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Abstract

The pressure gradient across stenotic blood vessels is an important clinical index
for the diagnosis of many cardiovascular diseases. While clinical gold standard for its
measurement (in terms of accuracy) is invasive catheterization, Phase-Contrast MR-
imaging has emerged as a promising tool for enabling a non-invasive quantification,
by linking (highly spatially resolved) velocity measurements with relative pressures
via Navier-Stokes equations. In this work we provide a review of current methods for
relative pressure estimation, propose new ones and compare them on numerical exam-
ples using subsampled and noisy synthetic data. We verify that the newly proposed
approaches are more robust with respect to data perturbations and therefore more
precise.

1 Introduction

Pressure difference across stenotic blood vessels is a standard clinical measurement that
serves to assess the severity of the pathology. It may be performed several times during
diagnosis and follow up, for example, in congenital heart diseases [14]. The most reliable
procedure in clinical practice to obtain pressure gradients involves invasive X-ray guided
catheterization, which should be avoided unless non-invasive evaluations (like ultrasound)
are inconclusive or discordant with clinical findings [12].

Alternatively, Phase-Contrast Magnetic Resonance Imaging (PC-MRI) allows to obtain
three-dimensional, time-resolved measurements of velocity fields, allowing visualization of
complex blood flow patterns in large vessels and the heart [9]. Typical PC-MRI spatial and
temporal resolutions go from 1.5 to 3 mm3 and 20− 40 ms, respectively [4].
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Previous works have postulated methods to estimate relative pressures using these mea-
sured velocities and the Navier–Stokes equations. To the best of the authors knowledge, the
oldest method in use is the so called Pressure Poisson Estimator (PPE), see for example
[6, 5, 7]. It consists in reconstructing the relative pressure field by directly plugging the ve-
locity measurements into the Navier–Stokes equations (NSE), and solving a Poisson equation
for the pressure.

As a new approach, recently in [10] the authors proposed to perturb the Navier-Stokes
residual with an auxiliary divergence-free vector, resulting in a mixed problem for this vector
and the pressure to be estimated. Therefore it was denoted as Stokes Estimator (STE). In
the tests presented in [10], STE turned out to outperform the PPE in terms of precision.

Also very recently in [3], relative pressure and velocity measurements were proposed to
be related by using the classical integral energy balance of the incompressible Navier–Stokes
equations, denoted as WERP. This has the advantage that only few integrals have to be
evaluated, making it computationally faster than PPE and STE. However, the authors indi-
cated some potential drawbacks: (i) the velocity measurement terms are squared, amplifying
the noise, in particular for small in-/outflows, and (ii) it cannot be applied for simultane-
ous estimation of relative pressure in multiple outlet geometries. Nevertheless, WERP also
outperformed PPE for peak relative pressure estimates.

The purpose of this manuscript is twofold. First, to compare the methods recently
proposed (STE and WERP). Secondly, to propose improvements of such methods. For
the STE, we show that a simple integration by parts of the terms containing the velocity
considerably improves the robustness regarding spatial subsampling. Then, inspired from the
WERP, we formulate an integral approach based on the momentum balance for estimating
relative pressures. We also derived formulae of the statistical bias of all methods, what to
the best of the authors knowledge has not yet been reported. We confirm numerically that
all methods, with exception of the WERP, have a negligible bias.

The rest of this paper is organized as follows. In Section 2 we set up the pressure esti-
mation problem. In Section 3 we revisit the state-of-the-art methods mentioned above. In
Section 4 we propose new pressure estimation approaches. In Section 5 we perform a theo-
retical bias analysis for all the methods. In Section 6 we test and compare all methods using
synthetic data, including sensitivity to noise, spatial and temporal subsampling. Finally in
Section 7 we discuss the results and draw some conclusions and perspectives.

2 The relative pressure estimation problem

In this work we deal with the estimation of relative pressures from velocity image data,
so we first detail in this section the assumptions about the flow physics and the data.

Let us consider an incompressible, Newtonian fluid in a bounded domain Ω ⊂ Rd, d = 3,
modeled by the incompressible Navier–Stokes equations with the velocity u(t) : Ω→ Rd and
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Figure 1: Stenosed geometry with 60% coarctation.

the pressure p(t) : Ω→ R, t ∈ [0, T ]:{
ρ∂tu+ ρ(u ·∇)u− µ∆u+ ∇p = 0 in Ω× [0, T ],

∇ · u = 0 in Ω× [0, T ]
(1)

where ρ is the density and µ the dynamic viscosity. For our purposes, Ω will be the domain
around the stenosis. We also assume that the boundary of Ω is given by ∂Ω := Γ =
Γi∪Γo∪Γw, with Γi∩Γo = ∅. Γi is the inlet boundary (i.e. upstream of the obstruction), Γo

the outlet boundary (downstream of the obstruction) and Γw is the arterial wall boundary,
see example in Figure 1. The task of the relative pressure estimation is then to compute:

