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Abstract—In HPC applications, one of the major overhead
compared to sequentiel code, is communication cost. Application
programmers often amortize this cost by overlapping commu-
nications with computation. To do so, they post a non-blocking
MPI request, perform computation, and wait for communica-
tion completion, assuming MPI communication will progress in
background.

In this paper, we propose to measure what really happens
when trying to overlap non-blocking point-to-point communica-
tions with computation. We explain how background progression
works, we describe relevant test cases, we identify challenges for
a benchmark, then we propose a benchmark suite to measure
how much overlap happen in various cases. We exhibit overlap
benchmark results on a wide panel of MPI libraries and hardware
platforms. Finally, we classify, analyze, and explain the results
using low-level traces to reveal the internal behavior of the MPI
library.

I. INTRODUCTION

On the path towards exascale, one of the main challenges
to face is to reduce the cost of communication. For that,
improving the raw performance of the network is not enough,
and hiding the communication latency is critical [1].

From the application point of view, hiding the commu-
nication latency can be viewed as exploiting two hardware
resources in parallel: after initiating the communication, while
the Network Interface Card (NIC) transfers data through the
network, the CPU performs a part of the application com-
putation. Therefore, the program does not waste computing
resources while waiting for the end of the communication.

However, in order to effectively reduce the cost of the
communication, this solution requires that communications
actually progress in the background during the application
computation. The effectiveness of the overlapping thus de-
pends on the strategy of the library. In the case of MPI, if the
MPI implementation does not provide an overlapping strategy,
the whole communication may happen when waiting for the
communication completion, after computation. In this case,
the communication is serialized with the computation and the
benefits of overlapping is void.

In this paper, we propose to assess the effectiveness of
the overlapping strategy implemented in an MPI library. We
present state of the art techniques for making communication
progress in the background. We then identify the parameters
that may affect the performance of overlapping, and we pro-
pose a benchmark suite for evaluating the overlapping strate-
gies in various cases. We present results of this benchmark
suite for a wide panel of MPI libraries and hardware platforms.
Finally, we analyze low-level traces that reveal the internal

behavior of the MPI library so as to explain the benchmark
results.

In short, this paper makes the following contributions:

• We propose a metric for measuring the capacity of an
MPI library to overlap communication and computa-
tion, regardless the pure communication performance.

• We propose a benchmark suite for evaluating the
overlapping strategy of an MPI implementation in
various real-life situations.

• We evaluate the overlapping performance of 12 dif-
ferent versions of MPI, running on 8 clusters and
supercomputers of various types.

The rest of the paper is organized as follows. Section II
presents state of the art techniques for overlapping commu-
nication and computation and we identify the parameters that
may affect the performance of overlapping. In Section III, we
present a metric for measuring the performance of overlapping
as well as the various test cases of the benchmark suite.
Section IV reports the experimental results we obtained. In
Section V, we analyze the experimental results and we inspect
low-level traces that depict the internals of some of the
tested MPI libraries. Section VI presents related works and
Section VII concludes.

II. COMMUNICATION AND COMPUTATION OVERLAP

In this Section, we present state of the art techniques for
overlapping communication and computation, and we identify
the main parameters that may have an impact on the effective-
ness of overlapping.

A. Non-blocking communications

The MPI standard defines several ways to exchange mes-
sages between processes [2]. The blocking primitives (such as
MPI_Send or MPI_Recv) may block until the end of the
communication (or until the message to send has been copied
to an internal buffer). Using these blocking primitives in an
application may result in spending a lot of time waiting for
the completion of communications. Instead of wasting CPU
time with blocking primitives, the application developer can
use non-blocking primitives (e.g. MPI_Isend, MPI_Irecv,
etc.).

Non-blocking primitives only initiate the communication
and return to the application that can continue its computation
during the progression of the communication. The application
can check for the completion of the communication using



MPI_Wait, or MPI_Test. The benefits of non-blocking
communication for the execution time of applications have
been extensively studied [3], [4], [5].

However, the MPI specification does not guarantee that
the communication progresses during the computation [2].
An MPI implementation may process all of a communication
during the MPI_Wait. In this case, the communication is not
overlapped with the computation, which roughly boils down
to the behavior of blocking primitives.

