider the simplified objective of eradication to be obtained in finite time as the
only crucial goal and consider unwanted toxic side effects as mere levels not to
be trespassed in average, on the basis of a daily dose, or of absolute limits never
to be trespassed at any moment. Such limits are in these cases supposed to be
granted by clinical knowledge, so that targetting cancer cells to kill as many of
them as possible within these limits is the goal to pursue. To proceed this way and
provide solutions to therapeutists is completely dependent on the versatile clini-
cal habits of a given epoch; optimisation strategies can sometimes do better than
that. Indeed, healthy cell populations that are such unwanted toxicity targets are
for most of them (not all: cardiac toxicity, peripheral neuropathy, for instance,
are exceptions) constituents of fast renewing tissues, such as haematopoietic bone
marrow, intestinal mucosa, liver, skin, the proliferation of which can be modelled
in the same way as for tumour tissues.

Then the theoretical therapeutic question: “how to optimise anticancer drug
delivery to a given patient?” becomes a problem with two populations, healthy
and cancer, that are partly proliferating, partly dying, both evolving under the
same drug insult, however with structural dynamic differences between them. This
question has been the object of several studies [17, 27, 30, 50, 51, 52], taking into
account for some of them heterogeneity with respect to age phases in the cell
division cycle [27, 28, 29, 30], but so far heterogeneity with respect to phenotypes
determining drug resistance had only been sketched as prospective work [27, 51].
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The latter has begun to be tackled using phenotype-structured models [174, 175]
and optimal control strategies are presently under study (the structural differences
between the two populations are related to different behaviours of the proliferation
and death rates with respect to the structure phenotype [209]).

5.2. Ordinary differential equations and delay-differential models
History. Optimal control methods applied to overcoming drug resistance in can-
cer has a long history, that dates back at least to 1992 with Michel Iskin da Silveira
Costa and José Luı́z Boldrini [33, 54, 55, 56], who in a series of mathematical pa-
pers used two cancer cell populations, one sensitive and another resistant to a
given drug therapy (see Fig. 4.2). These studies remained theoretical and do not
seem to have used a physiological tumour environment in their representations.

Ordinary differential equations and optimal control strategies using drug combi-
nations. More recently, Urszula Ledzewicz and Heinz Schättler have tackled the
problem of combining two classes of anti-cancer drugs, one hitting the tumour
cell population directly, and another one indirectly, choking it by an antiangio-
netic effect on its vascular environment, see, e.g., [163]. Furthermore, the effects
of metronomic therapy may be compared with those of the more classic maximal
tolerated dose (MTD) [23] still in use in most clinical oncology departments [229].
These studies, based on the Hahnfeldt model [116] or some of its variants, that
include both the tumour cell population and its environment considered as the tu-
mour carrying capacity as a target for antiangiogenic drugs, have the remarkable
feature to propose exact optimal solutions when it is possible. These authors do
not consider so far the question of drug resistance nor the question of intra-tumour
heterogeneity (see however recent developments modelling metronomic strategies
applied to circumventing drug resistance in vitro in [43]). Nevertheless, they show
the feasibility of such theoretical methods and they are concerned with applicabil-
ity in the clinic [162], which opens the way to actually innovative therapies.

Optimal control of acute myeloid leukaemia (AML). Acute myeloid leukaemia is
a cancerous disease that has raised the interest of mathematicians for some time
already, with representations of its dynamics based on transport equations phys-
iologically structured by age in the cell cycle [4, 196], with possible transforma-
tion into delay-dfifferential systems by integration along characteristic curves. On
these grounds, Xavier Dupuis has proposed a theoretical solution to the problem
of controlling proliferation of the leukaemic cell population by an optimal com-
bination of cytotoxic and antiproliferative drugs [75], however, like the previous
authors, not tackling the question of drug resistance.
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5.3. Physiologically structured equations with drug resistance: open questions
Drug resistance in phenotype-structured equations. The IDE and PDE models
mentioned above [47, 48, 161, 172, 173, 174, 175] are recent and have all explic-
itly been designed to predict the development of resistance, starting from mod-
els coming from mathematical ecology (see above) transposed to cancer. Of
note, in these models, resistance is in principle always reversible and thus cor-
responds to epigenetic mechanisms of resistance, not to mutations. Including
models with driver mutations that are certainly encountered in cancer would need
using PDMPs (see above about hybrid models).

