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Abstract

Topologies for data center interconnection networks have been proposed in the literature
through various graph classes and operations. A common trait to most existing designs is that
they enhance the symmetric properties of the underlying graphs. Indeed, symmetry is a de-
sirable property for interconnection networks because it minimizes congestion problems and it
allows each entity to run the same routing protocol. However, despite sharing similarities these
topologies all come with their own routing protocol. Recently, generic routing schemes have
been introduced which can be implemented for any interconnection network. The performances
of such universal routing schemes are intimately related to the hyperbolicity of the topology.
Roughly, graph hyperbolicity is a metric parameter which measures how close is the shortest-
path metric of a graph from a tree metric (the smaller the gap the better). Motivated by the
good performances in practice of these new routing schemes, we propose the first general study
of the hyperbolicity of data center interconnection networks. Our findings are disappointingly
negative: we prove that the hyperbolicity of most data center interconnection topologies scales
linearly with their diameter, that it the worst-case possible for hyperbolicity. To obtain these
results, we introduce original connection between hyperbolicity and the properties of the endo-
morphism monoid of a graph. In particular, our results extend to all vertex and edge-transitive
graphs. Additional results are obtained for de Bruijn and Kautz graphs, grid-like graphs and
networks from the so-called Cayley model.

Keywords. greedy routing scheme; metric embedding; graph endomorphism; Gromov hy-
perbolicity; Cayley graph; data center; interconnection network

1 Introduction

The network topologies that are used to interconnect the computing units of large-scale facilities
(e.g., super computers, data centers hosting cloud applications, etc.) are designed to optimize
various constraints such as equipment cost, deployment time, capacity and bandwidth, routing
functionalities, reliability to equipment failures, power consumption, etc. This large variety of
(conflicting) criteria has yielded numerous proposals of interconnection networks. See for in-
stance [11, 12, 20, 47, 81] and [36, 38–40, 59] for the most recent ones. A common feature of the

∗This work is partially supported by ANR project Stint under reference ANR-13-BS02-0007 and ANR program
“Investments for the Future” under reference ANR-11-LABX-0031-01.
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proposed constructions is to design network topologies offering a high-level of symmetries. Indeed,
it is easier to balance the traffic load, and hence to minimize the congestion, on network topolo-
gies with a high-level of symmetry. Furthermore, it simplifies the initial wiring of the physical
infrastructure and it ensures that each router node can run the protocol.

However, despite sharing properties, interconnection networks rely on specific routing algorithms
that are optimized for each topology. As a novel step toward efficient and topology agnostic routing
schemes, the authors in [64–66] proposed to use greedy routing schemes based on an embedding of
the topology into certain metric space such as the hyperbolic metric space, and more recently the
word metric space. This approach has been shown particularly efficient for Internet-like graphs [33,
42] where routes with low stretch are obtained. One explanation of this good behavior is that
Internet-like graphs have low hyperbolicity [10, 74], a graph parameter providing sharp bounds on
the stretch (or distortion) of the distances in a graph when it is embedded into an edge-weighted
tree.

In this paper, we characterize or give upper and lower-bounds on the hyperbolicity of a broad
range of interconnection network topologies. These bounds can be used to analyze the worst-case
behavior of greedy routing schemes in these topologies. Before we present our results, let us further
put in context the role they play in routing and in other distance-related problems.

Related work. Greedy routing schemes based on an embedding into the hyperbolic space have
been introduced by Kleinberg in [33]. Since then, various authors explored further this approach [42,
45, 48]). In particular, they showed that the graphs of the Autonomous Systems of the Internet
embed better into a hyperbolic space than into an Euclidean space1. It was only recently in [70] that
a formal relationship between the performances of hyperbolic embeddings and the hyperbolicity was
proved. Namely, the authors proved that the over-delay for such routing schemes, or equivalently
the stretch of the routing, depends on the hyperbolicity. In [73], the authors proved that similar
results hold for greedy routing schemes based on an embedding of the topology into some word
metric space (e.g., see [26] for more information). More precisely, they use hyperbolicity to upper-
bound the complexity of their routings, as well as to bound the size of the automata that are
involved in their routing schemes.

Their results add up to prior worst-case analysis of graph heuristics that already pointed out the
important role played by the hyperbolicity. For instance, there are approximation algorithms for
problems related to distances in graphs —like diameter and radius computation [37], and minimum
ball covering [32]— whose approximation constant depends on the hyperbolicity. Sometimes the
approximation factor is a universal constant but the algorithm relies on a data-structure whose
size is proportional to the hyperbolicity of the network topology [31]. Geometric routing schemes
in [42,45,48] do not make exception and so have a stretch lower-bounded by the hyperbolicity (the
bound is reached by some of them).

There have been measurements to confirm that complex networks such as the graphs of the
Autonomous Systems of the Internet, social networks and phylogenetic networks all have a low
hyperbolicity. We refer to [60,62,63,71,74,77] for the most important studies in this area. Additional
related work in [50,57] shows that the low hyperbolicity of complex networks may be a consequence

1In fact, it follows from [23] that for any n-vertex graph G there is an embedding ϕ of G into the Euclidean space
(with unbounded dimension) such that for every u, v ∈ V (G) we have d(ϕ(u), ϕ(v)) ≤ O(

√
log log n) · dG(u, v) +

Ô(δ(G) · logn), with δ(G) being the hyperbolicity (the Ô-notation suppresses the polyloglog factors). However, it
does not seem that hyperbolicity is the most relevant parameter in the study of Euclidean embeddings.
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of some preferential attachment mechanisms. However, we are not informed of any study on the
hyperbolicity of data center interconnection networks. In this paper, we aim to fill in this gap
through a theoretical study of their underlying graphs.

Our contributions. In an attempt to confront with the diversity of interconnection network
topologies proposed in the literature, we relate hyperbolicity with a few graph properties that are
frequently encountered in these topologies. Indeed, we do not aim to provide a —long and non-
exhaustive— listing of unrelated results for each network, but rather to exhibit a small number of
their characteristics that are strongly related with their metric invariants. In particular, we relate
hyperbolicity with the symmetries of a graph.

• We prove in Section 3 that for graphs whose center is a k-distance dominating set for some
small value of k, the hyperbolicity scales linearly with the diameter. This class of graphs
strictly contains graphs whose diameter equals the radius, a.k.a. the self-centered graphs [9,
14]. In particular, it comprises all vertex-transitive graphs (a strict subclass of self-centered
graphs), as well as edge-transitive graphs. A main consequence of our result is that every
interconnection network whose topology is based on a Cayley graph has large hyperbolicity2.

• In addition, we prove that similar results hold for graphs admitting an endomorphism such
that the distance between any vertex and its symmetric image is large. On the way to prove
these results, we define a new graph invariant which is called weak mobility, that generalizes
the so-called graph mobility (e.g., see [22, 34]). We use these new results to improve our
lower-bounds on the hyperbolicity of several interconnection networks.

• For completeness, we also characterize the hyperbolicity of other “symmetric” networks such
as de Bruijn, Kautz and grid-like graphs. More precisely, we apply different techniques that
are based on their shortest-paths distribution so that we can prove in Section 4 that they
also have a large hyperbolicity. The techniques that are involved in the proofs have been
introduced in previous papers [16,41], but to the best of our knowledge the way we use them
in this work is new.

All of the above results are summarized in Table 1.

• Last, we extend our results in Section 5 to heterogenous data center interconnection networks.
That is, we relate hyperbolicity with several graph operations, most of them being introduced
in the Cayley model of [59] in order to enhance some desirable properties of data center
interconnection networks.

Our main message is that existing designs in the literature yield graphs with the highest possible
value for the hyperbolicity —w.r.t. their diameter. On the negative side, it means that any greedy
routing scheme whose stretch depends on the hyperbolicity is not scalable enough to cope with
large data centers. But on a more positive side, it also implies that any routing scheme relying on

2 Independently from this work, the authors in [54] proved that for any vertex-transitive graph, the hyperbolicity
scales linearly with the diameter. However, their proof relies on another definition of hyperbolicity, and it is unclear
whether the proof can be extended to other graph classes. By contrast, our proof yields a tighter lower-bound for
hyperbolicity, and it relies on a much simpler and more general argument (i.e., see Theorem 4). Especially, it also
applies to edge-transitive graphs.
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a data-structure with size proportional to the hyperbolicity solely requires sublogarithmic space in
the number of servers. Indeed, it is well-known that the data center interconnection networks often
have a diameter that is logarithmic or sublogarithmic in their size.

We start this paper providing useful notations and definitions in Section 2, and we conclude it
in Section 6 with open questions. Especially, can we infer a formal relationship between network
congestion and graph hyperbolicity ?

2 Preliminaries

A data center is a facility that is used to house resources such as computer systems, servers,
etc. Data center resources are interconnected using communication networks, that are called data
center interconnection networks. They are modeled as a graph where the vertices are the data
center resources (e.g., computing units) and there is an edge between two resources if they are
directly connected in the network. Different graph classes have been proposed in order to design
data center interconnection networks [11, 12, 20, 36, 38–40, 47, 59, 81]. In what follows, our results
apply to general graphs, but they are aimed at providing good lower-bounds on the hyperbolicity
for these specific topologies.

We refer to [80, 82] for the usual graph terminology. Graphs in this study are finite, simple
(hence, without loop nor multiple edges), connected and unweighted.