In addition to point-to-point non-blocking primitives that
were introduced in the first version of the MPI standard,
collective communications can also be performed in a non-
blocking way since MPI 3. In this paper, we focus only
on point-to-point non-blocking communication; extending our
work to collective non-blocking communication is part our
future work.

B. Communication progression implementation

To have non-blocking communications progress, several
methods are used by MPI libraries. It is relevant to know the
different mechanisms to determine what to benchmark.

As permitted by the MPI specification [2], an MPI library
may have no mechanism for background progression and have
communication progress only inside MPI_* calls. Such a strat-
egy is compliant and widespread. It assumes the application
code calls MPI_Test on a regular basis in the computation.
We will not consider applications crammed with random calls
to MPI_Test in this paper.

The second approach, known as NIC offloading, relies on
hardware being able to make communication progress thanks
to an on-board NIC processor or a DMA accelerator (I/O AT).
Most contemporary high-performance network technologies
involve such a processor, especially those based on RDMA
such as InfiniBand. However, MPI being higher level than bare
metal (rendez-vous, datatypes, matching), protocols have to be
carefully designed [6], [7] to have the NIC processor make
MPI communications actually progress.

A similar case is kernel-based progression. In kernel space,
tasklets [8] are small tasks to execute work asynchronously
in the background. Network drivers that involve kernel —
mostly TCP/Ethernet — are built with tasklets and their
communications progress asynchronously in the background
even when no system call is in progress.

Finally, user-space explicit progression mechanisms, either
using threads [9] or tasks that mimics tasklets [10], [11], may
be used to have progression independent from the limited
hardware capabilities.

C. Overlap significant features

To match patterns used by applications and to detect
corner cases caused by the mechanisms described in previous
Section II-B, we distinguish the following features to be tested
with regard to overlap:

• side of overlap — The most commonly supported and
tested pattern for MPI overlap is the combination of
a non-blocking MPI_Isend and computation. Since

receive may behave differently, we have to test the
symmetric case, with a non-blocking MPI_Irecv
of contiguous data posted before computation on the
receiver side. Moreover, asymmetric mechanisms may
be used for progression, especially on RDMA where
a remote read or write is used depending on
which side is available to drive the transfer. Thus it
is relevant to test cases where both sides overlap, i.e.
MPI_Isend on sender side and MPI_Irecv on the
receiver side at the same time.

• non-contiguous data — Hardware-based or kernel-
based progression is limited by the capabilities of
hardware or kernel programming interface, in par-
ticular to describe data layout. Since typical MPI
applications use derived datatypes to send data that
is not contiguous in memory, and since these derived
datatypes are usually not understood by hardware or
kernel (but may be converted to iovecs in some cases),
it is wise to test non-contiguous datatypes, in addition
to a contiguous data block.

• CPU overhead — One common way to measure
overlap consists in measuring the total transfer time
with and without overlapping computation. While this
method is relevant to evaluate communication speed,
it says nothing about computation speed, or whether
communication utilizes CPU cycles that disturb com-
putation. We propose to measure the time for the full
sequence on a single end, to check whether overlap
has actually happened or communication has delayed
computation.

• multi-threaded computation — On multicore systems,
computation phases are likely to be multi-threaded.
Having computation on a single or all cores may have
an impact on communication progression, especially
on thread-based and kernel-based systems. Thus we
need to benchmark overlap with multi-threaded com-
putation to check whether it disturbs progression or
not. However, multi-threaded computation introduces
synchronization overhead and jitter, so we don’t want
all the benchmarks to be multi-threaded to keep good
precision in other tests and separation of concerns.

III. AN MPI OVERLAP BENCHMARK

In this Section, we propose a new benchmark able to
measure how much overlap actually happen in various cases.

A. Challenges for benchmark

To design an overlap benchmark that gives reliable and
relevant results, we are facing the following challenges.

Exploration space. All existing benchmarks for overlap
use either a fixed computation time [6], [9], [12], [13] or a fixed
message size [7], [14], [15], [16]. However, depending on the
overlapping strategy used by the MPI library, a measurement
done with any of the parameters being fixed exhibits only
a local behavior, that may or may not represent the global
behavior of the library. Thus we propose to explore the full
2-D parameters space (message size × computation time).



