Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed

Asma Atamna 1, *
* Auteur correspondant
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : We benchmark IPOP-CMA-ES, a restart Covariance Matrix Adaptation Evolution Strategy with increasing population size, with two step-size adaptation mechanisms, Two-Point Step-Size Adapation (TPA) and Median Success Rule (MSR), on the BBOB noiseless testbed. We then compare IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR to IPOP-CMA-ES with the standard step-size adaptation mechanism, Cumulative Step-size Adaptation (CSA). We conduct experiments for a budget of 10 5 times the dimension of the search space. As expected, the algorithms perform alike on most functions. However, we observe some relevant differences , the most significant being on the attractive sector function where IPOP-CMA-TPA and IPOP-CMA-CSA out-perform IPOP-CMA-MSR, and on the Rastrigin function where IPOP-CMA-MSR is the only algorithm to solve the function in all tested dimensions. We also observe that at least one of the three algorithms is comparable to the best BBOB-09 artificial algorithm on 13 functions.
Type de document :
Documents associés à des manifestations scientifiques -- Hal-inria+
GECCO (Companion), workshop on Black-Box Optimization Benchmarking (BBOB'2015), Jul 2015, Madrid, Spain. 〈http://www.sigevo.org/gecco-2015/〉. 〈10.1145/2739482.2768467〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01323506
Contributeur : Asma Atamna <>
Soumis le : lundi 30 mai 2016 - 15:39:07
Dernière modification le : jeudi 11 janvier 2018 - 01:49:38
Document(s) archivé(s) le : mercredi 31 août 2016 - 10:37:02

Fichier

atamna_BBOB_15.pdf
Accord explicite pour ce dépôt

Identifiants

Citation

Asma Atamna. Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed. GECCO (Companion), workshop on Black-Box Optimization Benchmarking (BBOB'2015), Jul 2015, Madrid, Spain. 〈http://www.sigevo.org/gecco-2015/〉. 〈10.1145/2739482.2768467〉. 〈hal-01323506〉

Partager

Métriques

Consultations de la notice

244

Téléchargements de fichiers

118