2.1 Metric graph theory

Given a connected graph G = (V,E), the distance between any two vertices u, v ∈ V is defined as
the minimum number of edges on a uv-path. We will denote it by dG(u, v), or by d(u, v) whenever
G is clear from the context. For any subset S ⊆ V , the eccentricity of vertex v ∈ S, denoted
eccG(v, S), is defined as the maximum distance in G between v and any other vertex in S. The
radius of S is defined as the least eccentricity of vertices in S and is denoted by radG(S), while the
diameter of S is defined as the largest eccentricity of vertices in S and is denoted by diamG(S).
Observe that it always holds radG(S) ≤ diamG(S) ≤ 2 · radG(S). In particular, for any vertex
v ∈ V , we denote by ecc(v) = eccG(v, V ), rad(G) = radG(V ) and diam(G) = diamG(V ). The
center C(G) of the graph is the subset of all vertices with minimum eccentricity rad(G). We call
the graph G self-centered if it holds diam(G) = rad(G) i.e., every vertex of G is in the center.

Last, we define graph hyperbolicity as follows.

Definition 1 (4-points Condition, [10]). Let G be a connected graph.
For every 4-tuple u, v, x, y of G, we define δ(u, v, x, y) as half of the difference between the two

largest sums amongst:

S1 = d(u, v) + d(x, y), S2 = d(u, x) + d(v, y), and S3 = d(u, y) + d(v, x).

The graph hyperbolicity, denoted by δ(G), is equal to maxu,v,x,y δ(u, v, x, y).
Moreover, we say that G is δ-hyperbolic, for every δ ≥ δ(G).

Other definitions exist for the hyperbolicity, but they are pairwise equivalent up to a constant-
factor (e.g., see [10] for details). So far, the hyperbolicity of a few graph classes has been charac-
terized such as: random graphs [56, 61, 69], chordal graphs [25], k-chordal graphs [53], outerplanar
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graphs [67] and other geometrical graph classes [37]. Lower and upper-bounds for the hyperbolicity
are obtained in [58] using graph invariants, and also in [52, 67] using graph decompositions. We
refer to [44] for a compelling of many well-known facts about hyperbolicity. In particular, we will
make use of the following upper-bound for hyperbolicity:

Lemma 2 ( [10,44,74]). For every connected graph G, it holds that δ(G) ≤
⌊

diam(G)
2

⌋
.

Based on Lemma 2, the authors in [71] have proposed the following classification of finite
graphs. A graph G is strongly hyperbolic if δ(G) = O(log(log(diam(G)))), hyperbolic if δ(G) =
O(log(diam(G))), and non hyperbolic otherwise. We follow their terminology and we aim at prov-
ing that some graph classes are non hyperbolic. This is in contrast with many graph classes in the
literature that have a constant upper-bound on their hyperbolicity, and so, that are strongly hyper-
bolic [53]. By Lemma 2, in order to prove that a graph is non hyperbolic, and more precisely that
its hyperbolicity scales linearly with its diameter, it suffices to prove that one can lower-bound the
hyperbolicity with the diameter —up to a constant-factor. This line of work was followed in [21,76]
to prove that expander graphs are non hyperbolic. Our proofs will make use of the notion of iso-
metric subgraphs, the latter denoting a subgraph H of a graph G such that dH(u, v) = dG(u, v) for
any two vertices u, v ∈ H.

2.2 Algebraic graph theory

A graph endomorphism is a mapping σ from the vertex-set of a graph G to itself which preserves
the adjacency relations, i.e., for every {u, v} ∈ E(G) we have that {σ(u), σ(v)} ∈ E(G).

Definition 3. Let G = (V,E) be a graph. Given an endomorphism σ of G, the mobility of σ is
equal to minv∈V d(v, σ(v)). The weak mobility of G is the largest integer l such that it admits an
endomorphism with mobility l.

We note that a graph endomorphism might fail to preserve the non-adjacency relations, but
it does so if it is a graph automorphism, i.e., a one-to-one endomorphism. In particular a graph
endomorphism σ is called idempotent if for every v ∈ V (G) it holds that σ2(v) = v, and in such a
case it is an automorphism.

A graph is called vertex-transitive if for every u, v ∈ V (G), there is an automorphism σ such
that σ(u) = v. Similarly, we call a graph edge-transitive if for every e = {u, v}, e′ = {u′, v′} ∈ E(G),
there is an automorphism σ such that {σ(u), σ(v)} = {u′, v′}. We emphasize that every vertex-
transitive graph is self-centered. We will use this property in the following sections. Finally, let
(Γ, ·) be a group and let S be a generating set of Γ that is symmetric and that does not contain the
neutral element of group Γ, i.e., S = S−1 and S ∩ S−1 = ∅. The Cayley graph G (Γ, S) of group Γ
w.r.t. S has vertex-set Γ and edge-set {{g, g · s} | g ∈ Γ, s ∈ S}. It is well-known that every Cayley
graph is vertex-transitive [12].

3 The metric properties of the endomorphism monoid of a graph

Our belief is that any method to lower-bound the value of hyperbolicity needs to rely as few as
possible on the shortest-path distribution of the graphs so as to be of practical use. Indeed, in
most cases there is no good characterization of this distribution. There even exist interconnection

6



networks topologies the diameter of which is still unknown [3,46]. In a need of more robust methods,
we introduce new lower-bounds on the hyperbolicity that are based on non-trivial symmetries of the
graphs. For clarity, our results are presented separately from their applications to interconnection
networks topologies.

3.1 Main results

We first introduce a very generic argument to obtain lower-bounds on the hyperbolicity. In partic-
ular, we will show that it applies to highly symmetric graphs such as transitive graphs.

Figure 1: A self-centered graph G with diam(G) = rad(G) = 2, while δ(G) = 1/2 = diam(G)/4.

Theorem 4. Let G be a connected graph, and let k ≥ 0 be such that all vertices are at distance at

most k from the center of G. Then, δ(G) ≥ 1
2 ·
⌊

diam(G)
2

⌋
− k

2 and this bound is sharp.

Proof. Let C(G) be the center of G. By the hypothesis every node in G is at distance at most k from
C(G), therefore diamG(C(G)) ≥ diam(G) − 2k. Moreover, by [37, Proposition 5] diamG(C(G)) ≤
4δ(G) + 1. Consequently, it holds δ(G) ≥ bdiamG (C(G)) /2c /2 ≥ bdiam(G)/2c /2− k/2.

The lower-bound is sharp, as shown with the example of Figure 1 where diam(G) = rad(G) = 2
while δ(G) = 1/2 = diam(G)/4.

Unlike all other techniques that we will discuss next, we can use the lower-bound of Theorem 4
to prove that all graphs studied in this work are non hyperbolic. However, the bounds obtained
with this first method are usually loose, and they never outmatch the bounds obtained with the
other techniques — when they apply. We will illustrate this point in what follows.

It is straightforward that Theorem 4 applies to self-centered graphs (with k = 0). Especially, it
applies to vertex-transitive graphs.

Corollary 5. Let G be a connected vertex-transitive graph. Then, δ(G) ≥ 1
2 ·
⌊

diam(G)
2

⌋
and this

bound is sharp.

The lower-bound of Corollary 5 is sharp, as shown by any clique (that has diameter one and
null hyperbolicity).

On the practical side, most of the interconnection networks topologies are based on vertex-
transitive graphs. This comprises hypercube-based networks [8], generalized Petersen graphs [1,18],
generalized Heawood graphs [30, 68] and Cayley graphs [12]. For some of these topologies such as
the Pancake graph [3], a well-known Cayley graph, Corollary 5 is the best lower-bound on the
hyperbolicity we know so far.

Corollary 6. Let G be a connected edge-transitive graph. Then, δ(G) ≥ 1
2 ·
⌊

diam(G)
2

⌋
− 1

2 and this

bound is sharp.

7



Proof. We first claim that the center C(G) is a dominating set of G. Indeed, let u ∈ V (G) and
v ∈ C(G), and let x ∈ NG(u) and y ∈ NG(v). Since G is edge-symmetric by the hypothesis, there
exists an automorphism σ such that {σ(v), σ(y)} = {u, x}. Furthermore σ(v) ∈ C(G) because σ is
an automorphism and so, dG(u, C(G)) ≤ dG(u, σ(v)) ≤ 1 which proves the claim. As a result, we
can apply Theorem 4 by setting k = 1.

The lower-bound is sharp, as shown by any star (that has diameter two and null hyperbolicity).

3.1.1 Improved lower-bounds using graph endomorphisms

However, despite its wide applicability to interconnection networks, the above Corollaries 5 and 6
require graphs to have an automorphism group with constrained properties. A natural question is
whether we can weaken the requirements by considering endomorphisms instead of automorphisms.
To answer this question, we use weakly vertex-transitive graphs that have been defined in [29] in a
similar fashion to vertex-transitive graphs. Namely, a graph G is weakly vertex-transitive if, for any
two vertices u, v ∈ V (G) there exists a graph endomorphism σ satisfying σ(u) = v. Unlike vertex-
transitive graphs, the gap between hyperbolicity and diameter may be arbitrarily large for weakly
vertex-transitive graphs. Indeed, on the one hand it was proved in [29] that bipartite graphs are
weakly vertex-transitive. On the other hand, trees are bipartite 0-hyperbolic graphs, whereas they
may have a diameter that is arbitrarily large. We now show that surprisingly, some lower-bounds
on the hyperbolicity can still be deduced from graph endomorphisms.

Theorem 7. Let G be a connected graph of weak mobility l ≥ 2. Then it holds δ(G) ≥ 1
2 ·
⌈
l
2

⌉
.