Variability. Performance is likely to vary from one mea-
surement to another. We choose to use the median value com-
puted from several round-trips instead of the more common
average, since it eliminates the influence of outliers mostly
caused by process scheduler artifacts. Thus we use high-
resolution timers and measure the time for each round-trip,
so as to be able to compute the median round-trip time that
will be used for graphs.

Uniform timing. We compare performance from various
MPI libraries that are likely to use different methods for
MPI_Wtime implementation. To have uniform timing across
MPI libraries, we don’t use MPI_Wtime and instead always
use clock_gettime.

Barrier skew. Process skew [12] is a well-know issue for
MPI benchmarks, where all processes are not synchronized
so that we measure not only the wanted feature but the drift
between processes. This issue is usually solved by inserting
a barrier before each round. However, our benchmark is so
fine grained that using an MPI_Barrier, where we don’t
know which one of the processes will be unlocked first, and is
likely to vary from one MPI library to another, is not sufficient.
We use an explicit synchronization based on send and receive
operations, so that we control which one of the process is ready
first; we ensure that the receiver will always be ready first.

Uncertainty on receiver side. On the receiver side, we
control only when the receive operation is posted, but not
precisely when communication actually begins. The barrier
skew is typically in the order of magnitude of the network
latency. We should add the transmission delay from sender to
receiver. Thus actual communication typically begin 2 latencies
after the round start time, so in the overlap benchmark,
computation may have started before actual communication.
This leads to optimistic results with actual overlap being worse
than what is measured. However, with the considered durations
for computation compared to latency on high performance
network, this effect may be considered as negligible.

B. Metric

As a unified metric, easy to analyze, and usable across the
full range of message sizes and computation times, we define
an overhead ratio, that is a normalized measurement of the
overhead compared to perfect overlap.

To build the ratio, we first define the overhead, noted ∆ as
the difference between the measured time Tmeasured and the
ideal time Toverlap when the overlap would have been perfect.
This ideal time is computed theoretically as

Toverlap = max(Tcomm, Tcomp)

with Tcomm the pure communication time without computa-
tion, and Tcomp the pure computation time. Thus we obtain
the overhead:

∆measured = Tmeasured − Toverlap
= Tmeasured −max(Tcomm, Tcomp)

This overhead value is an absolute time, that depends on the
network speed and computation time and is therefore hard to
interpret. We propose to normalize it relative to the overhead
obtained in the serialized case, i.e. the overhead we would

Fig. 1. Example 2-D graph output (Intel MPI, ibverbs, receive-side overlap
benchmark). The color is the overhead ratio; the white line is Tcomm for this
MPI library, marking the limit between zones where computation is either
shorter or longer the communication.

obtain without overlap. The transfer time of these operations
when serialized is:

Tserialized = Tcomm + Tcomp

and thus the overhead for this worst case is:
∆serialized = Tserialized − Toverlap

= Tcomm + Tcomp −max(Tcomm, Tcomp)

simplified as:
∆serialized = min(Tcomm, Tcomp)

We define the overhead ratio as

ratio =
∆measured

∆serialized

and thus the final form we get is:

ratio =
Tmeasured −max(Tcomm, Tcomp)

min(Tcomm, Tcomp)
(1)

We verify that in the ideal case with perfect overlap, we
get ratio = 0 and in the serialized case, we get ratio = 1. We
notice that the ratio is not bounded. In particular, it may be
greater than 1 in case overlap tentative leads to slower transfer
than manually serializing communication and computation. It
is however usually non-negative except in case there was some
imprecision in measuring Tcomm.

C. Visualization

To visualize results, we draw a bi-dimensional heat map
of the ratio defined in equation 1, with message size on the X
axis and computation time on the Y axis, as illustrated by the
example in figure 1.

The parameters space is explored every power of
√

2 in
each direction, so as to get twice as many samples as powers
of 2, and represented as a heat map, without interpolation nor
smoothing. For each couple of computation time and message
size, we run the benchmark 50 times and retain the median
value.



