
HAL Id: hal-01324970
https://inria.hal.science/hal-01324970

Submitted on 1 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards Automatic Generation of Project-Based
Solutions

Krikor Maroukian, Kevin Lano, Mohammad Yamin

To cite this version:
Krikor Maroukian, Kevin Lano, Mohammad Yamin. Towards Automatic Generation of Project-Based
Solutions. 16th International Conference on Informatics and Semiotics in Organisations (ICISO), Mar
2015, Toulouse, France. pp.123-134, �10.1007/978-3-319-16274-4_13�. �hal-01324970�

https://inria.hal.science/hal-01324970
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Towards Automatic Generation of Project-based

Solutions

Krikor Maroukian1, Kevin Lano1, Mohammad Yamin2

1 School of Natural & Mathematical Sciences, Department of Informatics, King’s

College London, Strand, London, WC2R 2LS, UK

2 Department of Information Technology, King Abdulaziz University, Jeddah,

21589,

Saudi Arabia

krikor.maroukian@kcl.ac.uk, kevin.lano@kcl.ac.uk, myamin@kau.edu.sa

Abstract. Modern business models and processes usually demand an integrated

utilisation of business frameworks and methodologies, such as PRINCE2® and

PMBOK® , to produce meaningful business documentation and solutions.

Often, the use of such frameworks is a prerequisite to engage with
public or private sector large-scale projects. However, models contained in

such frameworks usually lack formal semantics which may lead to

inconsistencies between modeling solutions. The maintainability and reusability

of such models tends to require manual intervention which is susceptible to
human error. Software engineers used to experience similar issues and partially

solved these by introducing a model-driven approach called Model Driven

Architecture. In an attempt to adapt to industry needs, over the past five years

Domain Specific Modeling has experienced increased popularity. The authors
propose a transfer of concepts and logic from MDA and DSM to a project-

based model-driven approach; facilitating the automated production of

supportive documents for business decision making.

1 Introduction

Rapidly changing business environments require frequent re-calculation of business

strategies. Such changes are frequent and unpredictable. Human responses to these

changes can be prone to human error and not within the required timeframe. The

current industrial landscape predisposes business solutions (business decisions and

supporting documentation) with a number of defects in terms of lack of understanding

and implementation of frameworks, methodologies and best practices. As a

consequence, informal models or even non-modelled business solutions offer limited

value to the business.

Such informalities, may lead to a number of limitations such as: the requirement

for model specific training, difficulty in capturing changing business requirements

and the use of inconsistent models which are often out dated. Effectively, changes that

will not be included in all corresponding models will create inconsistencies since the

models will no more reflect the actual business requirements. Subsequently, models

will be discarded. “Often, the modellers themselves have disappeared, and any

knowledge that wasn’t captured in the specialised models is inaccessible, forgotten, or

written off” [1]. In addition, informal models are limited to use by individuals, small

teams or within single organisations due to the lack of information clarity and

understanding of non-standard models among different teams or members. This leads

to the inability to address key business environment factors.

In the last decade, software engineering solved most of the system modelling

problems with the introduction of the Model Driven Architecture framework (MDA).

MDA divides models into four abstraction layers; Computational Independent Model

(CIM), Platform Independent Model (PIM), Platform Specific Model (PSM) and

generated code. The key idea behind MDA is the production of formal models

through consistent model transformation. Models of the PIM layer are transformed to

models of the PSM layer and then to code. At each layer, the user can add details or

tune the models as needed. Any model can participate in an MDA transformation as

long as it has a corresponding meta-model. A meta-model is a model that explains the

semantics of its corresponding model. In other words, a meta-model is data about

data.
Our research extends the applicability of MDA and uses it to solve business

modelling problems in the project management domain. In effect, a domain can be

characterised as a business discipline, customer, company, contact, location. Domain

Engineering such as Product Line Engineering, is the entire process of reusing domain

knowledge in the production of new software systems. An essential idea in systematic

software reuse is the application domain, a software area that contains systems

sharing commonalities [18].

