F. Raman, E. Scribner, O. Saut, C. Wenger, T. Colin et al., Computational Trials: Unraveling Motility Phenotypes, Progression Patterns, and Treatment Options for Glioblastoma Multiforme, PLOS ONE, vol.59, issue.15, 2016.
DOI : 10.1371/journal.pone.0146617.t007

URL : https://hal.archives-ouvertes.fr/hal-01396271

M. L. Neal, A. D. Trister, S. Ahn, A. Baldock, C. A. Bridge et al., Response Classification Based on a Minimal Model of Glioblastoma Growth Is Prognostic for Clinical Outcomes and Distinguishes Progression from Pseudoprogression, Cancer Research, vol.73, issue.10, pp.2976-2986, 2013.
DOI : 10.1158/0008-5472.CAN-12-3588

C. H. Wang, J. K. Rockhill, M. Mrugala, D. L. Peacock, A. Lai et al., Prognostic Significance of Growth Kinetics in Newly Diagnosed Glioblastomas Revealed by Combining Serial Imaging with a Novel Biomathematical Model, Cancer Research, vol.69, issue.23, pp.9133-9140, 2009.
DOI : 10.1158/0008-5472.CAN-08-3863

E. Stretton, E. Mandonnet, E. Geremia, B. H. Menze, H. Delingette et al., Predicting the location of glioma recurrence after a resection surgery, " in Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data, pp.113-123, 2012.

D. Corwin, C. Holdsworth, R. C. Rockne, A. D. Trister, M. M. Mrugala et al., Toward Patient-Specific, Biologically Optimized Radiation Therapy Plans for the Treatment of Glioblastoma, PLoS ONE, vol.14, issue.11, p.79115, 2013.
DOI : 10.1371/journal.pone.0079115.t002

R. Rockne, E. A. Jr, J. Rockhill, and K. Swanson, A mathematical model for brain tumor response to radiation therapy, Journal of Mathematical Biology, vol.246, issue.(Suppl 13), pp.4-5, 2009.
DOI : 10.1007/s00285-008-0219-6

T. A. Dolecek, J. M. Propp, N. E. Stroup, and C. Kruchko, CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2005-2009, Neuro-Oncology, vol.14, issue.suppl 5, pp.1-49, 2005.
DOI : 10.1093/neuonc/nos218

E. D. Angelini, O. Clatz, E. Mandonnet, E. Konukoglu, L. Capelle et al., Glioma Dynamics and Computational Models: A Review of Segmentation, Registration, and In Silico Growth Algorithms and their Clinical Applications, Current Medical Imaging Reviews, vol.3, issue.4, pp.262-276, 2007.
DOI : 10.2174/157340507782446241

URL : https://hal.archives-ouvertes.fr/inria-00616021

J. Murray, Mathematical biology, 2002.

P. Tracqui, G. Cruywagen, D. Woodward, G. Bartoo, J. Murray et al., A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth, Cell Proliferation, vol.32, issue.1, pp.17-31, 1995.
DOI : 10.1016/S0022-5193(87)80171-6

K. R. Swanson, E. Alvord, and J. Murray, Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy, British Journal of Cancer, vol.29, issue.1, pp.14-18, 2002.
DOI : 10.1046/j.1365-2184.2000.00177.x

M. Chaplain, Avascular growth, angiogenesis and vascular growth in solid tumours: The mathematical modelling of the stages of tumour development, Mathematical and Computer Modelling, vol.23, issue.6, pp.47-87, 1996.
DOI : 10.1016/0895-7177(96)00019-2

E. Konukoglu, O. Clatz, B. H. Menze, B. Stieltjes, M. Weber et al., Image Guided Personalization of Reaction-Diffusion Type Tumor Growth Models Using Modified Anisotropic Eikonal Equations, IEEE Transactions on Medical Imaging, vol.29, issue.1, pp.77-95, 2010.
DOI : 10.1109/TMI.2009.2026413

URL : https://hal.archives-ouvertes.fr/inria-00616100

P. Mosayebi, D. Cobzas, A. Murtha, and M. Jagersand, Tumor invasion margin on the Riemannian space of brain fibers, Medical Image Analysis, vol.16, issue.2, pp.361-373, 2012.
DOI : 10.1016/j.media.2011.10.001

O. Clatz, M. Sermesant, P. Bondiau, H. Delingette, S. K. Warfield et al., Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation, IEEE Transactions on Medical Imaging, vol.24, issue.10, pp.1334-1346, 2005.
DOI : 10.1109/TMI.2005.857217

C. Hogea, C. Davatzikos, and G. Biros, An image-driven parameter estimation problem for a reaction???diffusion glioma growth model with mass effects, Journal of Mathematical Biology, vol.10, issue.3, pp.793-825, 2008.
DOI : 10.1007/s00285-007-0139-x

