A. Altinok, D. Gonze, F. Lévi, and A. Goldbeter, An automaton model for the cell cycle, Interface Focus, vol.47, issue.3, pp.36-47, 2011.
DOI : 10.1006/jtbi.2001.2474

A. Altinok, F. Lévi, and A. Goldbeter, A cell cycle automaton model for probing circadian patterns of anticancer drug delivery, Advanced Drug Delivery Reviews, vol.59, issue.9-10, pp.1036-1010, 2007.
DOI : 10.1016/j.addr.2006.09.022

A. Altinok, F. Lévi, and A. Goldbeter, Optimizing Temporal Patterns of Anticancer Drug Delivery by Simulations of a Cell Cycle Automaton, Biosimulation in Drug Development, pp.275-297, 2008.
DOI : 10.1002/9783527622672.ch10

A. Altinok, F. Lévi, and A. Goldbeter, Identifying mechanisms of chronotolerance and chronoefficacy for the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling, European Journal of Pharmaceutical Sciences, vol.36, issue.1, pp.20-38, 2009.
DOI : 10.1016/j.ejps.2008.10.024

C. Basdevant, J. Clairambault, and F. Lévi, Optimisation of time-scheduled regimen for anti-cancer drug infusion, ESAIM: Mathematical Modelling and Numerical Analysis, vol.39, issue.6, pp.1069-1086, 2006.
DOI : 10.1051/m2an:2005052

A. Berman and R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Amer. Math. Soc, 1994.
DOI : 10.1137/1.9781611971262

D. Bertsekas, Constrained Optimization and Lagrange multiplier method, p.1997, 1982.

F. Billy and J. Clairambault, Designing proliferating cell population models with functional targets for control by anti-cancer drugs. Discrete and Continuous Dynamical Systems -Series, pp.865-889, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00726195

F. Billy, J. Clairambault, F. Delaunay, C. Feillet, and N. Robert, Age-structured cell population model to study the influence of growth factors on cell cycle dynamics, Mathematical Biosciences and Engineering, vol.10, issue.1, pp.1-17, 2013.
DOI : 10.3934/mbe.2013.10.1

URL : https://hal.archives-ouvertes.fr/hal-00843360

F. Billy, J. Clairambault, and O. Fercoq, Optimisation of Cancer Drug Treatments Using Cell Population Dynamics, Mathematical Models and Methods in Biomedicine, Lecture Notes on Mathematical Modelling in the Life Sciences, pp.265-309, 2013.
DOI : 10.1007/978-1-4614-4178-6_10

URL : https://hal.archives-ouvertes.fr/hal-00770366

F. Billy, J. Clairambaultt, O. Fercoq, S. Gaubert, T. Lepoutre et al., Synchronisation and control of proliferation in cycling cell population models with age structure, Mathematics and Computers in Simulation, vol.96, pp.66-94, 2014.
DOI : 10.1016/j.matcom.2012.03.005

URL : https://hal.archives-ouvertes.fr/hal-00662885

G. Bocci, R. Danesi, A. D. Paolo, F. Innocenti, G. Allegrini et al., Comparative pharmacokinetic analysis of 5-fluorouracil and its major metabolite 5-fluoro-5,6-dihydrouracil after conventional and reduced test dose in cancer patients, Clin. Cancer Res, vol.6, pp.3032-3069, 2000.

C. Bokemeyer, I. Bondarenko, A. Makhson, J. T. Hartmann, J. Aparicio et al., Fluorouracil, Leucovorin, and Oxaliplatin With and Without Cetuximab in the First-Line Treatment of Metastatic Colorectal Cancer, Journal of Clinical Oncology, vol.27, issue.5, pp.663-6718397, 2008.
DOI : 10.1200/JCO.2008.20.8397

R. H. Chisholm, T. Lorenzi, A. Lorz, A. K. Larsen, L. N. De-almeida et al., Emergence of Drug Tolerance in Cancer Cell Populations: An Evolutionary Outcome of Selection, Nongenetic Instability, and Stress-Induced Adaptation, Cancer Research, vol.75, issue.6, pp.930-939, 2015.
DOI : 10.1158/0008-5472.CAN-14-2103