The reason the author’s attempt to shed light on project-based modeling and

automation regards noteworthy references from the MDA community on benefits

realised in software development project management. As a result, this paper

proposes a project-based approach to inherit the MDA concepts of Modelling and

Meta-modelling, separate modelling layers and model transformations. This could

potentially inherit a number of MDA established benefits realised over the past

decade as follows ([2],[3],[4], [5], [6], [7], [8], [9]):

 Increase productivity and reliability through automated generation of

business related documentation;

 Reduce time-to-market solution;

 Richer model semantics;

 Models with higher formality.

The proposed framework will be capable of supporting corporate decision making

through business solutions provided that their corresponding meta-models are present.

This project-based approach can be utilised as a solution generation tool to offer

artefacts given the appropriate meta-model or pool of metamodels, model

transformations and/or reusable project-based artefacts (meta-model or

transformation).

Further to the introduction, this paper is organised as follows; in section (2) the

definition of a model is illustrated and current modelling issues in software

development are presented. Section (3) discusses in brief the various aspects of Model

Driven Architecture. Section (4) presents a thorough account of the proposed project-

based approach. Research conclusions and future work are discussed in section (5).

2 Project-based Modelling Issues in Software Development

A model is a representation of a concept from the real world. An interpretation of a

model gives a model meaning [10]. Models are widely used and are essential in other

disciplines. For instance, prior to the construction of a bridge civil engineers produce

a design that will be utilised as a blueprint for the construction of the bridge. It is not

possible to start the construction of a bridge without any designs. However, it is not

uncommon to start a business project without any planning and sometimes without

concise and well-defined requirements or specifications or even clear business goals

and objectives.

The paradox is that, software engineering can benefit more from models than

other disciplines [11]. The current problem with models [12] is that most of the

models are described in an abstract layer which is not very useful, indicating, what

needs to be done at a given moment in time.

Nevertheless, business requirements change so rapidly that it is possible that the

requirements might change while the project is still under development. Most of the

cases the business solution will not reflect the design due to the high abstraction level

of the design, time and/or cost constraints as well as incorrect or incomplete design.

Provided there is a change request it is very likely that it will only change in the

business solution and there is a possibility that nobody will update the design. These

reasons will create an inconsistency between solution and design that will lead to the

infrequent use or ultimately the disposal of the design.

Therefore, there is an explicit industry need to address platform complexity and the

inability of third generation languages to alleviate this complexity and express domain

concepts effectively. There exist MDA tools which can be employed to address these

issues such as Eclipse Modeling Framework (EMF), Graphical Editing Framework

(GEF), Graphical Modeling Framework (GMF) to which IBM contributes, Microsoft

MS/DSL Tools, and Model Integrated Computing (MIC) utilised by Generic

Modeling Environment (GME) developed by Vanderbilt University.

3 Model Driven Architecture

Prior to proposing a solution it is worth investigating how software engineering

solved modelling issues presented in section (2). Model Driven Architecture (MDA)

is a software development approach launched by OMG, [13]. The key idea behind the

MDA framework is the separation of the development into three layers and the

automatic transformation of models between the four layers by software tools. The

business processes and requirements of the CIM layer are mapped to PIMs. These are

then transformed to PSMs which are then transformed to code.
Human experts can execute manual tuning to each model and these changes will

be carried over to the next model. MDA software tools allow changes made at a

higher layer of the MDA to be reflected at the lower layers of the framework.“MDA

is potentially advantageous because it shifts complexity away from developers and

into the tool chain and, hence, the PIM-to-PSM transformation” [14]. MDA uses the

Unified Modelling Language (UML), OMG’s main modelling standards which are

ISO standards and ITU-T recommendations. There are several model transformation

languages; UML-RSDS [20], Epsilon [21], QVT-R, ATL, Kermeta, GrGen.NET. A

comparison on the characteristics of some of these languages can be found in [22].

4 A Project-based Approach

A project management oriented approach attempts to address Model Business

Engineering (MBE) issues with an aim to assist project managers and other project

stakeholders generate day-to-day business documents and/or perform decision making

activities in an increasignly automated manner.

Research in the area of transformations of UML Activity Diagrams to BPMN 2.0

has indeed been stated in e-Government systems [15], [16]. There is also evidence for

the BPMN 2.0 to UML Activity Diagram transformation [17]. However, such

empirical research has not been considered in the industrial domains of project

management for frameworks such as PRINCE2® and PMBOK® as well as service

management such as ITIL® .