Additionally, we draw Tcomm, the pure communication
time without computation. It materializes the border between
two zones where communication is longer than computation
(bottom right), and computation longer than communication
(top left). It corresponds to which side of the min and max
in equation 1 are used.

The metric is built so as to be easy to grasp for the
reader: interpretation remains uniform across the full range of
parameters. On all graphs, we have the following convention:

• black: ratio = 0, perfect overlap;

• purple: ratio close to 0, some overlap happen, but not
perfect;

• red: ratio = 1, no overlap, computation and commu-
nications are serialized;

• yellow: ratio > 1, overlap tentative made things
slower then serialized. Values higher than 2 are
cropped to keep the same scale on all graphs.

D. Benchmarks description and implementation

In order to measure the features listed in section II-C
using the defined metric, we propose the following list of
benchmarks. They run on two nodes, noted node 0 and 1.
Time measurements are performed on node 0.

Sender-side overlap: node 0 posts an MPI_Isend for
a contiguous data block, performs the given amount of com-
putation, calls MPI_Wait, wait for the ACK; the other side
receives data with a blocking call then sends the 0-byte ACK.
Tmeasured is defined as the time for the full sequence on node
0 minus a 0-byte latency.

Receiver-side overlap: node 0 sends a 0-byte CTS, then
posts an MPI_Irecv for a contiguous data block, performs
the given amount of computation, then calls MPI_Wait;
the other node sends contiguous data with a blocking call.
Tmeasured is defined as the time for the full sequence on node
0 minus a 0-byte latency.

Both-sides overlap: node 0 posts an MPI_Isend for a
contiguous data block, performs the given amount of com-
putation, calls MPI_Wait, then posts an MPI_Irecv for a
contiguous data block, performs the given amount of com-
putation, then calls MPI_Wait; node 1 does the same, with
receive before send. Tmeasured is defined as half the time for
the full sequence on node 0.

Non-contiguous: we use the same benchmark as sender-
side overlap except that data uses a derived datatype, defined
as a vector of blocks of 32 MPI_CHAR with a stride of 64
bytes. For this benchmark, Tcomm is the transfer time with
blocking calls using the same derived datatype.

CPU overhead: node 0 posts an MPI_Isend for a con-
tiguous data block, performs the given amount of computation,
call MPI_Wait, without ACK; the other node receives data
with a blocking call. Tmeasured is defined as the time for the
full sequence on node 0. For this benchmark, Tcomm is the
time used by a blocking MPI_Send.

N threads load: both nodes run N threads performing
some computation in the background, and blocking com-
munications in a dedicated communication thread. Node 0

posts a blocking send, then a blocking receive; the other
node, in reverse order. Tmeasured is defined as half the time
for the full sequence on node 0. This benchmark requires
MPI_THREAD_FUNNELED support from MPI library. Since
pathological behaviors with this benchmark involve thread
scheduling issues, with penalties in the order of magnitude
of miliseconds (kernel scheduler time slice), the scale for the
colors is displayed with a logarithmic scale. The Y-axis is
for the number of threads, not for computation duration, since
computation runs in the background all the time. We run tests
with a number of computation threads up to the number of
processing units returned by hwloc.

Base benchmarks: to measure Tcomm needed to compute
our metric, we run first a round of benchmarks to get reference
values for ping-pong with contiguous data, derived datatype,
and processor time on sender-side.

Benchmarks sender-, receiver- and both-sides overlap mea-
sure how communication progresses in the presence of compu-
tation. Benchmark CPU overhead measures how computation
speed is impacted in the presence of communication– mostly
the cost of MPI_Isend and MPI_Wait. Benchmark N
load measures how blocking communication progresses in the
presence of computation in other threads. Benchmarks for non-
contiguous, CPU overhead and N load all use a scheme with
only sender-side overlap. It could be combined with receiver-
side or both-sides overlap, but we believe that testing these
features with sender-side overlap is enough to evaluate the
impact of these features while keeping a small enough number
of graphs as output.

The full benchmark suite takes from 10 minutes to 2 hours,
depending on the network speed and the actual overlap. Then
a script processes the data and automatically generates the
graphs. The benchmark has been released as open source and
is available for download [17]. All the graphs presented in this
paper are direct output from the released tool.