δp =
1

|Γi|

∫
Γi

p− 1

|Γo|

∫
Γo

p (2)

given (perturbed) measurements of u in Ω.
As is obtained in Phase-Contrast MRI, we will assume that the velocity measurements

are available at h-spaced discrete points of the domain Ω, but we will be able to reconstruct
them everywhere by: (a) computing a mesh Th of the domain Ω using the measurement lo-
cations and a segmented geometry from the images, and then (b) interpolating the velocity
components at every point in Ω using simple linear piecewise finite element basis functions.
Additionally, we will asume that these space-discrete measurements will be available at N
discrete measurement times t1, ..., tN at a constant time interval τ . We will denote the mea-
surements as u1

m, ...,u
N
m ∈ [P1,h]d, with P1,h the usual piecewise continuous linear polynomial

finite element space.
Moreover, for further analysis we assume that the measurements include a random, ad-

ditive perturbation with respect to the ground truth velocity, i.e. un
m = un

h + εn, with
un

h ∈ [P1,h]d a spatial subsampling of the true field u into [P1,h]d at observation time tn,
and εn ∈ [P1,h]d a discrete noise field, with all degrees-of-freedom independently identically
distributed (i.i.d.) following a normal distribution N (0, σ2).

Notice that we assume only the reference field u to satisfy Problem (1) (in practice we will
compute one from a highly resolved numerical simulation). The discrete measured velocity
fields un

h are the result of a subsampling operator, and therefore they do not fulfill neither (1)
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nor a discretized version of it. Naturally, the same applies to un
m which includes additional

random perturbations.

3 State of the art of estimation methods

In this section, we overview the mathematical formulations of the currently available
methods to estimate relative pressure. We start with the Poisson Pressure Estimator (PPE),
which is the oldest and most popular. We continue with the Stokes estimator (STE) and
then with the Work-Energy Relative pressure estimator (WERP), both recently introduced.
We remark that the later two approaches has been independently reported to have a superior
performance than the PPE, but not have been yet compared with each other.

3.1 The Poisson Pressure Estimator (PPE)

The PPE, in the context of finite elements, is based on the assumption that the pressure
gradient ∇p satisfies a weak version of Equation (1). Hence, the estimated relative pressure
at time tn+1/2 := (tn + tn+1)/2 can be found as a solution of the following problem: Find

p
n+1/2
ppe ∈ P1,h such that∫

Ω

∇pn+1/2
ppe ·∇q = −ρ

τ

∫
Ω

(un+1
m − un

m) ·∇q − ρ
∫

Ω

(un+1/2
m ·∇un+1/2

m ) ·∇q (3)

for all q ∈ P1,h, and pppe = q = 0 on Γo.

Note that we leave out the term ∆u
n+1/2
m since it was reported in [8] that the viscous

part of the pressure gradient in large vessels is negligible. Moreover, since un
m ∈ P1,h, the

data does not possess enough regularity to compute its laplacian.
Then, the pressure drop at time tn+1/2 between the outlet and the inlet is evaluated

with Equation (2) using p = p
n+1/2
ppe . Note also that the midpoint time evaluation scheme

allows a second order approximation with respect to time and to reduce the noise variance
of the measurements u

n+1/2
m by a factor of 2 with respect to the original variance of the

measurements un
m.

3.2 The Stokes estimator (STE)

The STE formulated in [10] consists in perturbing the Navier–Stokes equation with the
Laplacian of an auxiliary divergence-free velocity field w. This leads to a mixed problem for
the pressure, in terms of the measured velocity, instead of a Poisson problem as in the PPE.

Defining Pb
1,h as the finite element space with linear piecewise polynomials with an addi-

tional bubble function at the centroid of the element, the STE is formulated as follows for
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the time step tn+1/2: Find w ∈ [Pb
1,h]d and p

n+1/2
ste ∈ P1,h, such that∫

Ω

∇w : ∇ŵ −
∫

Ω

p
n+1/2
ste (∇ · ŵ) +

∫
Ω

(∇ ·w)q = −ρ
τ

∫
Ω

(un+1
m − un

m) · ŵ

−ρ
∫

Ω

(un+1/2
m ·∇un+1/2

m ) · ŵ (4)

for all ŵ ∈ [Pb
1,h]d and q ∈ P1,h, with w = ŵ = 0 on Γ. Then, the pressure drop at time

tn+1/2 between the outlet and the inlet is evaluated with Formula (2) using p = p
n+1/2
ste . We

remark that no additional information on the pressure field p
n+1/2
ste is needed for ensuring

solvability of Problem (4). Notice also that, as for the PPE, the viscous term is neglected.