Proof. We will consider a graph game which is a slight variation of the well-known ’Cop and
Robber’ game (e.g. see [5–7]). There are two players in this game that are playing alternatively
on a (connected) graph, by moving along a path of length at most s, for some positive integer s.
The first player to position herself on the graph is the Cop, and the second player is called the
Robber. Last a graph is said Cop-win for this game if the Cop always has a winning-strategy i.e.,
she can always reach the position of the Robber in a finite number of moves, and hence eventually
catch the Robber. In [49] the authors proved that every connected graph G is Cop-win whenever
s ≥ 4δ(G). So, to prove the theorem we claim that it suffices to show that G is not Cop-win if
s ≤ l − 1. Indeed, in such a case it holds 4δ(G) ≥ l, hence 2δ(G) ≥ l/2 that implies 2δ(G) ≥ dl/2e
and so, δ(G) ≥ dl/2e /2. Equivalently, we will exhibit a winning-strategy for the Robber in such a
case.

Let σ be an endomorphism of G with mobility l, that exists by the hypothesis. One can observe
that if at each turn of the Cop the Robber is onto the image by σ of her current position, then it is a
winning strategy for the Robber because by the hypothesis, both vertices are at distance at least l,
and the maximum speed of the Cop is l−1. To achieve the result, let us proceed as follows. First if
the Cop picks vertex u as her initial position then the Robber starts the game at vertex σ(u). Then,
if the Cop moves along a path (u = x0, x1, . . . , xi, . . . , xk = v), k ≤ l − 1, then the Robber moves
along the path (σ(u), σ(x1), . . . , σ(xi), . . . , σ(v)) which exists because σ is a graph endomorphism.
Such a move for the Robber is valid as long as v /∈ {σ(u), σ(x1), . . . , σ(xi), . . . , σ(v)}, and that is
always the case since σ(xi) = v would imply d(xi, σ(xi)) ≤ l − 1.

We are particularly interested in the special case of the graphs G with weak mobility equal
to their diameter diam(G). These graphs are self-centered, and so, their hyperbolicity is at least
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bdiam(G)/2c/2 by Theorem 4. The lower-bound is slightly improved by Theorem 7 in this situation.
However, not all self-centered graphs have their weak mobility equal to the diameter [34].

In what follows, we will mostly rely upon the below refinement of Theorem 7 in our proofs. This
way, we will obtain almost tight bounds on the hyperbolicity of data center interconnection net-
works. However, note that the following results require stronger constrictions on the endomorphism
monoid than Theorem 7.

Theorem 8. Let G be a connected graph, and l, l′ be two non-negative integers. Suppose there
exists an endomorphism σ of G with mobility l and such that for every v ∈ V (G), d(v, σ2(v)) ≤ l′.
Then, it holds δ(G) ≥

⌊
l
2

⌋
− l′

2 .

Proof. Clearly, if l ≤ l′ then δ(G) ≥ 0 ≥ bl/2c − l′/2. Therefore, we will assume w.l.o.g. that
l ≥ l′ + 1. Let u ∈ V (G) minimizing dG(u, σ(u)) and let v be on a uσ(u)-shortest-path such that
dG(u, v) = bdG(u, σ(u))/2c. Then, we deduce from the endomorphism σ the following inequalities:

S1 = d(u, σ(u)) + d(v, σ(v)) ≥ 2 · d(u, σ(u)) ≥ 2l;

S2 = d(u, v) + d(σ(u), σ(v)) ≤ 2 · d(u, v) ≤ 2 bd(u, σ(u))/2c ;

S3 = d(u, σ(v)) + d(v, σ(u)) ≤ d(u, σ2(u)) + d(σ2(u), σ(v)) + d(v, σ(u)) ≤ l′ + 2 · d(v, σ(u))

≤ 2 dd(u, σ(u))/2e+ l′ ≤ d(u, σ(u)) + 1 + l′.

In such a case, S1 ≥ max{S2, S3} and as a result:

δ(G) ≥ δ(u, v, σ(u), σ(v)) ≥ min

(⌈
d(u, σ(u))

2

⌉
,

⌊
d(u, σ(u))

2

⌋
− l′

2

)
≥
⌊
l

2

⌋
− l′

2
.

The lower-bound of Theorem 8 outmatches the one of Theorem 7 when l′ ≤ bl/2c − 1. Fur-
thermore, in practice, we will use Theorem 8 with l = diam(G) and l′ ∈ {0, 1}. This way, we will
improve by a factor two all previous lower-bounds.

It can be noticed that the lower-bound of Theorem 8 is sharp for almost every cycle. Indeed,
let Zn be the vertex set of the n-cycle Cn, and let σ be the automorphism mapping any vertex i to
the vertex i + bn/2c (mod n). Applying Theorem 8 to σ, we obtain a lower-bound bn/4c for the
hyperbolicity of even-length cycles, which is exact, and a lower-bound bn/4c − 1/2 for odd-length
cycles, which is exact when n ≡ 1 (mod 4) and below 1/2 of the true hyperbolicity when n ≡ 3
(mod 4) [28,53].

We emphasize on the following consequence of Theorem 8.

Corollary 9. Let G be a connected graph and σ be an idempotent endomorphism with mobility l.
Then, it holds δ(G) ≥

⌊
l
2

⌋
.

Proof. By the hypothesis, the endomorphism σ is idempotent and so, we can apply Theorem 8 by
setting l′ = 0.

In the special case when l = diam(G), the lower-bound of Corollary 9 is best possible. Indeed,
it coincides with the upper-bound of Lemma 2, thereby giving the exact value for hyperbolicity.

It is natural to ask whether Theorems 7 and 8 can be further improved by using bounds on the
distances d(v, σ3(v)),d(v, σ4(v)) and so on. However, answering this question is nontrivial since
the techniques used for Theorems 7 and 8 are already quite different. We leave it as an interesting
open question.
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3.2 Applications

Equipped with Theorems 7, 8 and Corollary 9, we subsequently apply them on a broad range of
topologies studied in the literature. We will combine the lower-bounds that we obtain with a slight
variation of the well-known upper-bound of Lemma 2. Indeed it is folklore that the hyperbolicity
of a graph is the maximum hyperbolicity taken over all of its biconnected components. So, δ(G) ≤
beffdiam(G)/2c, where the so-called efficient diameter effdiam(G) denotes the largest diameter
amongst the biconnected components of the graph. This way, we will show that for most graphs
found in the literature, their hyperbolicity scales linearly with the efficient diameter —that is the
worst-case possible for hyperbolicity.

3.2.1 Torus

Let us first consider the torus, a well-known grid-like graph which is highly symmetrical. Other
grid-like graphs will be considered in Section 4.2 using a different approach.

Definition 10. The torus (n,m)-grid has vertex-set Zn × Zm; any two vertices (i, j), (i′, j′) are
adjacent if either i′ = i, j′ ≡ j + 1 (mod m), or i′ ≡ i+ 1 (mod n), j′ = j.

Lemma 11. Let n = 2p + r, m = 2q + s, with r, s ∈ {0, 1}. Then, the hyperbolicity δn,m of the
torus (n,m)-grid satisfies:⌊

1

2
·
(⌊n

2

⌋
+
⌊m

2

⌋)⌋
− r + s

2
≤ δn,m ≤

⌊
1

2
·
(⌊n

2

⌋
+
⌊m

2

⌋)⌋
.

Proof. For any two vertices u = (iu, ju), v = (iv, jv):

d(u, v) = min{|iu − iv|, n− |iu − iv|}+ min{|ju − jv|,m− |ju − jv|}.

It implies that the diameter of the torus grid is bn/2c+bm/2c and so, δn,m ≤ b(bn/2c+ bm/2c) /2c
by Lemma 2. Finally, let σ be the automorphism of the torus grid which maps any vertex (i, j) to
the vertex (i+ bn/2c (mod n), j + bm/2c (mod m)). Since for any vertex v, d(v, σ(v)) = bn/2c+
bm/2c and d(v, σ2(v)) = r+ s, then it follows from Theorem 8 that δn,m ≥ b(bn/2c+ bm/2c) /2c−
r+s

2 ≥ b(bn/2c+ bm/2c) /2c − 1.

3.2.2 Hybercube-like networks

Definition 12 ( [8, 11]). Let m1,m2, . . . ,mr be positive integers with for every i, mi ≥ 2 and
r ≥ 1. The generalized hypercube G(m1,m2, . . . ,mr) has vertex-set {(x1, x2, . . . , xr) | ∀i, 0 ≤ xi ≤
mi − 1}, and two vertices (x1, x2, . . . , xr), (y1, y2, . . . , yr) are adjacent in the graph if and only if
their Hamming distance

∑
i I{xi 6=yi} is equal to 1.

In particular, the k-ary hypercube Hk(n) is the generalized hypercube G(m1,m2, . . . ,mn) with
for every i, mi = k.

Lemma 13. δ (G(m1,m2, . . . ,mr)) =
⌊
r
2

⌋
.

Proof. The diameter of G(m1,m2, . . . ,mr) is r and so, δ (G(m1,m2, . . . ,mr)) ≤ br/2c by Lemma 2.
To prove the lower-bound, we first make the observation that the binary hypercube H2(r) is
an isometric subgraph of G(m1,m2, . . . ,mr). Let σ be the automorphism mapping any vertex

10



(x1, x2, . . . , xr) ∈ V (H2(r)) to its complementary vertex (1−x1, 1−x2, . . . , 1−xr). Note that σ has
mobility r and it is idempotent. As a result, we conclude by Corollary 9 that δ (G(m1,m2, . . . ,mr)) ≥
δ (H2(r)) ≥ br/2c.

As we will show later, Lemma 13 also follows from Corollary 49 and the fact that the n-
dimensional grid of size 2 is exactly the hypercube H2(n).