IV. EXPERIMENTAL RESULTS

In this Section, we present experimental results obtained
with our benchmark on various MPI libraries on a large scope
of hardware.

We have run the benchmark on a variety of Linux clus-
ters with portable MPI libraries: cluster william nodes are
dual-Xeon ES-2650 equipped with ConnectX-3 InfiniBand
FDR (MT27500); cluster jack nodes are dual-Xeon X5650
equipped with ConnextX InfiniBand QDR (MT26428); cluster
mistral nodes are dual Xeon E5-2670 equipped with In-
finiBand QDR; cluster miriel nodes are dual-Xeon E5-2680
equipped with TrueScale InfiniBand QDR; cluster inti nodes
are dual-Xeon E5-2698 equipped with Connect-IB InfiniBand
QDR (MT27600).

On these machines, we have run benchmarks with multiple
versions of OpenMPI [18], multiple versions of MVAPICH [7],
MPICH, Intel MPI, MPC [19], and latest version of our own
MadMPI [10].

Furthermore, we have run the benchmark on supercom-
puters using the vendor-supplied MPI library, namely on:
bluewaters [20], Cray XE with Cray Gemini network, us-
ing Cray MPI derived from MPICH, at NCSA; K computer



MadMPI (svn r26405) ibverbs (william)

MadMPI (svn r26405) shm (william)

OpenMPI 1.8 ibverbs (inti haswell)

OpenMPI 1.10 ibverbs (william)

OpenMPI 1.10 tcp (william)

OpenMPI 2.x ibverbs (william)

OpenMPI 2.x shm (jack)

MVAPICH 2.0 ibverbs (william)

MVAPICH 2.2 ibverbs (william)

sender-side
overlap

receiver-side
overlap

both-sides overlap non-contiguous
sender-side

sender-side CPU
overhead

N threads load

Fig. 2. Overlap benchmark results (1/3)



MPICH 3.2 tcp (william)

MPICH 3.2 shm (william)

Intel MPI 5.1 ibverbs (miriel)

Intel MPI 5.1 ibverbs (mistral)

Intel MPI 5.1 shm (miriel)

MPC 2.5.2 ibverbs (william)

Cray XE shm (Blue Waters)

Cray XE Gemini (Blue Waters)

Fujitsu Tofu (K computer)

sender-side
overlap

receiver-side
overlap

both-sides overlap non-contiguous
sender-side

sender-side CPU
overhead

N threads load

Fig. 3. Overlap benchmark results (2/3)



BlueGene/Q (Juqueen, default)

BlueGene/Q (Juqueen, thread multiple)

sender-side
overlap

receiver-side
overlap

both-sides overlap non-contiguous
sender-side

sender-side CPU
overhead

N threads load

Fig. 4. Overlap benchmark results (3/3)

by Fujitsu, with SPARC64 VIIIfx nodes and TOFU net-
work, using the vendor-supplied MPI derived from Open-
MPI, at RIKEN; JUGENE, IBM BlueGene/Q, with IBM MPI,
at Forschungszentrum Jülich, using both default tuning and
thread multiple mode as recommended in the IBM Redbook
for better overlap.

Benchmark results are depicted in Figures 2, 3, and 4.
Each row of graphs is an MPI library on a given machine.
Each column is a benchmark from the suite, as defined in
Section III-D. We analyze the results in the following Section.

V. ANALYSIS

In this Section, we analyze the results obtained for the
benchmarks. We first observe and discuss the results, then
we trace low-level networking primitives to really understand
what happens under the hood. We prefer real-world observation
rather than code analysis to capture the real behavior, which
might be different to what is expected from reading code.

A. Classification of results

On the resulting graphs, we observe very different results
between MPI libraries, networks, or even between versions
of the same MPI library. However we can distinguish some
classes of behaviors.

Threaded libraries. Threaded MPI libraries such as
MadMPI and IBM MPI on BlueGene/Q exhibit an overall
good overlap. MadMPI gets a much better result on InfiniBand
than on shared memory; this is not surprising given that
inter-process shared-memory is not optimized, MadMPI being
optimized for a single multi-threaded process per node.