URL : https://hal.archives-ouvertes.fr/hal-01237893

J. Clairambault, Modeling oxaliplatin drug delivery to circadian rhythms in drug metabolism and host tolerance, Advanced Drug Delivery Reviews, vol.59, issue.9-10, pp.1054-1068, 2007.
DOI : 10.1016/j.addr.2006.08.004

J. Clairambault, Modelling Physiological and Pharmacological Control on Cell Proliferation to Optimise Cancer Treatments, Mathematical Modelling of Natural Phenomena, vol.4, issue.3, pp.12-67, 2009.
DOI : 10.1051/mmnp/20094302

J. Clairambault, Optimizing cancer pharmacotherapeutics using mathematical modeling and a systems biology approach, Personalized Medicine, vol.8, issue.3, pp.271-286, 2011.
DOI : 10.2217/pme.11.20

J. Clairambault, R. H. Chisholm, and T. Lorenzi, Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation In revision, 2016.

J. Clairambault, S. Gaubert, and T. Lepoutre, Comparison of Perron and Floquet Eigenvalues in Age Structured Cell Division Cycle Models, Mathematical Modelling of Natural Phenomena, vol.4, issue.3, pp.183-209, 2009.
DOI : 10.1051/mmnp/20094308

URL : https://hal.archives-ouvertes.fr/hal-00344039

J. Clairambault, S. Gaubert, and T. Lepoutre, Circadian rhythm and cell population growth, Mathematical and Computer Modelling, vol.53, issue.7-8, pp.1558-1567, 2011.
DOI : 10.1016/j.mcm.2010.05.034

URL : https://hal.archives-ouvertes.fr/hal-00492983

J. Clairambault, S. Gaubert, and B. Perthame, An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations, Comptes Rendus Mathematique, vol.345, issue.10, pp.549-554, 2007.
DOI : 10.1016/j.crma.2007.10.001

J. Clairambault, B. Laroche, S. Mischler, and B. Perthame, A Mathematical Model of the Cell Cycle and Its Circadian Control, 2003.
DOI : 10.1007/978-0-8176-4558-8_21

J. Clairambault, P. Michel, and B. Perthame, Circadian rhythm and tumour growth, ) Ser. I Mathématique ( ´ Equations aux dérivées partielles), pp.17-22, 2006.
DOI : 10.1016/j.crma.2005.10.029

URL : https://hal.archives-ouvertes.fr/hal-00113511

J. Clairambault, P. Michel, and B. Perthame, A Mathematical Model of the Cell Cycle and Its Circadian Control, Volume I: Cellular Biophysics, Regulatory Networks, Development , Biomedicine, and Data Analysis, pp.239-251, 2007.
DOI : 10.1007/978-0-8176-4558-8_21

A. De-gramont, A. Figer, M. Seymour, M. Homerin, A. Hmissi et al., Leucovorin and Fluorouracil With or Without Oxaliplatin as First-Line Treatment in Advanced Colorectal Cancer, Journal of Clinical Oncology, vol.18, issue.16, pp.2938-2947, 2000.
DOI : 10.1200/JCO.2000.18.16.2938

R. Diasio and B. Harris, Clinical Pharmacology of 5-Fluorouracil, Clinical Pharmacokinetics, vol.16, issue.4, pp.215-237, 1989.
DOI : 10.2165/00003088-198916040-00002

L. Dimitrio, J. Clairambault, and R. Natalini, A spatial physiological model for p53 intracellular dynamics, Journal of Theoretical Biology, vol.316, pp.9-24, 2013.
DOI : 10.1016/j.jtbi.2012.08.035

URL : https://hal.archives-ouvertes.fr/hal-00726014

J. Elia? and J. Clairambault, Reaction???diffusion systems for spatio-temporal intracellular protein networks: A beginner's guide with two examples, Computational and Structural Biotechnology Journal, vol.10, issue.16, pp.12-22, 2014.
DOI : 10.1016/j.csbj.2014.05.007

J. Elia?, L. Dimitrio, J. Clairambault, and R. Natalini, The dynamics of p53 in single cells: physiologically based ODE and reaction???diffusion PDE models, Physical Biology, vol.11, issue.4, pp.11478-3975, 2014.
DOI : 10.1088/1478-3975/11/4/045001