Definition 14 ( [4]). The cube-connected-cycle CCC(n) has vertex-set the pairs 〈i, w〉, for 0 ≤
i ≤ n − 1 and for w any binary word of length n; two vertices 〈i, x1x2 . . . xn〉 and 〈j, y1y2 . . . yn〉
are adjacent in the graph if and only if either i = j, xi = 1 − yi and for every k 6= i, xk = yk; or
i ≡ j + 1 (mod n) and for every k, xk = yk.

Lemma 15. n ≤ δ (CCC(n)) ≤ n− 1 +
⌊
max

{
1, 1

2 ·
⌊
n
2

⌋}⌋
.

Proof. By [19], diam (CCC(n)) = 2n−2+max {2, bn/2c} and so, δ (CCC(n)) ≤ n−1+b(max {2, bn/2c}) /2c
by Lemma 2. Furthermore, the mapping σ : 〈i, w〉 → 〈i, w̄〉 is an idempotent endomorphism and it
has mobility 2n by [19]. We conclude by Corollary 9 that δ (CCC(n)) ≥ n.

Definition 16 ( [39]). Let Zl
n be the set of words of length l over the alphabet {0, 1, . . . , n−1}. The

graph BCubek(n) has vertex-set Zk+1
n ∪

(
{0, 1, . . . , k} × Zk

n

)
and edge-set

{{〈l, sksk−1 . . . sl+1sl−1 . . . s0〉 , sksk−1 . . . sl+1slsl−1 . . . s0} | 0 ≤ l ≤ k and for every i, 0 ≤ si ≤ n− 1}.

Lemma 17. δ (BCubek(n)) = k + 1.

Proof. By [43] diam (BCubek(n)) = 2(k + 1) and so, δ (BCubek(n)) ≤ k + 1 by Lemma 2. Then,
let us assume that n = 2 because we have by [43] that BCubek(2) is an isometric subgraph of
BCubek(n). We define the automorphism σ satisfying that for all binary word w ∈ Zk+1

2 , σ(w) =
w̄, and for every pair < l,w >∈ {0, 1, . . . , k} × Zk

2, σ (< l,w >) =< l, w̄ >. By [39, 43] σ has
mobility 2(k + 1) and so, by noticing that σ is idempotent we can conclude by Corollary 9 that
δ (BCubek(n)) ≥ δ (BCubek(2)) ≥ k + 1.

3.2.3 Tree-like networks

Definition 18 ( [36]). Let k ≥ 4 be even. The Fat-Treek is a graph with vertex-set that is
partitioned into four layers:

1. a core layer, labeled with {0} × Z(k/2)2 ;

2. an aggregation layer, labeled with {1} × Zk × Zk/2. For every 0 ≤ i ≤ (k/2)2 − 1 the vertex
labeled 〈0, i〉 in the core layer is adjacent to all the vertices labeled 〈1, j, i (mod k)/2〉 in the
aggregation layer, with 0 ≤ j ≤ k − 1;

3. an edge layer, labeled with {2} × Zk × Zk/2. For every 0 ≤ i ≤ k − 1 there is a complete join
between the subsets of vertices {〈1, i, j〉 | 0 ≤ j ≤ k/2− 1} and {〈2, i, j〉 | 0 ≤ j ≤ k/2− 1};

4. finally, a server layer labeled with {3} × Zk × Z(k/2)2 . For any 0 ≤ q, r < k/2 the vertex

labeled 〈3, k, (k/2)q + r〉 in the server layer is adjacent to the vertex labeled 〈2, k, q〉 in the
edge layer.

An example of a Fat-Tree4 is given in Figure 2.
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Core layer

Pod

Server layer

Edge layer

Aggregation layer

Figure 2: The graph Fat-Tree4.

Lemma 19. δ (Fat-Treek) = 2.

Proof. By construction, every vertex in the server layer is a pending vertex, that is a vertex of degree
one. As a result, it can be ignored for the computation of hyperbolicity because the hyperbolicity
of a graph is equal to the maximum hyperbolicity taken over all its biconnected components. It
follows that the efficient diameter of Fat-Treek is 4, hence δ (Fat-Treek) ≤ 2.

Furthermore, by construction Fat-Tree4 is an isometric subgraph of Fat-Treek. So, let σ be the
idempotent endomorphism of Fat-Tree4 mapping: any vertex 〈0, i〉 to the vertex 〈0, 3− i〉 in the
core layer; any vertex 〈1, i, j〉 to the vertex 〈1, 3− i, 1− j〉 in the aggregation layer, and in the same
way any vertex 〈2, i, j〉 to the vertex 〈2, 3− i, 1− j〉 in the edge layer; last, any vertex 〈3, i, j〉 to
the vertex 〈3, 3− i, 3− j〉 in the server layer. It can be hand-checked that σ has mobility 4 and so,
by Corollary 9 δ (Fat-Treek) ≥ δ (Fat-Tree4) ≥ 2.

Definition 20 ( [47]). The Butterfly graph BF (n) has vertex-set {0, 1, . . . , n} × Zn
2 ; two vertices

〈i, w〉 , 〈i′, w′〉 are adjacent if i′ = i+ 1 and for every j 6= i, wj = w′j .

Lemma 21. δ (BF (n)) = n.

Proof. Let w and w′ be two binary words of length n and let i1 and il be respectively the least
and the largest index in which they differ. Then, it can be checked that for every integer i,
dBF (n)(〈i, w〉 , 〈i, w′〉) = 2(il − i1). As a result, the endomorphism σ mapping any vertex 〈i, w〉
to the vertex 〈i, w̄〉 has mobility 2n. Since σ is idempotent then it follows from Corollary 9 that
δ (BF (n)) ≥ n. Last, we also have that diam (BF (n)) = 2n, hence δ (BF (n)) ≤ n by Lemma 2.

In the literature, the edge-set of the Butterfly network is sometimes defined as {{〈i, w〉 ,
〈i+ 1 (mod n), w′〉} | 0 ≤ i ≤ n and for every j 6= i, wj = w′j} [81], and this definition is also
known as the wrapped Butterfly network. It modifies the diameter of the topology from 2n to
n+ bn/2c, and the distance between any two vertices 〈i, w〉 , 〈i, w̄〉 from 2n to n. As a result, using
the same arguments as for Lemma 21 one obtains that the hyperbolicity of the wrapped Butterfly
graph is comprised between bn/2c and b(n+ bn/2c) /2c.

Definition 22 ( [20]). The k-ary n-fly has vertex-set {0, 1, . . . , n}×Zn
k ; two vertices 〈i, w〉 , 〈i′, w′〉

are adjacent if i′ = i+ 1 and for every j 6= i, wj = w′j .

Observe that the Butterfly graph BF (n) is isomorphic to the 2-ary n-fly.

Lemma 23. The k-ary n-fly is n-hyperbolic.
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Proof. By [20], the diameter of the k-ary n-fly is 2n and so, it has hyperbolicity bounded from
above by n by Lemma 2. Moreover, by construction it contains the Butterfly graph BF (n) as an
isometric subgraph and so, it has hyperbolicity at least n by Lemma 21.

Definition 24 ( [20]). The k-ary n-tree is the graph with vertex-set Zn
k∪
(
{0, 1, . . . , n− 1} × Zn−1

k

)
such that any two vertices 〈i, w〉 , 〈i′, w′〉 are adjacent if i′ = i + 1 and for every j 6= i, wj = w′j ;
any two vertices 〈i, w〉 , w′ are adjacent if i = n− 1 and w′ = w · b for some b ∈ Zk.

Lemma 25. The k-ary n-tree is (n− 1)-hyperbolic.

Proof. By construction, the biconnected components of the k-ary n-tree are composed of one single-
vertex graph for each vertex w ∈ Zn

k , and of the k-ary (n − 1)-fly. Since the hyperbolicity of the
graph is equal to the maximum hyperbolicity taken over its biconnected components, then it follows
from Lemma 23 that the k-ary n-tree is (n− 1)-hyperbolic.

Definition 26 ( [81]). The d-ary tree grid MT (d, h) is a graph whose vertices are labeled with
the pairs of words < u, v > over an alphabet of size d and such that max{|u|, |v|} = h. Any two
vertices 〈u, v〉 and 〈u′, v′〉 are adjacent in MT (d, h) if and only if there is some letter λ such that:
either |u| = h, u = u′ and v = v′ · λ; or |v| = h, v = v′ and u′ = u · λ.

Lemma 27. δ (MT (d, h)) = 2h.

Proof. By [81] diam (MT (d, h)) = 4h and so, δ (MT (d, h)) ≤ 2h. Furthermore, MT (2, h) is an iso-
metric subgraph of MT (d, h) by construction. Let σ be the idempotent endomorphism of MT (2, h)
mapping any vertex 〈u, v〉 to the vertex 〈ū, v̄〉. By construction σ has mobility 4h and so, we con-
clude by Corollary 9 that δ (MT (d, h)) ≥ δ (MT (2, h)) ≥ 2h.

3.2.4 Symmetric networks and Cayley graphs

Let (Γ, ·) be a group and let S be a generating set of Γ that is symmetric and that does not contain
the neutral element of Γ. We remind that the Cayley graph G (Γ, S) —of group Γ w.r.t. S— has
vertex-set Γ and edge-set {{g, g · s} | g ∈ Γ, s ∈ S}. It is well-known that every Cayley graph is
vertex-transitive [12]. Furthermore, it has been shown (see for instance Exercise 2.4.14 in [81]) that
the cube connected cycle CCC(n) and the Butterfly graph BF (n) are Cayley graphs.