3.3 The work-energy relative pressure estimator (WERP)

The starting point of the formulation of the WERP method introduced in [3] is the
classical energy relation of an incompressible Newtonian fluid, which can be obtained either
by writing the conservation law for the energy density ρu2/2 directly or multiplying (1) by
u and integrating over Ω. This relation reads

ρ

2

∫
Ω

∂t(|u|2) +
ρ

2

∫
Γ

(u · n)|u|2 + µ

∫
Ω

|∇u|2 +

∫
Γ

p (u · n)− µ
∫

Γ

(∇u · n) · u = 0 , (5)

with | · | denoting the Euclidian norm.
The WERP is then formulated by assuming that: (i) the measurements un

m satisfy re-
lation (5), (ii) un

m · n ≈ 0 on Γw (i.e. the vessel walls nearly don’t move), (iii) the viscous
forces on Γ are negligible, (iv) and the pressure is nearly constant on Γi and Γo. Doing so,
the WERP pressure estimator at time tn+1/2 is written as:

δpn+1/2
werp (un,n+1

m ) =
−1

Λ(u
n+1/2
m )

(
Ekin(un+1

m )− Ekin(un
m) + Econv(u

n+1/2
m ) + Evisc(u

n+1/2
m )

)
(6)

with

Ekin(w) =
ρ

2τ

∫
Ω

|w|2 (7)

Econv(w) =
ρ

2

∫
Γi∪Γo

(w · n)|w|2 (8)

Evisc(w) = µ

∫
Ω

|∇w|2 (9)

Λ(w) =

∫
Γi

w · n. (10)

Note that the superscript n, n + 1 means that both velocity at the measured time steps n
and n+ 1 are considered.
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As it is well known from numerical analysis, the use of the mid-point scheme in (6)
does not induce any perturbation compared with the time-continuous energy relation (5),
independently on the time step τ .

We can see that this formulation may be unstable at small in-/outflows due to the

division by Λ(u
n+1/2
m ). In other words, when the inflow is small, perturbations (e.g. due

to the presence of measurement noise) can induce large errors in Λ(u
n+1/2
m ) leading to an

unphysical amplification of the estimated relative pressure. Fortunately, low flow regimes are
not relevant in clinical practice since only peak relative pressures are of interest. Another
important issue is that the WERP induces systematic shifts in the pressure curve in the
presence of noise, as we will see in the next section. Moreover, the WERP can only by
construction estimate relative pressure in geometries with only one inflow and one outflow,
due to the assumption un

m ·n ≈ 0 on Γw needed to eliminate the pressure field on Γw out of
the formulation.

4 New estimation methods

In this section we present new pressure estimation methods, inspired from the state-of-
the-art approaches, and we will see later in the numerical examples that they can lead to
improvements in the estimation results.

4.1 The integrated STE (STEint)

We propose to modify the STE method originally proposed in [10] and formulated in
Equation (4) by taking advantage of the regularity of the auxiliary velocity field and inte-
grating the convective and viscous terms by parts.

The STEint is formulated as follows for the time step tn+1/2. Find w ∈ [Pb
1,h]d and

p
n+1/2
stei ∈ P1,h, such that∫

Ω

∇w : ∇ŵ −
∫

Ω

p
n+1/2
stei (∇ · ŵ) +

∫
Ω

(∇ ·w)q = −ρ
τ

∫
Ω

(un+1
m − un

m) · ŵ

+ρ

∫
Ω

(un+1/2
m ·∇ŵ) · un+1/2

m

−µ
∫

Ω

∇un+1/2
m : ∇ŵ (11)

for all ŵ ∈ [Pb
1,h]d and q ∈ P1,h, with w = ŵ = 0 on Γ. Notice that the boundary terms of

the integration by parts do not appear since ŵ = 0. Then, the pressure drop at time tn+1/2

between the outlet and the inlet is evaluated with Formula (2) using p = p
n+1/2
stei .

The advantage of reducing the derivative order of the measurements will be noticeable
in the robustness of the pressure estimation results when spatially subsampling the data.
Unfortunately, this integration by parts is not straightforward for the PPE method due to
the lack of enough regularity of ∇q in Equation (3) when standard piecewise polynomial
finite element spaces are used (like P1,h).
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4.2 The Darcy estimator (DAE)

Note that, a similar alternative for the STE would be to use a Darcy formulation for w
instead of Stokes. Let RT k

h be the usual Raviart-Thomas finite element space of degree k.

Then, find w ∈ RT 1
h and p

n+1/2
dae ∈ P1,h, such that∫

Ω

w · ŵ −
∫

Ω

p
n+1/2
dae (∇ · ŵ) +

∫
Ω

(∇ ·w)q = −ρ
τ

∫
Ω

(un+1
m − un

m) · ŵ

−ρ
∫

Ω

(un+1/2
m ·∇un+1/2

m ) · ŵ (12)

for all ŵ ∈ RT 1
h and q ∈ P1,h, with w ·n = ŵ ·n = 0 on Γ. This approach has not yet been

reported, to the best of the authors knowledge. Note also that here the integration by parts
of the convective and viscous terms of the right-hand side, as by the STEint, is for formal
reasons not possible since ŵ ∈ Hdiv(Ω) and it can be easily shown that H1(Ω) ⊂ Hdiv(Ω).