Non-threaded libraries. Non-threaded MPI libraries rely
on NIC offloading which cannot guarantee overlap in all cases.
Overlap only happens on sender-side (not in all cases), and for
small messages on receiver side.

Rendez-vous threshold. Even where the graph is mostly
red, i.e. in cases no overlap happen, there is usually a stripe on
the left with better overlap, that correspond to small message
size. This is due to the rendez-vous threshold: small messages
are sent in eager mode, which is easier to overlap using NIC
offloading, while larger messages are sent in rendez-vous mode
which is harder to overlap, since the MPI library should be

called to handle the rendez-vous reply. It it especially true for
OpenMPI, MVAPICH, Intel MPI, and MPC.

TCP. On TCP with small computation time, overlap is
always good. A close look to the graphs shows that this time
threshold corresponds to the round-trip time on TCP/Ethernet.
With small computation time, the computation has ended
before the sender receives the rendez-vous reply. This behavior
is not observed on InfiniBand since the latency is much lower
and such low computation times are not displayed.

Shared memory. For all results on shared-memory, overlap
is significantly worse than on networks. This is due to the fact
that no NIC offloading is available; transfer only progresses
thanks to CPU.

Non-contiguous datatypes. In most cases, overlap using
a non-contiguous datatype is much worse than when using a
contiguous data block. It is explained by the inability of the
NIC to offload communications with such types. However, in
most cases there is a small zone at the bottom right (large
packets, short computation time) where overlap overhead is
low: this is due to non-contiguous datatypes being sent using
a pipelined copy, the first chunk being overlapped. The result
is missing for MPC because of a crash; the bug has been
forwarded upstream to MPC developpers.

CPU overhead. The CPU overhead benchmark measures
CPU usage on sender-side for overlapping non-blocking send.
For MPI libraries that do not overlap on the sender-side, un-
surprisingly we get an overhead ratio of 1 on this benchmark.
Even in cases where overlap happen, for small messages sent
in eager mode, we observe a significant CPU overhead due
to the cost of MPI_Isend itself (e.g. small messages for
OpenMPI 1.10 on william, Intel MPI on mistral).

Multi-threaded computation. The N-load benchmark in-
volves blocking communications and computation in others
threads. It shows thread scheduling and priority issues. We
observe such issues, with performance orders of magnitude
slower (color map uses logarithmic scale for this benchmark),
for older and current version of OpenMPI, but fixed in the
upcoming 2.x branch, and for MPC (current 2.5.2 version) due
to a thread placement bug that will be fixed in next version.
We observe that the presence of computation threads has an
impact on performance, but the precise number of threads, and
their placement on real cores or hyper-threads do not make any



Fig. 5. OpenMPI 1.10, sender-side overlap, 500 KB message, 200µs
computation, receiver on top, sender at bottom. Shown excerpt is 1ms.

difference except in some pathological cases (OpenMPI 1.x).

B. Interleaved MPI and InfiniBand traces

To analyze precisely the behavior of MPI implementations
when running the benchmark, we collected execution traces.
The traces were generated using the EZTrace framework
for performance analysis [21]. When running an application,
EZTrace intercepts the calls to a set of functions and records
time-stamped events for each call to these functions. The
recorded events are stored in a trace file that can be analyzed
post-mortem.

In order to analyze how an MPI implementation interacts
with the network, we used two EZTrace [22] plugins: the mpi
plugin that traces the application calls to the MPI API (e.g.
MPI_Isend, MPI_Wait, etc.), and the ibverbs plugin
that traces the calls to the ibverbs API (e.g., ibv_poll_cq,
ibv_post_send, ibv_post_recv, etc.) performed by
the MPI implementation. Since these plugins rely on the MPI
implementation and the ibverbs library for actually performing
the communication, EZTrace does not change the behavior of
the communication. The impact of the trace collection is thus
limited to a light overhead (approximately 100ns per function
interception) caused by the event recording mechanism. The
events corresponding to both the MPI and ibverbs API issued
from any thread of the application are stored in the same trace
files. Analyzing the resulting traces allows to understand the
strategy of an MPI implementation for overlapping communi-
cation and computation. For instance, the traces show when a
message is submitted to the NIC, when a queue is polled for
completion, which thread polls the network, etc.

