Pliable rejection sampling

Akram Erraqabi 1, 2 Michal Valko 2 Alexandra Carpentier 3 Odalric-Ambrym Maillard 4
2 SEQUEL - Sequential Learning
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
4 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Rejection sampling is a technique for sampling from difficult distributions. However, its use is limited due to a high rejection rate. Common adaptive rejection sampling methods either work only for very specific distributions or without performance guarantees. In this paper, we present pliable rejection sampling (PRS), a new approach to rejection sampling, where we learn the sampling proposal using a kernel estimator. Since our method builds on rejection sampling, the samples obtained are with high probability i.i.d. and distributed according to f. Moreover, PRS comes with a guarantee on the number of accepted samples.
Type de document :
Communication dans un congrès
International Conference on Machine Learning, Jun 2016, New York City, United States
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01322168
Contributeur : Michal Valko <>
Soumis le : jeudi 26 mai 2016 - 16:54:02
Dernière modification le : vendredi 13 avril 2018 - 01:27:05
Document(s) archivé(s) le : samedi 27 août 2016 - 10:58:34

Fichier

erraqabi2016pliable.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01322168, version 1

Citation

Akram Erraqabi, Michal Valko, Alexandra Carpentier, Odalric-Ambrym Maillard. Pliable rejection sampling. International Conference on Machine Learning, Jun 2016, New York City, United States. 〈hal-01322168〉

Partager

Métriques

Consultations de la notice

401

Téléchargements de fichiers

151