Lemma 28. Let (Γ, ·) be a commutative group and S be a symmetric generating set that does not

contain the neutral element of Γ. If G (Γ, S) is not a clique, then δ (G (Γ, S)) ≥ 1
2

⌈
diam(G(Γ,S))

2

⌉
.

Proof. Let idΓ, g ∈ Γ be such that idΓ is the neutral element of group Γ and d(idΓ, g) = diam (G (Γ, S)) =
D > 1. The mapping σ : v → g · v is an automorphism satisfying that for every v ∈ Γ, d(v, σ(v)) =
d(idΓ, v

−1 · g · v) = d(idΓ, g) = D. Therefore, we can conclude by Theorem 7 that δ (G (Γ, S)) ≥
dD/2e /2.

Definition 29 ( [12]). The Bubble-sort graph BS(n) has vertex-set the n-element permutations,
that is {φ1φ2 . . . φi . . . φn | {φ1, . . . , φn} = {1, . . . , n}}. Any two vertices φ, ψ are adjacent if and
only if there is some index i < n such that φi = ψi+1, φi+1 = ψi and for every j /∈ {i, i+1}, φj = ψj .

Lemma 30. δ(BS(n)) =
⌊
n(n−1)

4

⌋
.
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Proof. By [12] diam(BS(n)) =
(
n
2

)
, hence δ(BS(n)) ≤ bdiam(BS(n))/2c by Lemma 2. Now, let σ

be the idempotent endomorphism mapping any vertex φ1φ2 . . . φi . . . φn to
φn . . . φn−i+1 . . . φ2φ1. By [12] all pairs (u, σ(u)) are diametral pairs and so, we can conclude by
Corollary 9 that δ(BS(n)) ≥ bdiam(BS(n))/2c.

Definition 31 ( [17]). The Transposition graph T (n) has vertex-set the n-element permutations.
Any two vertices φ, ψ are adjacent if and only if there are i, j, i 6= j such that φi = ψj , φj = ψi and
for every k /∈ {i, j}, φk = ψk.

Lemma 32. 1
2

⌈
n−1

2

⌉
≤ δ (T (n)) ≤

⌊
n−1

2

⌋
.

Proof. By [17] the diameter of T (n) is n−1 and so, by Lemma 2 δ (T (n)) ≤ b(n− 1) /2c. Moreover,
let σ be the endomorphism mapping any vertex φ1φ2 . . . φi . . . φn−1φn to φ2φ3 . . . φi+1 . . . φnφ1.
Again by [17] all pairs (u, σ(u)) are diametral pairs and so, we can conclude by Theorem 7 that
δ (S(n)) ≥ dn− 1/2e /2.

Definition 33 ( [12]). The star graph S(n) has vertex-set the n-element permutations and edge-set
{{φ1 . . . φi−1φiφi+1 . . . φn, φi . . . φi−1φ1φi+1 . . . φn} | 2 ≤ i ≤ n}.

Lemma 34.
⌊

1
2

⌊
3(n−1)

2

⌋
− 1

2

⌋
≤ δ (S(n)) ≤

⌊
1
2

⌊
3(n−1)

2

⌋⌋
.

Proof. By [12] the diameter of S(n) is b3(n− 1)/2c and so, δ (S(n)) ≤ bb3(n− 1)/2c /2c by
Lemma 2. Then, given φ = φ1φ2 . . . φi . . . φn−1φn, let ψ be the unique n-element permutation
satisfying that ψn−2j = φn−2j−1, ψn−2j−1 = φn−2j , for every 0 ≤ j ≤ b(n− 1) /2c − 1. Again
by [12], d(ψ, φ) ≥ b3(n− 1)/2c − ε ≥ b3(n− 1)/2c − 1, with ε = n + 1 (mod 2). Moreover it can
be checked that the mapping σ : ψ → φ is an idempotent endomorphism of S(n). Therefore, by
Corollary 9 δ (S(n)) ≥ bb3(n− 1)/2c /2− 1/2c.

4 Using the shortest-path distribution

It turns out that for “simple” topologies that are commonly found in the literature, desirable
symmetries such as those in use in Section 3 might fail to exist. For instance, the infinite rectangular
grid is vertex-symmetric, but finite rectangular grids are not. As we will show next, the more generic
Theorem 4 could still be applied in order to obtain loose lower-bounds in these situations. However,
since the shortest-path distributions of the “simplest” topologies are well-known and characterized,
that allows us to lower-bound their hyperbolicity using more involved techniques. In particular,
our proofs for grid-like graphs introduce a novel way to make use of the maximal shortest-paths in
the study of graph hyperbolicity.

4.1 The fellow traveler property for graphs defined on an alphabet

As a warm up, we will lower-bound the hyperbolicity of some graph classes defined on alphabets,
starting with the undirected de Bruijn graph.

Definition 35 ( [13]). The undirected de Bruijn graph UB(d,D) has vertex-set the words of
length D taken over an alphabet Σ of size d. The 2-set {u, v} is an edge of UB(d,D) if and only if
u = ud−1ud−2 . . . u1u0 and v = ud−2 . . . u1u0v0 for some letters ud−1, ud−2, . . . , u1, u0, v0 ∈ Σ.
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De Bruijn graphs have been extensively studied in the literature [15, 24, 27, 81]. In particu-
lar, UB(d,D) has diameter D, maximum degree 2d, and dD vertices. Shortest-path routing and
shortest-path distances in UB(d,D) are characterized as follows.

Lemma 36 ( [24]). Let u, v be two words of length D taken over some alphabet Σ of size d, and
write u = uL ·x ·uR and v = vL ·x · vR so that D−|x|+ min {|uL|+ |vR|, |vL|+ |uR|} is minimized.
Then it holds dUB(d,D)(u, v) = D − |x|+ min {|uL|+ |vR|, |vL|+ |uR|}.

We say that a graph G falsifies the k-fellow traveler property if there are two shortest-paths
P1,P2 with same endpoints u, v ∈ V (G), and there are two vertices x ∈ P1, y ∈ P2 such that
dG(u, x) = dG(u, y) and dG(x, y) > k. By a straightforward calculation we obtain that in such a
case δ(u, v, x, y) = dG(x, y)/2 > k/2. So, we can lower-bound the hyperbolicity of G with the least
k such that it satisfies the 2k-fellow traveler property. This standard argument will be the one in
use throughout the remaining of Section 4.1.

Proposition 37. For any positive integers d and D, δ (UB(d,D)) ≥ 1
2 ·
⌊
D
2

⌋
.

Proof. We prove that UB(d,D) cannot satisfy the k-fellow traveler property for some range of k.
W.l.o.g. the vertices of UB(d,D) are labeled with the words of length D taken over the alphabet
Σ = {0, 1, . . . , d− 1}. Let u = 0D, v = 1D, x = 0bD/2c · 1dD/2e, and y = 1dD/2e · 0bD/2c. By
Lemma 36 it comes that d(u, v) = D = dD/2e+ bD/2c = d(u, x) + d(x, v) = d(u, y) + d(y, v). As
a result, the graph UB(d,D) cannot satisfy the k-fellow traveler property for k < d(x, y) = bD/2c
and so, δ (UB(d,D)) ≥ bD/2c /2.

To compare the bounds of Theorem 4 and Proposition 37, we note that it has been proved
in [79] that de Bruijn graphs with maximum degree d ≥ 3 are self-centered. Therefore, if d ≥ 3 then
Proposition 37 follows from Theorem 4 (with k = 0), but it is not the case if d = 2. Furthermore,
the lower-bound of Proposition 37 is reached for d = D = 2, a.k.a. the diamond graph. It can
be computer-checked that is also holds for d = 2, D = 4. However, δ (UB(2, D)) =

⌊
D
2

⌋
for every

odd D ≤ 11. Based on computer experiments (for d = 2, D ≤ 12), we made the following stronger
conjecture:

Conjecture 38. For every D ≥ 7, δ (UB(d,D)) =
⌊
D
2

⌋
.

A closely related graph class that has been extensively studied in the literature is the class of
undirected Kautz graphs UK(d,D) [2,13]. The graph UK(d,D) has diameter D, maximum degree
2d, and dD(d + 1) vertices. Furthermore, it can be checked that the Kautz graph UK(d,D) is an
induced subgraph of the de Bruijn graph UB(d+ 1, D).

Definition 39 ( [2,13]). The undirected Kautz graph UK(d,D) has vertex-set the words of length
D taken over an alphabet Σ of size d+ 1 and satisfying that no two adjacent letters are equal. The
2-set {u, v} is an edge of UK(d,D) if and only if u = ud−1ud−2 . . . u1u0 and v = ud−2 . . . u1u0v0 for
some letters ud−1, ud−2, . . . , u1, u0, v0 ∈ Σ.

Proposition 40. For any positive integers d and D, δ (UK(d,D)) ≥
⌊
D
4

⌋
+
⌊
D (mod 4)

3

⌋
.