K. Swanson, R. Rockne, J. Claridge, M. Chaplain, E. A. Jr et al., Quantifying the Role of Angiogenesis in Malignant Progression of Gliomas: In Silico Modeling Integrates Imaging and Histology, Cancer Research, vol.71, issue.24, pp.7366-7375, 2011.
DOI : 10.1158/0008-5472.CAN-11-1399

O. Saut, J. Lagaert, T. Colin, and H. M. Fathallah-shaykh, A Multilayer Grow-or-Go Model for GBM: Effects of Invasive Cells and Anti-Angiogenesis on Growth, Bulletin of Mathematical Biology, vol.91, issue.Suppl 1, pp.2306-2333, 2014.
DOI : 10.1007/s11538-014-0007-y

URL : https://hal.archives-ouvertes.fr/hal-01038063

A. Hawkins-daarud, R. C. Rockne, A. R. Anderson, and K. R. Swanson, Modeling Tumor-Associated Edema in Gliomas during Anti-Angiogenic Therapy and Its Impact on Imageable Tumor, Frontiers in Oncology, vol.3, 2013.
DOI : 10.3389/fonc.2013.00066

M. Badoual, C. Gerin, C. Deroulers, B. Grammaticos, J. Llitjos et al., Oedema-based model for diffuse low-grade gliomas: application to clinical cases under radiotherapy, Cell Proliferation, vol.625, issue.4, pp.369-380, 2014.
DOI : 10.1111/cpr.12114

H. L. Harpold, E. C. Jr, and K. R. Swanson, The Evolution of Mathematical Modeling of Glioma Proliferation and Invasion, Journal of Neuropathology and Experimental Neurology, vol.66, issue.1, 2007.
DOI : 10.1097/nen.0b013e31802d9000

M. J. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives, 2009.

A. Gooya, K. M. Pohl, M. Bilello, L. Cirillo, G. Biros et al., GLISTR: Glioma Image Segmentation and Registration, IEEE Transactions on Medical Imaging, vol.31, issue.10, pp.1941-1954, 2012.
DOI : 10.1109/TMI.2012.2210558

B. H. Menze, K. Van-leemput, A. Honkela, E. Konukoglu, M. Weber et al., A Generative Approach for Image-Based Modeling of Tumor Growth, IPMI, pp.735-747, 2011.
DOI : 10.1007/978-3-642-22092-0_60

URL : https://hal.archives-ouvertes.fr/hal-00813801

E. Konukoglu, J. Relan, U. Cilingir, B. H. Menze, P. Chinchapatnam et al., Efficient probabilistic model personalization integrating uncertainty on data and parameters: Application to Eikonal-Diffusion models in cardiac electrophysiology, Progress in biophysics and molecular biology, pp.134-146, 2011.
DOI : 10.1016/j.pbiomolbio.2011.07.002

URL : https://hal.archives-ouvertes.fr/inria-00616198

D. Neumann, T. Mansi, B. Georgescu, A. Kamen, E. Kayvanpour et al., Robust Image-Based Estimation of Cardiac Tissue Parameters and Their Uncertainty from Noisy Data, MICCAI, pp.9-16, 2014.
DOI : 10.1007/978-3-319-10470-6_2

M. Lê, H. Delingette, J. Kalpathy-cramer, E. Gerstner, T. Batchelor et al., Bayesian personalization of brain tumor growth model, MICCAI, 2015.

E. Stretton, E. Geremia, B. H. Menze, H. Delingette, and N. Ayache, Importance of patient DTI's to accurately model glioma growth using the reaction diffusion equation, 2013 IEEE 10th International Symposium on Biomedical Imaging, pp.1130-1162, 2013.
DOI : 10.1109/ISBI.2013.6556681

F. Dittmann, B. H. Menze, E. Konukoglu, and J. Unkelbach, Use of Diffusion Tensor Images in Glioma Growth Modeling for Radiotherapy Target Delineation, Multimodal Brain Image Analysis, pp.63-73, 2013.
DOI : 10.1007/978-3-319-02126-3_7

URL : https://hal.archives-ouvertes.fr/hal-00912667

M. Jenkinson, P. Bannister, M. Brady, and S. Smith, Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images, NeuroImage, vol.17, issue.2, 2002.
DOI : 10.1006/nimg.2002.1132

J. L. Andersson, M. Jenkinson, and S. Smith, Non-linear registration , aka spatial normalisation fmrib technical report tr07ja2, 2007.

