Hölder continuity in the Hurst parameter of functionals of Stochastic Differential Equations driven by fractional Brownian motion

Alexandre Richard 1 Denis Talay 1
1 TOSCA - TO Simulate and CAlibrate stochastic models
CRISAM - Inria Sophia Antipolis - Méditerranée , IECL - Institut Élie Cartan de Lorraine : UMR7502
Abstract : In this paper we develop sensitivity analyses w.r.t. the long-range/memory noise parameter for solutions to stochastic differential equations and the probability distributions of their first passage times at given thresholds. Here we consider the case of stochastic differential equations driven by fractional Brownian motions and the sensitivity , when the Hurst parameter $H$ of the noise tends to the pure Brownian value, of probability distributions of certain functionals of the trajectories of the solutions $\{X^H_t\}_{t\in \mathbb{R}_+}$. We first get accurate sensitivity estimates w.r.t. $H$ around the critical Brownian parameter $H = \tfrac{1}{2}$ of time marginal probability distributions of $X^H$. We second develop a sensitivity analysis for the Laplace transform of first passage time of $X^H$ at a given threshold. Our technique requires accurate Gaussian estimates on the density of $X^H_t$. The Gaussian estimate we obtain in Section 5 may be of interest by itself.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01323288
Contributeur : Alexandre Richard <>
Soumis le : lundi 30 mai 2016 - 16:57:12
Dernière modification le : mardi 17 avril 2018 - 09:08:05

Lien texte intégral

Identifiants

  • HAL Id : hal-01323288, version 1
  • ARXIV : 1605.03475

Collections

Citation

Alexandre Richard, Denis Talay. Hölder continuity in the Hurst parameter of functionals of Stochastic Differential Equations driven by fractional Brownian motion. 2016. 〈hal-01323288〉

Partager

Métriques

Consultations de la notice

308