Proof. As for the proof of Proposition 37, we prove that UK(d,D) cannot satisfy the k-fellow
traveler property for some range of k. W.l.o.g. the vertices of UK(d,D) are labeled with the
words of length D taken over the alphabet {0, 1, 2, . . . , d}. Let D = 2D′ + r, r ∈ {0, 1}, let
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u = (01)D
′ · 0r, v = (21)D

′ · 2r. Note that 0r (resp. 2r) is either the empty word or it is equal to
0 (resp. to 2). By Lemma 36 dUK(d,D)(u, v) ≥ dUB(d+1,D)(u, v) = D and so, dUK(d,D)(u, v) = D
because diam (UK(d,D)) = D. In particular, let P1 be the uv-shortest-path in UK(d,D) that one
obtains by applying “right shiftings“ on u until one obtains vertex v i.e.,

P1 =(01)D
′ · 0r → 1 · (01)D

′−1 · 0r · 2→ (01)D
′−1 · 0r · 21→ · · · → (21)D

′ · 2r

Similarly, let P2 be the vu-shortest-path in UK(d,D) that one obtains by applying “right shiftings”
on v until one obtains vertex u. That is,

P2 =(21)D
′ · 2r → 1 · (21)D

′−1 · 2r · 0→ (21)D
′−1 · 2r · 01→ . . .→ (01)D

′ · 0r

Let now

x =(01)bD
′/2c · 0r · (21)dD

′/2e ∈ P1

and y =1r · (21)dD
′/2e−r · 2r · (01)bD

′/2c · 0r ∈ P2

be such that d(u, x) = d(u, y).
The graph UK(d,D) falsifies the k-fellow traveler property for all k < dUK(d,D)(x, y), and we

have by Lemma 36 that dUK(d,D)(x, y) ≥ dUB(d+1,D)(x, y) ≥ 2 (bD/4c+ b(D (mod 4)) /3c).
As a result, it holds δ (UK(d,D)) ≥ bD/4c+ b(D (mod 4)) /3c.

The lower-bound of Proposition 40 is reached for d = 2, D = 3. Again to compare with
Theorem 4, we note that it was also proved in [79] that Kautz graphs are self-centered, for every
d ≥ 2. Therefore, applying Theorem 4 (with k = 0) gives us a lower-bound bD/2c/2 for the
hyperbolicity of UK(d,D), that is of the same order of magnitude as the one of Proposition 40
(Proposition 40 is slightly better if D ≡ 3 (mod 4), and slightly worse if D ≡ 2 (mod 4)). We last
define another topology that is related to the de Bruijn graph:

Definition 41 ( [81]). The shuffle-exchange graph SE(n) has vertex-set the binary words of
length n. The 2-set {u, v} is an edge of SE(n) if and only if u = un−1un−2 . . . u1u0 and: ei-
ther v = u0un−1un−2 . . . u1, or v = un−2 . . . u1u0un−1, or v = un−1un−2 . . . u1ū0, for some booleans
un−1, un−2, . . . , u1, u0.

It was proved in [81] that the diameter of SE(n) is 2n−1, and that the pair of vertices (0n, 1n) is a
diametral pair. Furthermore, it can be checked that one can obtain the de Bruijn graph UB(2, n−1)
from SE(n) as follows: for each edge {un−1un−2 . . . u1u0, un−1un−2 . . . u1ū0}, we contract the edge
and we label un−1un−2 . . . u1 the resulting vertex. This defines a contraction mapping σ, mapping
any vertex un−1un−2 . . . u1u0 of SE(n) to the vertex un−1un−2 . . . u1 of UB(2, n − 1). In the
following, it will be useful to observe that by construction, for every two vertices u, v of SE(n) it
holds dSE(n)(u, v) ≥ dUB(2,n−1)(σ(u), σ(v)).

Proposition 42. For any positive integer n, δ (SE(n)) ≥ 1
2 ·
⌊
n
2

⌋
.

Proof. As for the proof of Proposition 37, we prove that SE(n) cannot satisfy the k-fellow traveler
property for some range of k. Let u = 0n, v = 1n be a diametral pair of SE(n), with d(u, v) = 2n−1.
Let P1 be the uv-shortest-path:

0n → 0n−1 · 1→ 1 · 0n−1 → 1 · 0n−2 · 1→ 11 · 0n−2 → . . .→ 1n−1 · 0→ 1n
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Similarly, let P2 be the vu-shortest-path:

1n → 1n−1 · 0→ 0 · 1n−1 → 0 · 1n−2 · 0→ 00 · 1n−2 → . . .→ 0n−1 · 1→ 0n.

Finally, let x = 1bn/2c · 0dn/2e ∈ P1, y = 0dn/2e−1 · 1bn/2c · 0 ∈ P2 be such that d(u, x) = d(u, y). By
using the above contraction mapping from SE(n) to UB(2, n− 1) one obtains dUB(2,n−1)(x

′, y′) ≤
dSE(n)(x, y) with x′ = 1bn/2c ·0dn/2e−1, y′ = 0dn/2e−1 ·1bn/2c. As a result, we have by Lemma 36 that
the shuffle-exchange graph falsifies the k-fellow traveler property for every k < dUB(2,n−1)(x

′, y′) =⌊
n
2

⌋
and so, it holds δ (SE(n)) ≥ 1

2 ·
⌊
n
2

⌋
.

4.2 The maximal shortest-paths in grid-like topologies

In this section, we name grid-like graphs some slight variations of the 2-dimensional grid. As a
reminder, an (n,m)-grid is the Cartesian product of the path Pn, with n vertices, with the path
Pm, with m vertices. That is, the vertex-set is {0, . . . , n− 1} × {0, . . . ,m− 1}, and the edge-set is
{{(i, j), (i′, j′)} | |i − i′| + |j − j′| = 1}. Grid-like networks are used for modeling interconnection
networks and other computational applications. We now propose to compute their hyperbolicity.
Our main tool in this section is the notion of far-apart pairs, first introduced in [41,52]:

Definition 43 (Far-apart pair [41, 52]). Given G = (V,E), the pair (u, v) is far-apart if for every
w ∈ V \ {u, v}, d(w, u) + d(u, v) > d(w, v) and d(w, v) + d(u, v) > d(w, u).

Said differently, far-apart pairs are the endpoints of maximal shortest-paths in the graph. The
main motivation for introducing far-apart pairs was to speed-up the computation of hyperbolicity,
via the following pre-processing method.

Lemma 44 ( [41,52]). Let G be a connected graph. There exist two far-apart pairs (u, v) and (x, y)
satisfying:

• dG(u, v) + dG(x, y) ≥ max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)};

• δ(u, v, x, y) = δ(G).

We here propose a novel application of this result in order to simplify proofs for the hyperbolicity
of grid-like topologies.

Definition 45. The (s1, s2, . . . , sd)-grid is a graph with vertex set Πd
i=1{0, . . . , si − 1} such that

any two vertices 〈u1, u2, . . . , ud〉 , 〈v1, v2, . . . , vd〉 are adjacent only if
∑d

i=1 |ui − vi| = 1.

Definition 46. The d-dimensional grid of size s is the (s1, s2, . . . , sd)-grid with for every i, si = s.

Let us determine the hyperbolicity of the above graphs. By doing so, we answer an open
question of the literature [44, Remark 7].

Proposition 47. The (s1, s2, . . . , sd)-grid has hyperbolicity:

hd(s1, s2, . . . , sd) = max
E⊆{1,...,d}

min

{∑
i∈E

si − 1,
∑
i/∈E

si − 1

}
.
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Proof. The 2d−1 far-apart pairs of the grid are the diametral pairs {(〈u1, . . . , ud〉 , 〈v1, . . . , vd〉) |
∀i, {ui, vi} = {0, si − 1}}. Let (〈u1, . . . , ud〉 , 〈v1, . . . , vd〉) and (〈x1, . . . , xd〉 , 〈y1, . . . , yd〉) be two
such pairs, denoted with (−→u ,−→v ) and (−→x ,−→y ) for short. Finally, let D =

∑
i si − 1 be the diameter

of the grid and let l =
∑

i|ui 6=xi
si − 1. Then it comes:

S1 = d(−→u ,−→v ) + d(−→x ,−→y ) = 2D

S2 = d(−→u ,−→x ) + d(−→v ,−→y ) = 2l

S3 = d(−→u ,−→y ) + d(−→v ,−→x ) = 2(D − l).

As a result, δ(−→x ,−→y ,−→u ,−→v ) = min {l,D − l} which is maximum for l = hd(s1, s2, . . . , sd). We
conclude that hd(s1, s2, . . . , sd) is the hyperbolicity by Lemma 44.

We highlight two particular cases of Proposition 47 that were already known in the literature.

Corollary 48 ( [44,55]). The (n,m)-grid is (min{n,m} − 1)-hyperbolic.

Corollary 49 ( [55]). The d-dimensional grid of size s is (s− 1) ·
⌊
d
2

⌋
-hyperbolic.

Similar results can be obtained for other grid-like graphs which can be found in the literature.
We prove some of these results before concluding this section.

Definition 50. The triangular (n,m)-grid is a supergraph of the (n,m)-grid with same vertex-set
and with additional edges {(i, j), (i+ 1, j + 1)} for every 0 ≤ i ≤ n− 2 and 0 ≤ j ≤ m− 2.

An example of a triangular (6, 7)-grid is given in Figure 3a.

Lemma 51. The triangular (n,m)-grid is min{n,m}−1
2 -hyperbolic.

Proof. Let u = (iu, ju) and v = (iv, jv) be two vertices of the grid. We can assume w.l.o.g. that
iu ≥ iv. In such a case, either ju ≥ jv and so, d(u, v) = max{iu − iv, ju − jv}; or ju < jv and
so, d(u, v) = (iu − iv) + (jv − ju). We deduce from the above characterization that there is only
one far-apart pair (u, v) such that d(u, v) 6= max{|iu − iv|, |ju − jv|} namely, u = (n − 1, 0) and
v = (0,m−1) for which d(u, v) = n+m−2. Furthermore, for any other far-apart pair (x, y) either
d(x, y) = n− 1 or d(x, y) = m− 1.