The project-based approach can be characterised as ‘a structured approach to

automated generation of modelled artefacts in the context of business disciplines, that

can form the basis of decisions, business documents and/or business activities.’

This approach can reach its end result i.e. business solution generation, through

two abstraction layers; Project Specific Layer (PSL) and Business Solution Layer

(BSL). The end result e.g. documentation, can lead to management decisions and/or a

set of actions. A mechanism to support reuse of best practices when creating families

of business solutions would be appropriate to consider at this stage.

To visualize a software model transformation consider Java or C++ code as the

implementation solution i.e. PSM, see section 3. The model describing the code

functions and variables is one abstraction layer higher than the implementation layer

i.e. PIM, see section 3. In a similar way, project management documents or decision

making artifacts can be characterised as part of the implementation layer or BSL. The

model describing the BSL is the PSL.

The project-specific layer ensures a modelled business and leads to business

solution. The business solution layer would effectively depict the real data relating to

information fed in the previous layer.

In certain instances, capturing project stakeholder related information can be of

substantial value in formulating an accurate business solution such as business

policies that do not allow employees to work beyond the eight-hour shift since these

set their rules in the environment in which the project is executed. Hence, capturing

environment information can be vital for the success of projects.

Information pertinent to a specific project framework should be utilised in the

project specific layer. Any pertinent information to e.g. PRINCE2® or PMBOK®

should be utilised. Finally, PRINCE2® or PMBOK® produced documentation, roles,

processes and functions signify a modelled business solution.

The project-based approach can help architects commit changes at the project-

specifc layer which can then propagate to the business solution layer instead of having

a monolithic transformation. The next sections describe thoroughly the project-

specific layer.

4.1 Project Specific Layer

The project-specific layer can be defined as ‘the depiction of project-based elements

e.g. tasks, activities, resources, that can facilitate real world business solutions.’

In this layer, it is recommended to select models from well established

frameworks or industry standards with worldwide recognition. The accuracy of the

result will heavily depend on the selected framework.

Taking into consideration the information available such as a meta-model that

clearly states that the more certified PMs in structured PM frameworks the more

successful that PM framework could prove to be in an organisation, it is clear that a

structured PM framework would be selected for use within the enterprise. The

business solution would relate to real data such as strategic corporate decision of

whether to use a structured or agile PM framework. The business solution can be

anything from a simple decision to complex models supported by vast documentation.

In the scenario considered the business solution can either be a ‘Yes’ or a ‘No’. In

order to reach this stage, the data from PSM has to be extracted.

4.2 Business Solution

The business solution layer can be defined as ‘the resulting business document(s),

charts and descriptive information for a specfic project.’

The business solution layer, contains the produced business documents such as

business plans, progress reports, status reports, risk analysis documents, time tables,

schedules and more artifacts that can be used for both day to day operation or

strategic level information. Before this static documents are generated their

corresponding meta-models are required.

There can be actions defined as activities to be performed by a human or software

agent. Such actions can include, sending emails, perform transactions, make payments

and more. To support the generation of such dynamic artifacts their corresponding

meta-models should also include triggers with pre and post conditions. These can be

defined in OCL or any other constraint language and must also be supported by the

software tool producing the project-based model.

The project-based layers have been presented and thoroughly discussed. However,

a closer examination of the approach with an example can form a concrete definition.

5 BPMN to UML-RSDS Transformation

Project change is inevitable whether it comes from within the project or from external

factors influencing project scope. For these reasons, whenever change occurs, an

agreed logical change management process has to be initiated that allows the project

to identify, assess and control any potential and approved changes to the original

baselines that where originally agreed for the project.

In addition, the use of a standardised change management approach can serve as a

control agent to any Request-for-Change (RfC). Once the project scope and other

key associated documents have been approved, these become the project “baselines”

and can only be changed after approval by the appropriate authority; normally the

Change Advisory Board. Change control and hence change management is not there

to prevent changes, but to ensure that every change is agreed by the relevant authority

before implementation. This section presents the transformation of a BPMN project-

specific model from PRINCE2® , see Fig 1, to its UML-RSDS derivative model.