J. Elia?, L. Dimitrio, J. Clairambault, and R. Natalini, The p53 protein and its molecular network: Modelling a missing link between DNA damage and cell fate, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1844, issue.1, pp.232-247, 2014.
DOI : 10.1016/j.bbapap.2013.09.019

S. Faivre, D. Chan, R. Salinas, B. Woynarowska, and J. M. Woynarowski, DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells, Biochemical Pharmacology, vol.66, issue.2, pp.225-237, 2003.
DOI : 10.1016/S0006-2952(03)00260-0

O. Fercoq, Perron vector optimization applied to search engines, Applied Numerical Mathematics, vol.75, pp.77-99, 2014.
DOI : 10.1016/j.apnum.2012.12.006

E. Filipski, P. F. Innominato, M. Wu, X. M. Li, S. Iacobelli et al., Effects of Light and Food Schedules on Liver and Tumor Molecular Clocks in Mice, JNCI Journal of the National Cancer Institute, vol.97, issue.7, pp.507-517, 2005.
DOI : 10.1093/jnci/dji083

E. Filipski, V. M. King, X. Li, T. G. Granda, M. C. Mormont et al., Host Circadian Clock as a Control Point in Tumor Progression, CancerSpectrum Knowledge Environment, vol.94, issue.9, pp.690-697, 2002.
DOI : 10.1093/jnci/94.9.690

J. Fischel, M. Etienne, P. Formento, and G. Milano, Search for the optimal schedule for the oxaliplatin/5-fluorouracil association modulated or not by folinic acid: preclinical data, Clinical Cancer Research, vol.4, issue.10, p.2529, 1998.

N. C. Fonville, D. Bates, P. J. Hastings, P. C. Hanawalt, and S. M. Rosenberg, Role of RecA and the SOS Response in Thymineless Death in Escherichia coli, PLoS Genetics, vol.10, issue.3, p.865, 2010.
DOI : 10.1371/journal.pgen.1000865.s007

P. Gabriel, S. P. Garbett, D. R. Tyson, G. F. Webb, and V. Quaranta, The contribution of age structure to cell population responses to targeted therapeutics, Journal of Theoretical Biology, vol.311, pp.19-27, 2012.
DOI : 10.1016/j.jtbi.2012.07.001

URL : https://hal.archives-ouvertes.fr/hal-00649178

R. Gatenby, A change of strategy in the war on cancer, Nature, vol.5, issue.7246, pp.508-509, 2009.
DOI : 10.1038/459508a

R. Gatenby, A. Silva, R. Gillies, and B. Friden, Adaptive Therapy, Cancer Research, vol.69, issue.11, pp.4894-4903, 2009.
DOI : 10.1158/0008-5472.CAN-08-3658

C. Gérard and A. Goldbeter, Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle, Proceedings of the National Academy of Sciences, vol.106, issue.51, pp.643-664, 2009.
DOI : 10.1073/pnas.0903827106

C. Gérard and A. Goldbeter, From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.20, issue.4, 2010.
DOI : 10.1063/1.3527998

C. Gérard and A. Goldbeter, A skeleton model for the network of cyclin-dependent kinases driving the mammalian cell cycle, Interface Focus, vol.879, issue.1, pp.24-35, 2011.
DOI : 10.1111/j.1749-6632.1999.tb10419.x

A. Gréchez-cassiau, B. Rayet, F. Guillaumond, M. Teboul, and F. Delaunay, The Circadian Clock Component BMAL1 Is a Critical Regulator of p21WAF1/CIP1 Expression and Hepatocyte Proliferation, Journal of Biological Chemistry, vol.283, issue.8, pp.4535-4577, 2008.
DOI : 10.1074/jbc.M705576200

C. Gérard and A. Goldbeter, Entrainment of the Mammalian Cell Cycle by the Circadian Clock: Modeling Two Coupled Cellular Rhythms, e1002, p.516, 2012.
DOI : 10.1371/journal.pcbi.1002516.g015