4.3 Integral momentum relative pressure estimator (IMRP)

In this section we derive a new formulation for the integral relative pressure estimator
based on a general class of test functions.

Assume that we have computed some specific function v ∈ H1(Ω) satisfying

∇ · v ≈ 0 , v · n = 0 on Γw (13)

If we multiply Equation (1)1 by v and we integrate over Ω

ρ

∫
Ω

∂tu · v︸ ︷︷ ︸
Ikin(∂tu)

+ ρ

∫
Ω

(u ·∇u) · v︸ ︷︷ ︸
Iconv(u)

+

∫
Ω

∇p · v︸ ︷︷ ︸
Ipres

−µ
∫

Ω

∆u · v︸ ︷︷ ︸
Ivisc(u)

= 0 . (14)

we obtain for each of the terms

Iconv(u) = −ρ
∫

Ω

(u ·∇v) · u+ ρ

∫
Γ

(u · n)(u · v) (15)

Ipres = −
∫

Ω

p(∇ · v) +

∫
Γ

p (v · n) =

∫
Γi∪Γo

p (v · n) (16)

Ivisc(u) = µ

∫
Ω

∇u : ∇v − µ
∫

Γ

(∇u · n) · v (17)

using standard integration by parts.
The integral momentum relative pressure estimator (IMRP) is then formulated by assum-

ing that: (i) the measurements un
m satisfy relation (14), (ii) the pressure is nearly constant

on Γi and Γo. Doing so, the IMRP estimator at time tn+1/2 is formulated as:

δp
n+1/2
imrp (un,n+1

m ) = − 1

Λ(v)

(
Ikin(

un+1
m − un

m

τ
) + Iconv(u

n+1/2
m ) + Ivisc(u

n+1/2
m )

)
. (18)
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Note that the requirements on the function in (13) serve only so that the pressure field
vanishes (up to the relative pressure) in (16).

Notice also that the integral terms Ikin, Iconv, Ivisc are multiplied by 1/Λ(v) in the estima-
tor formulation, which is independent of the measurements. This is an advantage compared
to the WERP for the potential spurious amplifications for low flows. Another advantage will
be clear after the bias analysis. We also point out that we did not make any assumption on
the velocity measurements on the boundary Γw, as it was done for the WERP. Hence it is
potentially better at capturing the pressure gradient changes due to the wall deformation.

We propose the test function v as the solution of the following Poiseuille flow, i.e. a
Stokes flow solution with unitary Neumann load on Γi: Find v ∈ [Pb

1,h]d and z ∈ P1,h,∫
Ω

∇v : ∇ψ +

∫
Ω

z∇ ·ψ +

∫
Ω

q∇ · v +

∫
Γi

ψ · n = 0 , (19)

for all ψ ∈ [Pb
1,h]d and q ∈ P1,h, and with v = ψ = 0 on Γw. It is not necessary to introduce

any coefficient in the viscous term in (19) since the IMRP estimator is independent of any
constant scaling of the velocity field, see Equation (18). The same applies to the unitary
Neumann load in (19). Note also that in the specific choice of this auxiliary function, since
v = ψ = 0 on Γw all terms in that boundary in (15)-(17) vanish.

Remark 1. The final relative pressure estimation seems to not considerably depend on the
order of the finite element space used for the test function in the numerical experiments.
Differences between the different spaces can only be appreciated for coarse mesh spacing of
the measurements, i.e. larger than 3 mm. The same applies to the discretization of the STE,
STEint and DAE mixed problems.

5 Bias analysis

We remind the reader that we deal with additive random perturbations of the measured
(subsampled) velocity. In this section we detail then how to compute the bias of the esti-
mation methods introduced previously, what has not been done in all original works (i.e for
PPE, STE and WERP), to the best of the authors knowledge.

5.1 Generalities

The computation of the bias implies in practice to calculate the following quantity:

E
(
δpn+1/2(un,n+1

h + εn,n+1)
)
− δpn+1/2(un,n+1

h ) (20)

with E the usual expected value operator. Notice that it does not take into account the
estimation errors due to the spatial or temporal subsampling. In simple words, bias is how
much the mean of the estimators when including noise in the measurements differ from the
estimator with noise-free measurements.

8



Since εn ∈ [P1,h]d is a discrete noise field we can write it (using the Einstein summation
convention from now on) as εni (x) = Nj(x)eni,j, with Nj(x) the finite element shape function
for the j-th degree-of-freedom of P1,h and i denotes the spatial direction.