Let (u, v) and (x, y) be two far-apart pairs satisfying the conditions of the above Lemma 44.
We assume w.l.o.g. that d(u, v) ≥ d(x, y), and we claim that 2δ(u, v, x, y) ≤ min {n,m} − 1. First,
by [74] 2δ(u, v, x, y) ≤ min {d(u, v),d(x, y)} ≤ d(x, y). Note that d(x, y) = k ∈ {n − 1,m − 1} by
the above characterization of the far-apart pairs in the grid. As a result, if n = m then we are done
because d(x, y) = min{n,m} − 1.

For the remaining of the proof, we will suppose that n 6= m and d(x, y) = max{n,m} − 1 = k
(else we are done because d(x, y) = min{n,m}−1). If k = n−1, it implies that d(u, v) ≥ |iu− iv| =
|ix−iy| = d(x, y) = n−1; else, it implies d(u, v) ≥ |ju−jv| = |jx−jy| = d(x, y) = m−1. Therefore,
we always have that max{d(u, x) + d(v, y),d(u, y) + d(v, x)} ≥ 2k. It follows by Lemma 44 that
the hyperbolicity of the triangular grid is:

2δ(u, v, x, y) = d(u, v) + d(x, y)−max{d(u, x) + d(v, y),d(u, y) + d(v, x)}
≤ n+m− 2 + k − 2k = n+m− 2−max{n− 1,m− 1} = min{n,m} − 1

The bound is reached by setting u = (n− 1, 0), v = (0,m− 1), x = (0, 0), y = (n− 1,m− 1).
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(6,5)

(6,0)(0,0)

(0,5)

(a) The triangular (7, 6)-grid has hyperbolicity
δ = 5

2 = δ(u, v, x, y) with u = (6, 0), v = (0, 5),
x = (0, 0), y = (6, 5).

(5,5)(0,5)

(5,0)(0,0)

(b) The hexagonal (7, 6)-grid has hyperbolicity
δ = 5

2 = δ(u, v, x, y) with u = (0, 5), v = (5, 0),
x = (0, 0), y = (5, 5).

Figure 3: Examples of grid-like graphs.

In the example of Figure 3a, the hyperbolicity of the graph is given by the 4-tuple u = (6, 0),
v = (0, 5), x = (0, 0), y = (6, 5).

Definition 52. The hexagonal (n,m)-grid is a supergraph of the (n,m)-grid with same vertex-set
and with additional edges {{(i,m − 2j − 1), (i + 1,m − 2j − 2)} | 0 ≤ i ≤ n − 2 and 0 ≤ j ≤⌊
m
2

⌋
− 1} ∪ {{(i,m− 2j − 3), (i+ 1,m− 2j − 2)} | 0 ≤ i ≤ n− 2 and 0 ≤ j ≤

⌊
m−1

2

⌋
− 1}.

The additional edges are called diagonal edges.

Informally, the difference between the triangular grid and the hexagonal grid is that in the
hexagonal grid, the direction of diagonal edges alternate at each row. We refer to Figure 3b for
an illustration. The hyperbolicity of hexagonal grids has already received some attention in [28].
In fact, they showed using the hexagonal grid that the gap between hyperbolicity of a graph and
the length of its longest isometric cycle can be arbitrarily large (see also [78] for more explana-
tions). However, to the best of our knowledge there was no formal bound so far established for the
hyperbolicity of hexagonal grids.

Lemma 53. The hexagonal (n,m)-grid is min{n,m}−1
2 -hyperbolic.

Proof. We will first characterize the distances in the grid. Let u = (iu, ju), v = (iv, jv) be two
vertices of the hexagonal grid. W.l.o.g., iu ≥ iv. Let us observe that in order to obtain an
uv-shortest-path, it suffices to maximize the number of diagonal edges used in the path, that is
min{k, |iu − iv|} with:

• k = b|ju − jv|/2c if both ju − jv and 2 [m− jv (mod 2)]− 1 have the same sign;

• k = d|ju − jv|/2e otherwise.

As a result d(u, v) = |iu − iv| + |ju − jv| − min{k, |iu − iv|} for some k depending on ju and jv,
k ∈ {b|ju − jv|/2c , d|ju − jv|/2e}.

Suppose in addition that (u, v) is a far-apart pair. There are two cases. If d(u, v) = |ju − jv|
then it is monotonically increasing with |ju − jv| and so, |ju − jv| = m − 1. Else, d(u, v) =
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|iu − iv| + |ju − jv| − k for some k only depending on ju and jv, that is monotonically increasing
with |iu − iv| and so, |iu − iv| = n− 1.

Finally, let (u, v), (x, y) be two far-apart pairs satisfying the conditions of the above Lemma 44.
We will prove that 2δ(u, v, x, y) ≤ min{n,m} − 1.

Case m ≤ n. If min {d(u, v),d(x, y)} ≤ m − 1 then we are done because by [74] we have that
δ(u, v, x, y) ≤ min{d(u, v), d(x, y)}/2 ≤ (m− 1) /2. Else, we must have that |iu − iv| = |ix −
iy| = n − 1 and so, max {d(u, x) + d(v, y), d(u, y) + d(v, x)} ≥ 2(n − 1). Since in such a case
d(u, v) + d(x, y) ≤ (n− 1 + d(m− 1) /2e) + (n− 1 + b(m− 1) /2c) = 2(n − 1) + m − 1 then it
follows once again that δ(u, v, x, y) ≤ (m− 1) /2.

Case m > n. There are three subcases to be considered.

• Suppose d(u, v) = |ju − jv| = m − 1, d(x, y) = |jx − jy| = m − 1. Then it comes that
max{d(u, x) + d(v, y),d(u, y) + d(v, x)} ≥ 2(m− 1) and so, δ(u, v, x, y) = 0.

• Suppose d(u, v) = ju−jv = m−1 and n−1+b(jx − jy) /2c ≤ d(x, y) ≤ n−1+d(jx − jy) /2e.
Then it holds that d(u, y) + d(v, x) ≥ (ju− jy) + (jx− jv) = (ju− jx) + (jx− jy) + (jx− jv) =
m− 1 + (jx − jy). As a result,

2δ(u, v, x, y) ≤ (n− 1 + d(jx − jy) /2e+m− 1)− (m− 1 + jx − jy) = n− 1− b(jx − jy) /2c ≤ n− 1.

• Else, we consider the smallest hexagonal grid of dimensions (n′,m′) for which there exists two
far-apart pairs (u′, v′) and (x′, y′) that satisfy the conditions of the above Lemma 44 and such
that δ(u′, v′, x′, y′) ≥ δ(u, v, x, y). We assume w.l.o.g. that n′ < m′ and d(u′, v′) 6= |ju′ − jv′ |,
d(x′, y′) 6= |jx′ − jy′ | (otherwise we fall in one of the above cases). Note that it implies that
|iu′ − iv′ | = |ix′ − iy′ | = n′ − 1 by our above characterization of the far-apart pairs.

If the two far-apart pairs are ((0, 0), (n′ − 1,m′ − 1)) and ((0,m′ − 1), (n′ − 1, 0)), then we
obtain by the computation that 2δ(u′, v′, x′, y′) = n′ − 1 + (n′ −m′) < n′ − 1 ≤ n− 1.

Else, by minimality of the subgrid there is some vertex in the 4-tuple, say u′, which is
contained amongst {(0, 0), (n′ − 1,m′ − 1), (n′ − 1, 0), (0,m′ − 1)} and such that no other
vertex z ∈ {v′, x′, y′} satisfies that ju′ = jz. By symmetry, we will assume that u′ ∈
{(0,m′ − 1), (n′ − 1,m′ − 1)}. Then, using the above characterization of the distances in
the hexagonal grid, it can be checked that for any 0 ≤ i ≤ n′ − 1 and for any 0 ≤ j ≤ m′ − 2:

d
(
(n′ − 1,m′ − 2), (i, j)

)
= d

(
(n′ − 1,m′ − 1), (i, j)

)
− 1

and d
(
(1,m′ − 2), (i, j)

)
= d

(
(0,m′ − 1), (i, j)

)
− 1 unless (i, j) = (0,m′ − 2)

Therefore, by the 4-point condition δ(u′, v′, x′, y′) = δ ((n′ − 1,m′ − 2), v′, x′, y′) when u′ =
(n′−1,m′−1); δ(u′, v′, x′, y′) ≤ max {d ((0,m′ − 1), (0,m′ − 2)) , δ ((n′ − 1,m′ − 2), v′, x′, y′)} ≤
max {1, δ ((n′ − 1,m′ − 2), v′, x′, y′)} when u′ = (0,m′ − 1). In both cases, it contradicts the
minimality of (n′,m′).

To conclude, let l = min{n,m}−1. The upper-bound l/2 for the hyperbolicity is reached by setting
u = (0,m− 1), v = (l,m− 1− l), x = (0,m− 1− l), y = (l,m− 1).
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In the example of Figure 3b for an illustration, the hyperbolicity of the graph is given by the
4-tuple u = (0, 5), v = (5, 0), x = (0, 0), y = (5, 5).

Definition 54. The cylinder (n,m)-grid is the supergraph of the (n,m)-grid with the same vertex-
set and with additional edge-set {{(0, j), (n− 1, j)} | 0 ≤ j ≤ m− 1}.

In particular, when m = 1, then the cylinder (n,m)-grid is the n-cycle Cn. More generally, each
row induces a cycle instead of inducing a path.

Lemma 55. The cylinder (n,m)-grid is

⌊
n
2

⌋
-hyperbolic when m >

⌊
n
2

⌋(
bn2 c+m

2 − 1

)
-hyperbolic when m ≤

⌊
n
2

⌋
and (n is odd or

⌈
n
2

⌉
−m+ 1 is odd)(

bn2 c+m

2 − 1
2

)
-hyperbolic otherwise.