Fig. 1. Change Management Procedure of a Project

The next step is to produce the corresponding model using the UML-RSDS

transformation engine based on a set of rules that apply for BPMN models. The

transformations supported by UML-RSDS regard BPMN 2.0 elements set i.e. flow

objects, connecting objects, artifacts. Swim lanes are not included in the below

example nor can they be currently supported.

5.1 Rules

The mapping is described by one rule, and the execution semantics by several update-

in-place rules defining how a process instance may evolve, and how its tokens may

move around the process. The rules are described in textual representations derived

from UML-RSDS models.

Process Instantiation This is formalised by the following use case initialise

postcondition on Process:

sn : flowElements & sn : StartEvent &

sn.eventDefinitions->forAll(ed I ed : TimerEventDefinition) =>

ProcessInstance->exists(pi I pi.state = RUNNING & self :

pi.process &

Token->exists(t I t : pi.tokens & sn : t.element))

"If the process has a StartEvent sn which has only TimerEventDefinition, create a

process instance pi for the process, with one token at sn".

Normal termination These are postcondition use cases of Process Instantiation:

state@pre = RUNNING &

process.flowElements->exists(e I e : EndEvent) & tokens@pre->forAll(

t I t.element <: EndEvent) => state = FINISHED &

tokens@pre->isDeleted()

state@pre = RUNNING &

process.flowElements->forAll(e I e /: EndEvent) &

tokens@pre.element->forAll(n I n : FlowNode & n.outgoing->size() =

0) =>

state = FINISHED &

tokens@pre->isDeleted()

Either (i) the process has an EndEvent, and all its tokens occupy EndEvent nodes, or

(ii) the process has no EndEvent, and all its tokens occupy nodes with no outgoing

flow. In either case the process is set to FINISHED and all its tokens deleted.

Starting a process instance A process instance can start if it has a token t on a start

event with at least one outgoing flow:
state = RUNNING & t : tokens &

fe : t.element@pre & fe : StartEvent &

fe.outgoing->size() > 0 =>

fe.outgoing->exists(sf I t.element = Set{ sf })

The token on the start event is then moved to one of the outgoing flows of the start

event.

Ending a process If a process instance has a token on a SequenceFlow with target

node an EndEvent, then the token can be moved to the EndEvent:

state = RUNNING & t : tokens &

fe : t.element@pre &

fe : SequenceFlow &

fe.targetRef : EndEvent =>

t.element = Set{ fe.targetRef }

Entering a task

The same step applies if the target is a Task:

state = RUNNING & t : tokens &

fe : t.element@pre &

fe : SequenceFlow &

fe.targetRef : Task =>

t.element = Set{ fe.targetRef }

Leaving Tasks

A process instance which has a token t on a Task fe can leave fe if fe has at least one

outgoing flow:

state = RUNNING & t : tokens@pre &

fe : t.element@pre &

fe : Task & fe.outgoing->size() > 0 =>

t->isDeleted() &

fe.outgoing->forAll(sf I

Token->exists(t1 I sf : t1.element & t1 : tokens))

t is deleted, and new tokens are created for the process instance on each outgoing

flow.

Entering parallel gateway

Here we assume that there is at most one token for a given process instance on each

flow element.

The process instance can enter parallel gateway pg if it has a token on every

incoming flow of pg, and there is at least one such flow:

state = RUNNING &

pg : Para11e1Gateway &

ν = tokens->select(t I pg.incoming->exists(sf I sf : t.element)

) &

v.size > 0 &

v.size = pg.incoming->size() =>

Token->exists(t1 I pg : t1.element & t1 : tokens) &

v->isDeleted()

A single token ti for the process instance on pg is then created, and the set v of the

instance tokens on the incoming flows of pg is deleted.

In this case the constraint requires fixed-point iteration, as it writes the same

data (Token: :element) that it reads. The let variable v is used to store the pre-

value of the expression it is assigned.