Optimal control in phenotype-structured models with drug resistance. Neverthe-
less, it is precisely in such situations, when drugs induce drug resistance, usually
with an effect all the more so imprtant as the drug dose is higher, that optimal con-
trol strategies can be efficient, to avoid the constitution of genetically established
drug resistance. As mentioned above in the section “Evolutionary mechanisms
that contribute to heterogeneity in cancer”, epigenetic modifications of the DNA
are likely to occur prior to mutations at the single-cell level, and it is precisely
this process that is represented at the cell population level by these phenotype-
structured models. Models that are presently under study [209], see Fig. 5.1,
pursue the goal to avoid or limit as much as possible such evolution towards drug
resistance using a combination of cytotoxic and cytostatic drugs. Cytotoxic are
the ones that are life-threatening for the cancer cell populations and that stimulate
their plasticity to yield a subpopulation of resistant cells (observed “drug toler-
ant persisters”) that will not be killed by the drug (and, as quoted from Friedrich
Nietzsche’s Twilight of Idols in [203], for a robust cancer cell population, “what
does not kill me makes me stronger”3), whereas cytostatic drugs – at least at low
or medium doses – are supposed to slow down proliferation but not to stimulate
these population mechanisms based on some bet hedging of plasticity (a funda-
mental difference with healthy cells, that are far from plastic) that allow these cell
populations to survive as such (a tiny amount of it is sufficient for this) in hostile
conditions. Adding epigenetic drugs that would not only cease to favour this re-
sistance process, but even more would be able to stop it (as KDM5A inhibitors
in the experiments reported in [231]) would make such strategy more efficient;
however epigenetic drugs are not easy to handle as yet [11, 121].

3The exact phrase, often quoted in many occurrences (yet certainly more often about men than
about cancer cell populations) is found in Nietzsche’s Götterdämmerung, Sprüche und Pfeile 8:
“Aus der Kriegsschule des Lebens. – Was mich nich umbringt macht mich stärker.”
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Open problems in optimal control. The relevance of the use of metronomic ther-
apy as an alternative to maximum tolerated dose of cytotoxic drugs in chronic
forms of cancer is a question that has been actively studied for some time [23,
199], and more recently with optimal control methods [229]. Its achievements
were firstly attributed to angiogenic effects of cytotoxic drugs [154], then to ef-
fects of low doses of chemotherapy on stimulating the immune response [199],
in particular due to the effects of tumour lysates on the participation of memory
T-cells in the immune response [265]. We also propose that avoiding the stimula-
tion of plasticity mechanisms in tumour cells by avoiding as long as possible the
delivery of high doses of cytotoxic drugs, and keeping the tumour cell population
under check by cytostatic drugs, is another guideline to keep, and we are exploring
optimal theoretical strategies strategies to do so [209]. Combining such strategies
with optimisation of recently developed immunotherapies seems to be a therapeu-
tic way for the future. Another challenge is, when robust resistant subclones in
a cell population have been organised in finite number as a bet hedging (purely
stochastic) strategy by the tumour, as this often seems to be the case, what can be
done to identify these clones and eliminate them sequentially, taking advantage of
differences in proliferation potential and plasticity/survival potential? Even bet-
ter, is it possible to avoid by using epigenetic drugs the emergence of such robust
isolates at a time when resistance phenotypes are still in a plastic, not fixed, state
in the cell population? Solving this question should require the integrated skills
of cancer biologists, pharmacologists and mathematicians.

6. Conclusion

We have tried in this review, from the point of view of mathematical modellers,
to present together to the best of our knowledge past and more recent relevant
works in cancer biology, evolutionary biology, mathematical modelling and opti-
mal control methods to understand the role of between-cell heterogeneity in the
emergence of drug resistance in cancer cell populations and to circumvent it. We
have underlined the necessity for this purpose to take into account evolutionary
effects, both in the genetic sense of Darwinian evolution and in the sense of mod-
ifications, reversible or not, of the epigenetic landscape attached to every single
genome. Many open questions remain. In particular one can hope that unravelling
the physical environmental history together with the phylogeny of evolved mul-
ticellularity will tell us more on possible catastrophic chained events that, from
hardly perceptible epigenetic modifications may lead to established cancers, and
by what means we could correct the course of such events. In other words, quot-
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ing Paul Davies and Charles Lineweaver in their seminal essay [59], “Rather
than attacking tumors indiscriminately (the only good cancer cells are dead can-
cer cells), understanding their origin, managing them and containing them might
be a far smarter strategy”. In the same way, at the level of a constituted evolved
multicellular organism (a patient), if we can have access to the main differentiating
bifurcations in its epigenetic landscape and to the epigenetic factors that control
them [111], we may, by taking advantage of the most recent knowledge about the
evolution of cancer cell populations under the influence of their environment and
possibly of new epigenetic drugs aiming to control (de)differentiation processes,
design theoretical therapeutic strategies relying on optimal control methods that
should in the not so distant future find their application in the clinic of cancers.
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Natalia Robert. Age-structured cell population model to study the influence
of growth factors on cell cycle dynamics. Mathematical Biosciences and
Engineering, 10(1):1–17, Dec 2013.