C. Traces examples and analysis

To precisely explain the performance obtained with our
benchmarks, we have run some interesting cases with traces
that we present in this Section. All traces use the same
color convention for states: white block is computation; red
block is MPI_Wait; blue block is MPI_Send, green block
is MPI_Isend; pink block is ibv_poll. MPI messages
are depicted with black arrows. Events are represented with
half-height sticks surmounted with a bullet, with the follow-
ing colors: black is ibverbs ibv_post_*; pink is ibverbs
ibv_poll. Interactive exploration of traces is needed to get
all details associated with events (data size, type of event,
zoom), but traces exhibited here should be enough to grasp
the global behavior of MPI libraries.

Sender-side overlap. Figure 5 is a trace for sender-side
overlap on OpenMPI 1.10 with large message. We can see
that the sender spends most of its time in computation (white),
with almost no wait time. Interactive exploration of the trace
reveals that the sender sends a rendez-vous request, then the

Fig. 6. MVAPICH 2.2a, sender-side overlap, 500 KB message, 200µs
computation, receiver on top, sender at bottom. Shown excerpt is 1ms.

Fig. 7. OpenMPI 1.10, receiver-side overlap, 500 KB message, 200µs
computation, sender on top, receiver at bottom. Shown excerpt is 1ms.

receiver performs an RDMA read, hence the overlap on the
sender-side.

Sender-side, no overlap. Figure 6 is a trace for sender-
side overlap benchmark on MVAPICH 2.2a, large message.
No overlap actually happens, we observe that network transfer
and computation are serialized. Trace exploration reveals that
a rendez-vous request is issued immediately, then computation
is started, then RDMA write for data and packet notification
(using send) are issued from the MPI_Wait after computation,
hence the ibv_post_send event (in black) at the beginning
of the MPI_Wait. On the sender-side (node at bottom), we
clearly see alternating computation (white) and send while
waiting (red block, covered with pink polling events).

Receiver-side, no overlap. Figure 7 is a trace for overlap
attempted on receiver-side with OpenMPI 1.10, large message.
We observe that no overlap actually happens, operations are
serialized: the receiver is busy with computation when the
rendez-vous request arrives; it notices the request and issues
the RDMA read only when it reaches MPI_Wait after
computation.

Both-sides overlap. Figure 8 shows a successful overlap
on both sides with MadMPI, large messages. Since the library
is threaded, 2 lines (threads) per node appear on trace. Top
line is the application thread; and the 2nd line is pioman
idle thread [10]. We observe that computation is done in the
application thread, and communication progresses mostly in
the other thread, which leads to perfect overlap.

Non-contiguous datatype. Figure 9 is a trace for sender-
side overlap with a non-contiguous datatype for OpenMPI
1.10. We observe that almost no overlap happen. The library
sends data in pipeline with 64 KB chunks. Only the first chunk

Fig. 8. MadMPI, both-sides overlap, 500 KB message, 200µs computation,
3 lines per node (1 application thread, 1 pioman thread). Shown excerpt is
1ms.



Fig. 9. OpenMPI 1.10, non-contig sender-side overlap, 500 KB message,
200µs computation, receiver on top, sender at bottom. Shown excerpt is 1ms.

Fig. 10. MVAPICH 2.2a, sender-side overlap overhead, 8 KB message, 20µs
computation, receiver on top, sender at bottom. Shown excerpt is 100µs.

is posted before computation (overlapped), the other chunks
get posted in the MPI_Wait after computation; hence, the
ibv_post_send events (in black) during the MPI_Wait.

CPU overhead. Figure 10 is a trace for sender-side
CPU overhead with MVAPICH 2.2a, short message (8 KB)
sent in eager mode. CPU usage for MPI_Isend is repre-
sented as green blocks. Deep exploration reveals that blocking
MPI_Send (trace not shown) for such messages utilizes 1µs
of CPU time; non-blocking MPI_Isend (green blocks on
Figure 10) take 2µs, hence the overhead ratio of 1 measured
in the benchmark.