Leaving parallel gateway

This is formalised by the following postcondition use case on Process Instantiation:

state = RUNNING & t : tokens@pre &

fe : t.element@pre &

fe : Para11e1Gateway &

fe.outgoing->size() > 0 =>

t->isDeleted() &

fe.outgoing->forAll(sf I

Token->exists(t1 I sf : t1.element & t1 : tokens))

"If the process instance is running, and has a token t in a parallel gateway fe, with

an outgoing flow, then delete t, and create a token for the process instance in each

outgoing flow of fe."

5.2 Modeled Solution

The corresponding modelled solution of Fig. 1 is described with seven (7) tasks, two

parallel gateways and a start and end node as follows below.
p1 : Process

p1.name = "BPMN2UMLRSDS"

pg1 : Para11e1Gateway

pg1.name = "pg1"

pg1 : pl.flowElements

pg2 : Para11e1Gateway

pg2.name = "pg2"

pg2 : p2.flowElements

se : StartEvent

se.name = "start event"

se : pl.flowElements

ee : EndEvent

ee.name = "end event"

ee : pl.flowElements

tl : Task

t1.name = "Create the RFC"

tl : pl.flowElements

t2 : Task

t2.name = "Review, Assess

and Evaluate"

t2 : pl.flowElements

t3 : Task

t3.name = "Change

Advisory Board

Authorization"

t3 : pl.flowElements

t4 : Task

t4.name = "Emergency Change

Advisory Board

Authorization"

t4 : pl.flowElements

t5 : Task

t5.name = "Receive and Plan

Change"

t5 : pl.flowElements

t6 : Task

t6.name = "Coordinate and

Implement"

t6 : pl.flowElements

t7 : Task

t7.name = "Publish

Implementation Results"

t7 : pl.flowElements

sf1 : SequenceFlow

sf1.name = "startTotask1"

sf1 : pl.flowElements

sfl.sourceRef = se

sfl.targetRef = t1

sf2 : SequenceFlow

sf2.name = "task1Totask2"

sf2 : pl.flowElements

sf2.sourceRef = t1

sf2.targetRef = t2

sf3 : SequenceFlow

sf3.name = "task2Topg1"

sf3 : pl.flowElements

sf3.sourceRef = t2

sf3.targetRef = pg1

sf4 : SequenceFlow

sf4.name = "pg1Totask3"

sf4 : pl.flowElements

sf4.sourceRef = pg1

sf4.targetRef = t3

sf5 : SequenceFlow

sf5.name = "pg1Totask4"

sf5 : pl.flowElements

sf5.sourceRef = pg1

sf5.targetRef = t4

sf6 : SequenceFlow

sf6 .name = "task3Topg2"

sf6 : pl.flowElements

sf6.sourceRef = t3

sf6.targetRef = pg2

sf7 : SequenceFlow

sf7 .name = "task4Topg2"

sf7 : pl.flowElements

sf7.sourceRef = t4

sf7.targetRef = pg2

sf8 : SequenceFlow

sf8 .name = "pg2Totask5"

sf8 : pl.flowElements

sf8.sourceRef = pg2

sf8.targetRef = t5

sf9 : SequenceFlow

sf9 .name = "task5Totask6"

sf9 : pl.flowElements

sf9.sourceRef = t5

sf9.targetRef = t6

sf10 : SequenceFlow

sf10.name = " task6Totask7"

sf10 : pl.flowElements

sf10.sourceRef = t6

sf10.targetRef = t7

sf11 : SequenceFlow

sf11.name = "task7Toend"

sf11 : pl.flowElements

sf11.sourceRef = t7

sf11.targetRef = ee

The following shows a trace of the execution of the transformation on this model:
Model loaded