Proof. Let u = (iu, ju), v = (iv, jv) be two vertices of the grid. We have:

d(u, v) = min{|iu − iv|, n− |iu − iv|}+ |ju − jv|.

As a result, the far-apart pairs of the cylinder (n,m)-grid are exactly the pairs
{(i, 0), (i+ bn/2c (mod n),m− 1)}, and the pairs {(i, 0), (i+ dn/2e (mod n),m− 1)}, with 0 ≤
i ≤ n− 1. Equivalently, these are the pairs {(u′, 0), (v′,m− 1)} with (u′, v′) an arbitrary far-apart
pair of the n-cycle Cn.

Let (u, v) and (x, y) be two far-apart pairs of the cylinder (n,m)-grid satisfying the conditions of
the above Lemma 44. Write u = (u′, 0), v = (v′,m− 1), x = (x′, 0), y = (y′,m− 1). Furthermore,
let S1 = d(u, v) + d(x, y), S2 = d(u, x) + d(v, y), and S3 = d(u, y) + d(v, x). Similarly, let S′1 =
dCn(u′, v′) + dCn(x′, y′), S′2 = dCn(u′, x′) + dCn(v′, y′), and S′3 = dCn(u′, y′) + dCn(v′, x′). Note that
it holds: S′1 = 2 bn/2c = max {S′1, S′2, S′3}; S1 = S′1 + 2(m − 1) = 2(bn/2c + m − 1), S′2 = S2, and
S3 = S′3 + 2(m− 1).

There are two cases to be considered.

• Suppose that m > bn/2c. We have that δ(u, v, x, y) ≤ (S1 − S3) /2 ≤ (S′1 − S′3) /2 ≤ S′1/2 ≤
bn/2c. The bound is reached by setting u′ = y′ and v′ = x′.

• Suppose that m ≤ bn/2c. If (u′, v′) = (y′, x′) then we obtain by the calculation that
δ(u, v, x, y) = (m− 1) /2. Otherwise, S′2 + S′3 = n and hence

2δ(u, v, x, y) = S′1 −max{S′3, S′2 − 2(m− 1)} = S′1 −max{S′3, (n− 2(m− 1))− S′3},

this is maximum when bn/2c − (m − 1) ≤ S′3 ≤ dn/2e − (m − 1). In the following, let
dn/2e − (m− 1) = 2q + r with 0 ≤ r ≤ 1. There are two subcases to be considered.

(i) Assume that n is odd and let us set u′ = 0, v′ = bn/2c, x′ = bn/2c−q, and y′ = n−q−r.
In such a case, S′3 = (q + r) + q = 2q + r. As a result, δ(u, v, x, y) = (bn/2c+m) /2− 1
and so, the above upper-bound is always reached when n is odd.
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(ii) Assume that n is even. Then, S′3 = 2 d(u′, y′) cannot be odd. It implies that the
hyperbolicity is bounded from above by n/4 + (m− 1− r) /2. We set u′ = 0, v′ = n/2,
x′ = n/2 − q, and y′ = n − q. In such a case, S′3 = 2q, hence (n − 2(m − 1)) − S′3 =
4q + 2r − 2q = 2q + 2r and so, δ(u, v, x, y) = n/4 + (m− 1− r) /2 that is maximum.

Before concluding this section, let us compare the techniques employed for grids with Theorem 4.
It is easy to see that for all grid-like graphs considered (cf. Definitions 10, 50, 52 and 54), there is
either a row or a column contained in the center. Therefore, the diameter of the center is at least
min{n,m} − 1, and so, by [37, Proposition 5] one obtains the lower-bound b(min{n,m} − 1)/2c/2
on the hyperbolicity for all these graphs. In this section, we have conducted an in-depth analysis
of their shortest-path distribution in order to establish the exact hyperbolicity of these grid-like
graphs.

5 Relations between hyperbolicity and some graph operations

Our results so far are heavily focused on the so-called homogeneous data center interconnection net-
works. By contrast, heterogeneous data centers are based on the composition of homogeneous data
center interconnection topologies through graph operations. We survey a few of these operations
so that we can study the impact that they may have on the hyperbolicity of the network.

5.1 Biswap operation and biswapped networks

Definition 56 ( [35]). Let G be a graph. The biswapped graph Bsw(G) has vertex set {0, 1} ×
V (G)× V (G). Two vertices (b, u, v) and (b′, u′, v′) are adjacent if, and only if either b = b′, u = u′

and {v, v′} ∈ E(G), or b = b̄′ = 1− b′, u = v′, and u′ = v.

Lemma 57. For any connected graph G, δ(Bsw(G)) = diam(G) + 1.

Proof. By [35] diam(Bsw(G)) = 2 ·diam(G)+2 and so, by Lemma 2 δ(Bsw(G)) ≤ diam(G)+1. To
prove the lower-bound, let u, v ∈ V (G) be such that diam(G) = dG(u, v). We define −→x1 = (0, u, v),
−→x2 = (0, v, u), −→x3 = (1, u, u) and −→x4 = (1, v, v). We deduce from [35] that:

S1 = d(−→x1,
−→x2) + d(−→x3,

−→x4) = 2(2 dG(u, v) + 2)

S2 = d(−→x1,
−→x3) + d(−→x2,

−→x4) = 2(dG(u, v) + 1)

S3 = d(−→x1,
−→x4) + d(−→x2,

−→x3) = 2(dG(u, v) + 1)

As a result, δ(Bsw(G)) ≥ δ(−→x1,
−→x2,
−→x3,
−→x4) = dG(u, v) + 1 = diam(G) + 1.

It follows from Lemma 57 that the hyperbolicity of a biswap network always scales with its
diameter, regardless of the topology that is used for the operation.

5.2 Generic Cayley construction

Let us finally consider the following transformation of a Hamiltonian graph, and the consequences
of it on the hyperbolicity.
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Lemma 58. Let G be a Hamiltonian graph and c be a positive integer. We construct a graph G′

from G by replacing every edge in some Hamilton cycle of G with a path of length c. Then, it holds
δ(G′) ≥ 1

2

⌈
c−1

2

⌉
.

Proof. Let P be a path of length c added by the construction, let x and y be the endpoints of P ,
and let P ′ be a xy-shortest-path in G′ \ (P \ {x, y}). The union of P with P ′ is an isometric cycle
and so, it has length upper-bounded by 4 · δ(G′) + 3 by [78]. Moreover, the length of P ′ is at least
2 because {x, y} is an edge of G by the hypothesis. Thus it comes that the length of the cycle is at
least c+ 2 and so, c ≤ 4 · δ(G′) + 1.

The Cayley model in [59] aims to apply the construction defined in Lemma 58 to some Hamil-
tonian graph G of order N , with c = Ω(logN) and so that the diameter of the resulting graph G′

is O(logN). Summarizing, we get.

Theorem 59. Graphs in the Cayley model have hyperbolicity Θ(logN), which scales linearly with
their diameter.

6 Conclusion

We proved in this work that the topologies of various interconnection networks have their hyper-
bolicity that scales linearly with their diameter. This property is inherent to any graph having
desired properties for data centers such as a high-level of symmetry. Interestingly, symmetries are
a common way to minimize network congestion whereas it was shown in [51], using a simplified
model, that a bounded hyperbolicity might explain the congestion phenomenon observed in some
real-life networks. This was formally proved in [75] for shortest-path routing, but to the best of our
knowledge no relation is known between hyperbolicity and congestion in general. Therefore, we let
open whether a more general relationship between congestion and hyperbolicity can be determined.

Finally, our results imply that in any greedy routing scheme based on an embedding into the
hyperbolic space —and in some cases, on an embedding into some word metric space— there is
a linear number of routing paths for which the stretch is arbitrarily bad. However, this does
not preclude the possibility that for most other routing paths, the stretch is bounded by a small
constant. We thus believe that it might be of interest to compute the average hyperbolicity [63,72]
of the data center interconnection topologies so as to verify whether it is the case.
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[23] J. Matoušek. On embedding trees into uniformly convex Banach spaces. Israel Journal of
Mathematics, 114(1):221–237, 1999.

[24] Jyh-Wen Mao and Chang-Biau Yang. Shortest path routing and fault-tolerant routing on de
Bruijn networks. Networks, 35(3):207–215, 2000.

[25] G. Brinkmann, J. H. Koolen, and V. Moulton. On the hyperbolicity of chordal graphs. Annals
of Combinatorics, 5(1):61–69, 2001.

[26] J. W. Cannon. Geometric group theory. Handbook of geometric topology, pages 261–305, 2002.
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decomposition for computing Gromov hyperbolicity. Research Report RR-8535, Inria, June
2014.

[68] X. Huang and Y. Peng. DCen: A dual-ports and cost-effective network architecture for modular
datacenters. Journal of Computational Information Systems, 10(13):5697–5704, 2014.

[69] D. Mitsche and P. Pra lat. On the hyperbolicity of random graphs. The Electronic Journal of
Combinatorics, 21(2):2–39, 2014.

[70] K. Verbeek and S. Suri. Metric embedding, hyperbolic space, and social networks. In Annual
Symposium on Computational Geometry (SCG), pages 501–510. ACM, 2014.

[71] H. Alrasheed and F. F. Dragan. Core-periphery models for graphs based on their δ-
hyperbolicity: An example using biological networks. In Complex Networks VI, pages 65–77.
Springer, 2015.

[72] M. Borassi, A. Chessa, and G. Caldarelli. Hyperbolicity measures democracy in real-world
networks. Physical Review E, 92, 2015.
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