Remember also that the degrees-of-freedom eni,j are independently identically distributed
(i.i.d.) following a normal distribution N (0, σ2) for all n, i, j. For any linear, differential
operator with deterministic coefficients D : H1(Ω)→ L2(Ω) we have therefore the following
Identity:

E
(∫

Ω

D(εni )

)
=

∫
Ω

E
(
eni,j
)
D(Nj(x)) = 0 (21)

5.2 PPE

To compute then the bias (20) for the PPE method we proceed as follows. Note that

the bias function bppe := E(p
n+1/2
ppe (un,n+1

m )) − p
n+1/2
ppe (un,n+1

h ) satisfies the problem: Find
bppe ∈ P1,h such that∫

Ω

∇bppe ·∇q = E
(
−ρ
τ

∫
Ω

(un+1
m − un

m) ·∇q

)
+
ρ

τ

∫
Ω

(un+1
h − un

h) ·∇q

−E
(
ρ

∫
Ω

(un+1/2
m ·∇un+1/2

m ) ·∇q

)
+ ρ

∫
Ω

(u
n+1/2
h ·∇un+1/2

h ) ·∇q

(22)

for all q ∈ P1,h, and bppe = q = 0 on Γo. Since un
m = un

h + εn, the kinetic terms of the
right-hand-side of Problem (22) are zero due to Identity (21). For the convective terms, the
only ones surviving are (since the expected value of the cross terms is zero due to Identity
(21))

ρ

∫
Ω

E
(
(εn+1/2 ·∇εn+1/2)

)
·∇q = ρ

∫
Ω

E
(
ε
n+1/2
k ∂kε

n+1/2
i

)
∂iq

= ρ

∫
Ω

E
(
Nje

n+1/2
k,j ∂k(N`e

n+1/2
i,` )

)
∂iq

= ρ

∫
Ω

E
(
e
n+1/2
k,j e

n+1/2
i,`

)
Nj∂kN`∂iq

= ρ

∫
Ω

σ2

2
Nj∂kNj∂kq =

ρσ2

4

∫
Ω

∂k
∑
j

(Nj)
2∂kq

=
ρσ2

4

∫
Ω

∇α ·∇q

with α =
∑

j(Nj)
2 in P2,h. Therefore, we can compute the bias spatial distribution bppe by

solving: ∫
Ω

∇bppe ·∇q = −ρσ
2

4

∫
Ω

∇α ·∇q . (23)
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with bppe = q = 0 on Γo. Finally, the bias for the relative pressure δp can be computed by
evaluating Formula (2) with p = bppe.

We want to remark that this expression provides a closed form for the bias, depending
on known constants and the geometry itself, and it is independent of the real velocity field
and hence also of time. Therefore, it can be always evaluated a priori and in the numerical
examples we will verify that it is absolutely negligible with respect to the relative pressure
of interest. This will be also the case with the rest of the methods, except WERP.

5.3 STE and DAE

Analogous to the PPE case, since they all share the same form for the right-hand-side,
the bias of STE and DAE can be computed by solving the following problems.

For the STE: Find w ∈ [Pb
1,h]d and bste ∈ P1,h, such that∫

Ω

∇w : ∇ŵ −
∫

Ω

bste(∇ · ŵ) +

∫
Ω

(∇ ·w)q = −ρσ
2

4

∫
Ω

∇α · ŵ (24)

for all ŵ ∈ [Pb
1,h]d and q ∈ P1,h, with w = ŵ = 0 on Γ.

And now for the DAE: Find w ∈ RT 1
h and bdae ∈ P1,h, such that∫

Ω

w · ŵ −
∫

Ω

bdae(∇ · ŵ) +

∫
Ω

(∇ ·w)q = −ρσ
2

4

∫
Ω

∇α · ŵ (25)

for all ŵ ∈ RT 1
h and q ∈ P1,h, with w · n = ŵ · n = 0 on Γ.

5.4 STEint

Due to the integration by parts in the right-hand-side, the STEint case has to be handled
slightly different. Again, due to Identity (21) the kinetic, and now also the viscous terms in
the right-hand-side of the bias equation, vanish. The only surviving term in the convective
part has the form:

ρ

∫
Ω

E
(
(εn+1/2 ·∇ŵ) · εn+1/2

)
= ρ

∫
Ω

E
(
ε
n+1/2
i ∂iŵjε

n+1/2
j

)
= ρ

∫
Ω

E
(
e
n+1/2
i,k e

n+1/2
j,`

)
NkN`∂iŵj =

ρσ2

2

∫
Ω

α∇ · ŵ

(26)

Therefore, for the STEint the bias equation reads: Find w ∈ [Pb
1,h]d and bstei ∈ P1,h, such

that ∫
Ω

∇w : ∇ŵ −
∫

Ω

bstei(∇ · ŵ) +

∫
Ω

(∇ ·w)q =
ρσ2

2

∫
Ω

α∇ · ŵ (27)

for all ŵ ∈ [Pb
1,h]d and q ∈ P1,h, with w = ŵ = 0 on Γ.
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5.5 IMRP