M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and S. M. Smith, FSL, NeuroImage, vol.62, issue.2, pp.782-790, 2012.
DOI : 10.1016/j.neuroimage.2011.09.015

URL : https://hal.archives-ouvertes.fr/inserm-01149484

J. E. Iglesias, C. Liu, P. M. Thompson, and Z. Tu, Robust Brain Extraction Across Datasets and Comparison With Publicly Available Methods, IEEE Transactions on Medical Imaging, vol.30, issue.9, pp.1617-1634, 2011.
DOI : 10.1109/TMI.2011.2138152

Y. Zhang, M. Brady, and S. Smith, Segmentation of brain mr images through a hidden markov random field model and the expectationmaximization algorithm, IEEE TMI, vol.20, issue.1, pp.45-57, 2001.

L. Zhao, U. Ruotsalainen, J. Hirvonen, J. Hietala, and J. Tohka, Automatic cerebral and cerebellar hemisphere segmentation in 3D MRI: adaptive disconnection algorithm A note on the numerical approach for the reaction? diffusion problem to model the density of the tumor growth dynamics, Medical image analysis Computers & Mathematics with Applications, vol.14, issue.3, pp.360-372, 2010.

S. Rapaka, T. Mansi, B. Georgescu, M. Pop, G. A. Wright et al., LBM-EP: Lattice-Boltzmann Method for Fast Cardiac Electrophysiology Simulation from 3D Images, MICCAI 2012, pp.33-40, 2012.
DOI : 10.1007/978-3-642-33418-4_5

C. Audigier, T. Mansi, H. Delingette, S. Rapaka, V. Mihalef et al., Efficient Lattice Boltzmann Solver for Patient-Specific Radiofrequency Ablation of Hepatic Tumors, IEEE Transactions on Medical Imaging, vol.34, issue.7, p.14, 2015.
DOI : 10.1109/TMI.2015.2406575

URL : https://hal.archives-ouvertes.fr/hal-01146319

H. Yoshida and M. Nagaoka, Multiple-Relaxation-Time LBM for the convection and anisotropic diffusion equation, Journal of Computational Physics, vol.229, issue.20, 2010.

D. Yu, R. Mei, L. Luo, and W. Shyy, Viscous flow computations with the method of lattice Boltzmann equation, Progress in Aerospace Sciences, pp.329-367, 2003.
DOI : 10.1016/S0376-0421(03)00003-4

E. Konukoglu, O. Clatz, P. Bondiau, H. Delingette, and N. Ayache, Extrapolating glioma invasion margin in brain magnetic resonance images: Suggesting new irradiation margins, Medical Image Analysis, vol.14, issue.2, 2010.
DOI : 10.1016/j.media.2009.11.005

URL : https://hal.archives-ouvertes.fr/inria-00616107

C. E. Rasmussen, Gaussian processes to speed up hybrid Monte Carlo for expensive Bayesian integrals, pp.651-659, 2003.

R. M. Neal, MCMC Using Hamiltonian Dynamics, Handbook of Markov Chain Monte Carlo, 2011.
DOI : 10.1201/b10905-6

M. Betancourt, Nested Sampling with Constrained Hamiltonian Monte Carlo, 2010.
DOI : 10.1063/1.3573613

C. E. Rasmussen, Gaussian Processes in Machine Learning, 2006.
DOI : 10.1162/089976602317250933

J. Mazziotta, A. Toga, A. Evans, P. Fox, J. Lancaster et al., A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM), Philosophical Transactions of the Royal Society B: Biological Sciences, vol.356, issue.1412, pp.1293-1322, 2001.
DOI : 10.1098/rstb.2001.0915

J. T. Oden, E. E. Prudencio, and A. Hawkins-daarud, SELECTION AND ASSESSMENT OF PHENOMENOLOGICAL MODELS OF TUMOR GROWTH, Mathematical Models and Methods in Applied Sciences, vol.23, issue.07, 2013.
DOI : 10.1142/S0218202513500103

M. Lê, J. Unkelbach, N. Ayache, and H. Delingette, GPSSI: Gaussian process for sampling segmentations of images, MICCAI, 2015.

J. Unkelbach, B. H. Menze, E. Konukoglu, F. Dittmann, M. Le et al., Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation, Physics in Medicine and Biology, vol.59, issue.3, p.747, 2014.
DOI : 10.1088/0031-9155/59/3/747

URL : https://hal.archives-ouvertes.fr/hal-00917869

J. Unkelbach, B. H. Menze, E. Konukoglu, F. Dittmann, N. Ayache et al., Radiotherapy planning for glioblastoma based on a tumor growth model: implications for spatial dose redistribution, Physics in Medicine and Biology, vol.59, issue.3, p.771, 2014.
DOI : 10.1088/0031-9155/59/3/771

URL : https://hal.archives-ouvertes.fr/hal-00917846