P. Hinow, S. Wang, C. Arteaga, and G. Webb, A mathematical model separates quantitatively the cytostatic and cytotoxic effects of a HER2 tyrosine kinase inhibitor, Theoretical Biology and Medical Modelling, vol.4, issue.1, pp.1410-1186, 2007.
DOI : 10.1186/1742-4682-4-14

T. Kato, Perturbation Theory for Linear Operators, 1966.

F. Lévi, From circadian rhythms to cancer chronotherapeutics, Chronobiology International, vol.6, issue.10, pp.1-19, 2002.
DOI : 10.1136/oem.57.3.175

F. Lévi, Chronotherapeutics: The Relevance of Timing in Cancer Therapy, Cancer Causes & Control, vol.119, issue.5, pp.611-621, 2006.
DOI : 10.1007/s10552-005-9004-7

F. Lévi, The circadian timing system, a coordinator of life processes. implications for the rhythmic delivery of cancer therapeutics, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp.17-20, 2008.
DOI : 10.1109/IEMBS.2006.260934

F. Lévi, A. Altinok, J. Clairambault, and A. Goldbeter, Implications of circadian clocks for the rhythmic delivery of cancer therapeutics, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.22, issue.4, pp.3575-3598, 2008.
DOI : 10.1080/07420520500179969

F. Lévi, A. Karaboué, L. Gorden, P. F. Innominato, R. Saffroy et al., Cetuximab and circadian chronomodulated chemotherapy as salvage treatment for metastatic colorectal cancer (mCRC): safety, efficacy and improved secondary surgical resectability, Cancer Chemotherapy and Pharmacology, vol.25, issue.2, pp.339-348, 2011.
DOI : 10.1007/s00280-010-1327-8

F. Lévi, A. Okyar, S. Dulong, P. Innominato, and J. Clairambault, Circadian Timing in Cancer Treatments, Annual Review of Pharmacology and Toxicology, vol.50, issue.1, pp.377-421, 2010.
DOI : 10.1146/annurev.pharmtox.48.113006.094626

F. Lévi and U. Schibler, Circadian Rhythms: Mechanisms and Therapeutic Implications, Annual Review of Pharmacology and Toxicology, vol.47, issue.1, pp.493-528, 2007.
DOI : 10.1146/annurev.pharmtox.47.120505.105208

A. S. Lewis and M. L. Overton, Eigenvalue optimization, Acta Numerica, vol.35, pp.149-190, 1996.
DOI : 10.1016/0020-7683(77)90043-9

X. Li, G. Metzger, E. Filipski, G. Lemaigre, and F. Lévi, Modulation of nonprotein sulphydryl compounds rhythm with buthionine sulphoximine: relationship with oxaliplatin toxicity in mice, Archives of Toxicology, vol.72, issue.9, pp.574-579, 1998.
DOI : 10.1007/s002040050545

D. B. Longley, D. P. Harkin, and P. G. Johnston, 5-Fluorouracil: mechanisms of action and clinical strategies, Nature Reviews Cancer, vol.3, issue.5, pp.330-338, 2003.
DOI : 10.1038/nrc1074

A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil, and B. Perthame, Modeling the Effects of Space Structure and Combination Therapies on Phenotypic Heterogeneity and Drug Resistance in Solid Tumors, Bulletin of Mathematical Biology, vol.65, issue.1, pp.1-22, 2015.
DOI : 10.1007/s11538-014-0046-4

URL : https://hal.archives-ouvertes.fr/hal-00921266

A. Lorz, T. Lorenzi, M. E. Hochberg, J. Clairambault, and B. Perthame, Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM: Mathematical Modelling and Numerical Analysis, vol.47, issue.2, pp.377-399, 2013.
DOI : 10.1051/m2an/2012031

URL : https://hal.archives-ouvertes.fr/hal-00714274

L. Ma, J. Wagner, J. J. Rice, W. Hu, A. J. Levine et al., A plausible model for the digital response of p53 to DNA damage, Proc. Natl. Acad. Sci. 102, pp.266-71, 2005.
DOI : 10.1073/pnas.0501352102

T. Matsuo, S. Yamaguchi, S. Mitsuia, A. Emi, F. Shimoda et al., Control Mechanism of the Circadian Clock for Timing of Cell Division in Vivo, Science, vol.302, issue.5643, pp.255-259, 2003.
DOI : 10.1126/science.1086271