The bias of the IMRP can be directly defined as

birmp = E(δp
n+1/2
imrp (un,n+1

m ))− δpn+1/2
imrp (un,n+1

h )

It can be easily verified that due to Identity (21) the bias expression reduces to convective
terms only:

birmp = − 1

Λ(v)

(
−ρ
∫

Ω

E
(
ε
n+1/2
i ∂jviε

n+1/2
j

)
+ ρ

∫
Γ

E(ε
n+1/2
i niε

n+1/2
j vj)

)
=

ρσ2

2Λ(v)

∫
Ω

α∇ · v − ρ

Λ(v)

∫
Γ

NkN`nivjE(e
n+1/2
i,k e

n+1/2
j,` )

=
ρσ2

2Λ(v)

∫
Ω

α∇ · v − ρσ2

2Λ(v)

∫
Γ

αv · n .

5.6 WERP

We will now end the bias analysis with the WERP estimator. We will need for the
analysis the following additional identities:

E
(
ρ

∫
Ω

|εn|2
)

= σ2 tr(MΩ), E
(
µ

∫
Ω

|∇εn+1/2|2
)

=
σ2

2
tr(KΩ) , (28)

with MΩ and KΩ the classical mass and stiffness finite element matrices for the Stokes
problem in P1,h, respectively. Then, let us point out that the following identities hold:

The goal is now to compute:

bwerp = E(δpn+1/2
werp (un,n+1

m ))− δpn+1/2
werp (un,n+1

h )

In order to perform such an analysis, we include an additional assumption that Λ(u
n+1/2
m ) ≈

Λ(u
n+1/2
h ), what is reasonable if we are interested in estimating the peak systolic relative

pressure, which typically is simultaneous to the peak flow where the signal-to-noise ratio is
best.

We proceed therefore as follows:

E(δpn+1/2
werp (un,n+1

m )) ≈ −1

Λ(u
n+1/2
m )

E
(
Ekin(un+1

m )− Ekin(un
m) + Econv(u

n+1/2
m ) + Evisc(u

n+1/2
m )

)
.

(29)
We now compute separately each term. First the kinetic part

E (Ekin(un
m)) = E

(
ρ

2τ

∫
Ω

|un
h + εn|2

)
=

ρ

2τ

∫
Ω

E
(
|un

h|2 + 2un
h · εn + |εn|2

)
= Ekin(un

h) +
σ2

2τ
tr(MΩ) .
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Then, the convective part can be reduced using Identity (21):

E (Econv(u
n
m)) =

ρ

2

∫
Γi∪Γo

E
(
((un

h + εn) · n)|un
h + εn|2

)
=

ρ

2

∫
Γi∪Γo

E
(
(un

h · n)
{
|un

h|2 + 2un
h · εn + |εn|2

}
+(εn · n)

{
|un

h|2 + 2un
h · εn + |εn|2

} )
= Econv(u

n
h) +

ρ

2

∫
Γi∪Γo

E
(
(un

h · n)|εn|2 + 2(εn · n)(un
h · εn)

)
where it can be easily shown that the very last (cubic) term in the second row vanishes due
to the standard result that the cube of a normal variable has also zero expected value. Now
we continue using the fact that εni = Nje

n
i,j

E (Econv(u
n
m)) = Econv(u

n
h) +

ρ

2

∫
Γi∪Γo

(un
h · n)

∑
i

E
(
(Nje

n
i,j)

2
)

+ 2E ((εn · n)(un
h · εn))

= Econv(u
n
h) +

ρ

2

∫
Γi∪Γo

(un
h · n)(dσ2)α + 2E

(
(Nke

n
i,k)(N`e

n
j,`)
)
niu

n
h,j

= Econv(u
n
h) +

ρ

2

∫
Γi∪Γo

(un
h · n)(dσ2)α + 2σ2αun

h · n

= Econv(u
n
h) +Bconv(u

n
h, σ

2) , Bconv(u
n
h, σ

2) =
ρσ2(d+ 2)

2

∫
Γi∪Γo

(un
h · n)α

with d the spatial dimension (in our examples later d = 3). And at last, the viscous part

E
(
Evisc(u

n+1/2
m )

)
= Evisc(u

n+1/2
h ) + µ

∫
Ω

2∇un+1/2
h : ∇εn+1/2 + |∇εn+1/2|2

= Evisc(u
n+1/2
h ) +

σ2

2
tr(KΩ) .