We have seen that our interleaved MPI and ibverbs traces
are a powerful tool to investigate why and how overlap works
or not. We can check the frequency of polling, observe the
internal protocol used by a given MPI library on InfiniBand,
and understand the benchmark results. We actually used our-
selves these tools to diagnose and fix progression-related bugs
in MadMPI.

D. Discussion

The results presented in this paper show that most modern
MPI implementations still fail to efficiently overlap computa-
tion and communication. The only MPI implementations that
successfully hide communication (MadMPI, IBM MPI) rely on
threads for making communication progress in the background.
The other libraries that rely on NIC offloading are only capable
of overlapping small messages (in eager mode) of contiguous
data on the sender-side. Thus, most MPI implementations do
not overlap efficiently in several cases:

• large messages sent using a rendez-vous protocol

• overlapping on the receiver side

• messages that consist of non-contiguous datatypes

VI. RELATED WORKS

Some work related to what we present in this paper has
already been done by people working on benchmarks and
people working on overlapping in MPI libraries. None of
them includes an exploration of the 2-D parameters space, nor
benchmarks with derived datatypes, sender-side overhead, or
multi-threaded computation load.

In the domain of MPI benchmarking, overlapping is an
often overlooked issue. Intel MPI Benchmarks (IMB) [13] is
a benchmark widespread in the MPI community. It comes
with an overlap benchmark for MPI-I/O and non-blocking
collectives, but not for point-to-point communications. The
metric they use is an overlap ratio, quite similar but not
identical to our overhead ratio.

Mpptest [15] stresses the importance of measuring overlap.
However, they use a fixed message size and contiguous data.
COMB [14] is a benchmark for assessing MPI overlap that
shows the CPU availability, by actually measuring the time
spent in MPI_Wait and MPI_Test A framework [16] dedi-
cated to overlap has been proposed. It use fixed message size of
10 KB and 1 MB, and measures the time spent in MPI_Wait.

People working on implementing overlap in MPI libraries
usually have their own benchmarks [6], [7], expressed as an
overlap ratio measured with a fixed computation time.

All these works (except MPI-I/O overlap in IMB) are
based on an overlap ratio that is hard to interpret for the
reader since it depends on network performance. Their ratio
is typically less than 100 % even with perfect overlap when
computation is shorter than communication, and it always
converges asymptotically to 1 even when no overlap happen.
We believe our metric independent from network performance
is easier to grasp.

Moreover, our 2-D graphs with full range of both com-
putation time and message size, both-sides benchmarks, non-
contiguous benchmarks, multi-threaded benchmarks, large sur-
vey of various MPI libraries regarding overlap, and analysis
with low-level traces have not been done before.

VII. CONCLUSION

MPI application programmers try to amortize the cost of
communications by overlapping them with computation. To do
so, they use non-blocking communication primitives and as-
sume communication progresses in the background. However,
depending on MPI libraries and networks, this assumption may
not be true.

In this paper, we have proposed tools to assess and analyze
the real behavior of MPI libraries regarding overlap. We
have released an MPI overlap benchmark, that uses a metric
that does not depend on network performance, and checks
the impact of various features on overlap (sender/receiver-
side, contiguous/non-contiguous data, total transfer time v.s.
CPU overhead, single thread v.s. multi-thread). We have
shown benchmark results for various MPI libraries on various
machines— clusters and supercomputers. We have observed
that there are very few cases where overlap actually happens.
Finally we have proposed a trace framework to analyze com-
munication progression in MPI libraries on InfiniBand.

The tools proposed in this paper have been publicly
released [17], [22] as open-source software. They may be
useful for application programmers to discover the progression
properties of the MPI library on their machine. These tools may
be a great help for MPI library authors to detect and diagnose
pathological behavior with regard to overlap.

In future works, we plan to extend the benchmark with
more tested features. In particular, we have not tested cases



with multiple non-blocking requests pending at the same
time, with multiple requests bound to the same destination
or to different destination nodes, and all schemes with more
than two nodes. Another feature that would benefit from
more thorough benchmarking is multi-threading. We plan
to have OpenMP-based benchmarks, where we check the
impact of non-blocking communication on OpenMP perfor-
mance, and the case of multi-threaded communication, i.e.
MPI_THREAD_MULTIPLE. Finally, we will extended our
approach to non-blocking collective operations.
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