[29] Frédérique Billy, Jean Clairambault, and Olivier Fercoq. Optimisation of
cancer drug treatments using cell population dynamics. In Avner Friedman,
Eugene Kashdan, Urszula Ledzewicz, and Heinz Schättler, editors, Mathe-
matical Models and Methods in Biomedicine, Lecture Notes on Mathemat-
ical Modelling in the Life Sciences, pages 265–309. Springer, 2013.

[30] Frédérique Billy, Jean Clairambault, Olivier Fercoq, Stéphane Gaubert,
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Birth of Life to the Origin of Language. Oxford University Press, 1999.

[181] K. D. McCullough, W. B. Coleman, S. L. Ricketts, J. W. Wilson, G. J.
Smith, and J. W. Grisham. Plasticity of the neoplastic phenotype in vivo is
regulated by epigenetic factors. Proc Natl Acad Sci U S A, 95(26):15333–
15338, Dec 1998.

58



[182] Anderson Gray McKendrick. Applications of mathematics to medical prob-
lems. Proceedings of the Edinburgh Mathematical Sociey, 1(3393):98–130,
Jan 1926.

[183] Corbin E. Meacham and Sean J. Morrison. Tumour heterogeneity and can-
cer cell plasticity. Nature, 501(7467):328–337, Sep 2013.

[184] Kapil Mehta and Zahid H. Siddick, editors. Drug resistance in cancer cells.
Springer, 2009.

[185] Berta Mendoza-Juez, Alicia Martı́nez-González, Gabriel F. Calvo, and
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Figure 4.5: An Agent-Based Model [48] designed to represent the same biological phe-
nomenon mentioned in Fig. 4.4. (a) The drug resistance phenomenon reported in [231]:
evolution from sensitive (PC9) to surviving but non proliferating (DTP) and finally to
surviving and proliferating (DTEP) cells. The ABM representation, as the IDE-PDE one
shown on Fig. 4.4, is compatible with the observed total reversibility of sensitivity when
the drug is washed out. (b) Evolution of the cancer cell population in the (x, y) pheno-
type phase plane. (c) The computational algorithm, in which non genetic instability is
represented by stochastic variation in the phenotype (x, y). (d) Three different simulations
of individual cell fates with followup of the survival potential x and of the proliferation
potential y. The averages of these trajectories on large numbers of stochastic simulations
recover the deterministic trajectories of the IDE-PDE model, as shown in [48].
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Figure 5.1: Result of an optimal control strategy for the combined drug delivery flow of
two anticancer drugs, one cytotoxic, u1(t), and one cytostatic, u2(t), control performed
on the IDE model shown on Fig. 4.3. Cytotoxic drugs, e.g., alkylating agents such as
temozolomide or platinum compounds, kill cells, whereas cytostatic drugs such as growth
factor receptor antagonists - in particular the tyrosine kinase inhibitor gefitinib used in
the first place at very high doses in the experiments reported in [231] - only slow down
the cell division cycle without killing cells provided that they are given at low doses. In
this respect, cytotoxic u1(t) and cytostatic u2(t) drugs could represent the same drug, at
high and low dose, respectively. The optimal control strategy can be shown to be as
presented on this figure, i.e., no cytotoxic as long as possible to avoid the development of
a resistant cancer cell subpopulation (a so-called “drug holiday” in clinical settings) but
a moderate dose of cytostatic at the same time, and when the maximum of concentration
of phenotypes has been reached, then maximum tolerated dose of both drugs to drastically
decrease the cancer cell population ρC(t) until a bottom healthy cell population ρH(t) has
been reached, and then stop cytotoxic drugs to avoid the development of a resistant cell
population ρC(t) − ρCS (t) in the likely event of non eradication of all cancer cells [209].
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