Now, we inserted the computed expected values into Equation (29) and we then obtain the
following expression for the bias of the WERP estimator

bwerp ≈
−1

Λ(u
n+1/2
m )

(
1

2
Bconv(u

n+1/2
h , σ2) +

σ2

2
tr(KΩ)

)
. (30)

Note that Bconv depends on both real (unknown) spatially subsampled velocity u
n+1/2
h and

noise variance σ2, while the second term of the bias depends on σ2 and the geometry Ω only.
However, we will show in the examples that this term is very small Bconv compared with the
viscous part of the bias.

Remark 2. It is not straightforward to perform similar computations for the variance of
the estimators. For the PPE, STE, STEint and DAE, no expression or equation (to our
knowledge) can be formulated. For the WERP and IMRP, even though the expressions for
the pressure drop are explicit, in the variance the expected value of products of integrals
containing the noise is needed. This can not be computed as before since these integrals are
not i.i.d.
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6 Numerical examples

6.1 Forward simulations

The synthetic measurements are obtained from a Navier-Stokes simulation in a three-
dimensional geometry representing a stenotic blood vessel, see Figure 1. The radii of inlet
and outlet are 1 cm and the stenosis has a radius of 0.4 cm, i.e. 60 % of coarctation. The
physical parameters were chosen as µ = 0.035 Poise and ρ = 1.0 gr/cm3. An homogeneous
Neumann load on Γo was imposed, while an homogeneous Dirichlet condition on Γw and the
following Dirichlet condition on Γi are considered:

u = 60(x2 + z2 − 1) sin

(
5π

2
t

)
n on Γw (31)

where x, z are the coordinates of the plane perpendicular to the main flow direction (the
vessel centerline lies on x = z = 0). This input data leads to a peak inflow rate and pressure
drop of 94 cm3/s and 21 mmHg, respectively. This pressure drop is typical from transitional
coarctations from mild to severe and represents a typical threshold for clinical decisions [13].

The numerical solution of the reference problem was performed using a monolithic velocity-
pressure coupling. The space-semi-discretization was performed with Pb

1,h/P1,h finite ele-
ments for the velocity and pressure, respectively, with a mesh spacing of h = 0.06 cm. A
backward Euler scheme was used for the time-semi-discretization with time-step of 0.002 s,
with a semi-implicit treatment of the convective term, and including a Temam stabilization
term to ensure Lyapunov stability of the solution in time [11]. At that spatial refinement
level, no volume or backflow convective instabilities were observed, so no volume convective
or backflow stabilization terms were included in order to not perturb the original equation,
e.g. SUPG [2] or backflow stabilization [1].

6.2 Synthetic measurements

Synthetic measurements (see Figure 2) were generated considering the following realistic
perturbations of the data:

• First, the highly resolved reference solution was subsampled on grids with element
spacing of 0.1, 0.15, 0.2 and 0.25 cm.

• Then, it was subsampled in time at 0.02 s.

• Finally, an additive Gaussian noise was added to the subsampled velocity at each mesh
node and for each time. The standard deviation chosen as 10% of the peak velocity
for all velocity components as it is usually done in clinical Phase-Contrast imaging
adjusting the expected peak velocity (called VENC parameter) [4].

13



(a) Reference (b) h = 0.15 (c) h = 0.25 (d) h = 0.15 (n) (e) h = 0.25 (n)

Figure 2: (a)Reference simulated velocity field (with h = 0.06 cm and mini-elements). (b)-
(c) Spatially subsampled measurements at time t = 0.25 s (noise free). (d)-(e) Spatially
subsampled and noisy (n) measurements at time t = 0.25.

6.3 Weighting functions for IMRP

We will use a Poiseuille flow as test functions v for the IMRP method, which can be
appreciated in Figure 3.

(a) h = 0.15 cm (b) h = 0.25 cm

Figure 3: Poiseuille test functions for IMRP for different spatial resolutions.

We remark that this is not the only possible choice for v. Alternatives may be Brinkman
or Darcy flows. Nevertheless, In several numerical test that we performed no advantage over
a simple Poiseuille flow was established in the pressure gradient results. Specifically, the
results of the Brinkman flow were dependent on the weighting of the mass term, possibly
leading to deteriorated results if this weight was chosen either too large or too small. In
the case of a Darcy flow, this is in fact a naive choice due to the lack of regularity of
the solutions gradient, which is need in the evaluation of the IMRP in Equation (18). A
further option would be to include convective terms for v, but this leads to considerably
worse approximation results of the IMRP. Therefore, we do not present any results for these
alternative test functions for the sake of clarity and conciseness.
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6.4 Bias of the estimators

As we remarked in Section 5, we can compute a priori the bias for all methods, which
are shown in Table 1. Only in the case of the WERP, the bias coming from the convective
term needs to be computed from the ground truth. However, we show that for small mesh
spacing the bias of the WERP is dominated by the viscous part, which is again independent
on the ground truth velocity field, see Equation (30).