A. Mckendrick, Applications of Mathematics to Medical Problems, Proceedings of the Edinburgh Mathematical Society, vol.3, pp.98-130, 1926.
DOI : 10.1038/104660a0

P. Montagnier, R. J. Spiteri, and J. Angeles, The control of linear time-periodic systems using Floquet???Lyapunov theory, International Journal of Control, vol.1, issue.5, pp.472-490, 2004.
DOI : 10.1080/00207177808922395

M. C. Mormont and F. Levi, Cancer chronotherapy: Principles, applications, and perspectives, Cancer, vol.38, issue.1, pp.155-169, 2003.
DOI : 10.1002/cncr.11040

T. Oguri, Y. Bessho, H. Achiwa, H. Ozasa, K. Maeno et al., MRP8/ABCC11 directly confers resistance to 5-fluorouracil, Molecular Cancer Therapeutics, vol.6, issue.1, pp.122-127, 2007.
DOI : 10.1158/1535-7163.MCT-06-0529

M. Overton and R. Womersley, On Minimizing the Special Radius of a Nonsymmetric Matrix Function: Optimality Conditions and Duality Theory, SIAM Journal on Matrix Analysis and Applications, vol.9, issue.4, pp.473-498, 1988.
DOI : 10.1137/0609040

B. Perthame, Transport Equations in Biology, Frontiers in Mathematics series. Birkhäuser, 2007.

G. Peters, J. Lankelma, R. Kok, P. Noordhuis, C. Van-groeningen et al., Prolonged retention of high concentrations of 5-fluorouracil in human and murine tumors as compared with plasma, Cancer Chemotherapy and Pharmacology, vol.90, issue.4, pp.269-276, 1993.
DOI : 10.1007/BF00685670

E. Polak, Optimization: algorithms and consistent approximations, 2012.
DOI : 10.1007/978-1-4612-0663-7

L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelidze, and E. F. Mishchenko, The mathematical theory of optimal processes, 1962.

B. P. Porsin, J. L. Formento, E. Filipski, M. C. Etienne, M. Francoual et al., Dihydropyrimidine dehydrogenase circadian rhythm in mouse liver, European Journal of Cancer, vol.39, issue.6, pp.822-828, 2003.
DOI : 10.1016/S0959-8049(02)00598-1

C. Pouchol, A. Lorz, E. Trélat, J. Clairambault, D. C. Rees et al., Optimal therapy in cancer treatment with drug resistance (2016) In review ABC transporters: the power to change, Nat Rev Mol Cell Biol, vol.10, issue.3, pp.218-227, 2009.

T. Soussi, The p53 Tumor Suppressor Gene: From Molecular Biology to Clinical Investigation, Annals of the New York Academy of Sciences, vol.17, issue.1, pp.121-158, 2000.
DOI : 10.1111/j.1749-6632.2000.tb06705.x

Y. Touitou, C. Touitou, A. Bogdan, A. Reinberg, A. Auzéby et al., Differences between young and elderly subjects in seasonal and circadian variations of total plasmaproteins and blood volume as reflected by hemoglobin, hematocrit, and erythrocyte counts, Clinical Che, vol.32, pp.801-804, 1986.

S. William-faltaos, D. Rouillard, P. Lechat, and G. Bastian, Cell cycle arrest and apoptosis induced by oxaliplatin (L-OHP) on four human cancer cell lines, Anticancer Res, vol.26, issue.3A, pp.2093-2099, 2006.

S. William-faltaos, D. Rouillard, P. Lechat, and G. Bastian, Cell cycle arrest by oxaliplatin on cancer cells, Fundamental & Clinical Pharmacology, vol.44, issue.2, pp.165-172, 2007.
DOI : 10.1038/nrc1011

P. Wood, J. Du-quiton, S. You, and W. Hrushesky, Circadian clock coordinates cancer cell cycle progression, thymidylate synthase, and 5-fluorouracil therapeutic index, Molecular Cancer Therapeutics, vol.5, issue.8, pp.2023-2033, 2006.
DOI : 10.1158/1535-7163.MCT-06-0177