For this example, the bias for the STE, STEint and DAE are of the order of the machine
precision. The bias of the PPE is also very small. The IMRP turns to give a negligible bias.

h [cm] 0.1 0.15 0.2 0.25
PPE 5.7e− 13 2.1e− 13 1.4e− 13 1.0e− 13
STE −1.6e− 16 −1.0e− 16 −1.6e− 16 −1.6e− 16

STEint 1.0e− 17 8.6e− 17 7.8e− 17 −2.4e− 17
DAE 3.3e− 17 1.7e− 16 7.0e− 17 −9.6e− 18

WERP 2.3 0.9 0.6 0.5
WERP(visc) 2.3 1.0 0.3 1.1

IMRP 4.2e− 06 −5.1e− 06 −7.9e− 06 −4.1e− 08

Table 1: Computation of the estimators bias [mmHg] for 10% noise in the velocity.

6.5 Estimation results: noise-free measurements

We first study the sensitivity of the relative pressure estimation to spatial subsampling
of the measurements, without any random noise. The results are shown in Figure 4, and
the error convergence curves with respect to the data resolution h are shown in Figure 5.
Note that the best methods turn out finally to be the IMRP and STEint, with the former
giving a slightly better precision. They turn out to be more robust when subsampling the
measurements compared with the state of the art methods, i.e. PPE, STE and WERP. Note
that the PPE, which is the oldest and the most spread approach, was consistently the worst
method, in line with the findings of [10, 3]. We also remark that the temporal subsampling at
this realistic level does not have a considerable impact on the estimation precision, compared
with the space subsampling, and hence only the time-subsampled results are shown for the
sake of conciseness.

6.6 Estimation results: noisy measurements

Now we summarize the results with noisy measurements, for which we consider 100
random realizations of the noise εn for each n. The standard deviations of the relative
pressure estimation and the error of the mean with respect to the ground truth (both at
peak systole) are presented in Figure 6 and 7. Note that both diminish with the spatial
discretization size h for all methods. In addition, by comparing Figures 4 and 6 we verify
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(a) h = 0.15 cm
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(b) h = 0.25 cm

Figure 4: Reference ground-truth (GT) and noise-free relative pressure estimations for two
different spatial subsampling resolutions including temporal subsampling of 0.02 s.
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Figure 5: Error of estimation with respect to the ground truth at peak systole for noise-free
but spatial subsampled measurements.
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that the bias is imperceptible, consistently with the values computed a priori in Table 1.
Also consistent with Table 1, the only exception is the WERP.

As expected due to the “squaring” of the measurements, the method with highest variance
is the WERP, while the methods delivering sharper standard deviations are PPE and DAE.
However, the differences in standard deviations among all methods are around 1.0 mmHg,
meaning around 2.0 mmHg for a 95% confidence interval.

In summary, these results confirm that the best performing methods (also when including
noise and subsampling) are the IMRP and the STEint.
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(a) h = 0.15 cm
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Figure 6: Mean pressure estimations with noisy measurements.

7 Conclusions

In this work we reviewed, improved, analyzed (both theoretically and numerically) and
compared old and recent approaches for estimating relatives pressures from 4D flow data.
Consistent with recent findings, the worst performance was found the be of the widely spread
PPE method in terms of its robustness the spatial subsampling.

The WERP method recently introduced in [3], while being the computationally cheapest,
it is more sensitive to noise, delivering biased estimations and larger variances than the other
methods. The bias of the WERP at higher data resolutions is controlled by the viscous term.
However, in our specific numerical test, this term is anyway negligible with respect to the
convective one, so it could be neglected from the WERP formulation, avoiding biasing.

We also performed computations for the STE method also recently introduced in [10],
confirming that it performs better than the PPE. However, it also presented an important
sensitivity when the measurements are subsampled in space. We found out that just a
simple integration by parts, in particular of the convective term, considerably reduces this
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Figure 7: Estimation results at peak systole with noisy measurements.

sensitivity, and we called it STEint. This was not shown in the original article [10]. In this
context, we investigated an alternative to the STE method based on the Darcy flow, which
we called DAE, obtaining slightly better results than the PPE but worse than the rest of
the approaches in terms of estimated mean.

Finally, inspired from the integral approach introduced by the WERP, we proposed a
new method based on an integral momentum balance weighted by a simple Poiseuille solu-
tion. This turns out to be the most accurate method together with the STEint, with a low
sensitivity to spatial subsampling in current clinical ranges of voxel size used for 4D flow
acquisitions.

Summarizing, based on the numerical experiments presented in this work, the methods
of choice would be the IMRP and/or the STEint, both newly introduced in our contri-
bution. While the STEint has the advantage of given the full spatial distribution of the
pressure (relative to some point), the IMRP is computationally cheaper when the relative
pressure needs to be computed at many time frames. Therefore, future work will consist
on further comparing and validating these approaches using real 4D flow data and catheter
measurements.
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