Entering startTotask1

Left startTotask1

Entered Create the RFC

Left task Create the RFC

Entered flow task1Totask2

Left task1Totask2

Entered Review, Assess and

Evaluate

Left task Review, Assess and

Evaluate

Entered flow task2Topg1

Entered parallel pg1

Left pg1

Entering pg1Totask3

Left pg1

Entering pg1Totask4

Left pg1Totask3

Entered Change Advisory

Board Authorization

Left pg1Totask4

Entered Emergency Change

Advisory Board Authorization

Left task Change Advisory

Board Authorization

Entered flow task3Topg2

Left task Emergency Change

Advisory Board Authorization

Entered flow task4Topg2

Entered parallel pg2

Left pg2

Entering pg2Totask5

Left pg2Totask5

Entered Receive and Plan

Change

Left task Receive and Plan

Change

Entering task5Totask6

Left task5Totask6

Entered Coordinate and

Implement

Left task Coordinate and

Implement

Entering task6Totask7

Left task6Totask7

Entered Publish

Implementation Results

Left task Publish

Implementation Results

Entered flow task7Toend

Leaving task7Toend Finished process instance

The aforementioned textual workflow indicates consistency with explanations provide

in section 5.1 whereby each step is thoroughly described. The benefits such an

approach can realise in project management regard formalised models which respect

project management processes modelled in BPMN. The textual representation of

these models can potentially lead to advantages described in section 1.

6 Conclusions and Future Work

This paper attempts to highlight the potential research areas that can extend MDA

aspects on DSM to business-specific model and more specifically project

management. There are suggestions [19], that corporate decision analysis and

decision making leading to changes, can be linked to business needs and improved

decision making techniques by adopting approaches in model driven environments for

software development.

Developing an integrated methodology on the marriage of MDA and business

models is a multi-faceted issue. The paper proposes the utilisation of a renewed

project-based approach that will form part of a structured treatment to business

models and contribute to increased clarity and formality.

The proposal includes two layers; that can signify business oriented solutions and

result to modelled decisions and management guidance documentation.

Extended research in the area of project-based automation could include

transformations that support the full BPMN 2.0 elements set i.e. flow objects,

connecting objects, swim lanes, artifacts. Future work should also focus on other

practices outside MDD such as business analysis and service management. The MDA

and BPM communities have taken steps towards attaining a more business-oriented

approach to identified parts of projects which can be standardised. However, it is the

authors’ belief that building on the already available knowledge of both research

communities, there are valuable lessons to learn and apply to other standardised

business frameworks such as PRINCE2® for project management, BABOK® for

business analysis and even ITIL® for service management.

References

1. Denno, P., Steves, M. P., Libes, D., Barkmeyer, E. J.,: Model-Driven Integration Using

Existing Models. IEEE software, IEEE computer society. (2003)

2. Mohagheghi, P., Dehlen, V.: Where Is the Proof? A Review of Experiences from Applying

MDE in Industry. In: Schieferdecker, I., Hartman, A. (eds.): ECMFA, Lecture Notes in

Computer Science, Vol. 5095, Springer-Verlag, Heidelberg, Germany (2008) 432-443

3. Guttman, M., and J. Parodi.: Real-Life MDA: Solving Business Problems with Model

Driven Architecture. Morgan Raufmann (2007)

4. Presso, M. J., Belaunde D.: Applying MDA to Voice Applications: An Experience in

Building an MDA Tool Chain. In: Hartman, A., Kreische D. (eds.): ECMDA-FA. Lecture

Notes in Computer Science, Vol. 3748, Springer-Verlag, Heidelberg, Germany (2005) 1-8

5. Staron, M.: Adopting Model Driven Software Development in Industry – A Case Study at

Two Companies. In: Nierstrasz, O., Whittle J., Harel, D., Reggio, G. (eds.): MODELS.

Lecture Notes in Computer Science, Vol. 4199, Springer-Verlag, Heidelberg, Germany

(2006) 57-72

6. Bloomfield, T.: MDA, Meta-Modelling and Model Transformation: Introducing New

Technology into the Defence Industry. In: Hartman, A., Kreische D. (eds.): ECMDA-FA.

Lecture Notes in Computer Science, Vol. 3748, Springer-Verlag, Heidelberg, Germany

(2005) 9-18

7. Burgstaller, R., Wuchner E., Fiege L., Becker M., Fritz T.: Using Domain Driven

Development for Monitoring Distributed Systems. In: Hartman, A., Kreische D. (eds.):

ECMDA-FA. Lecture Notes in Computer Science, Vol. 3748, Springer-Verlag,

Heidelberg, Germany (2005) 19-24

8. Baker, P., Loh, S., Weil, F.: Model-Driven Engineering in a Large Industrial Context –

Motorola Case Study. In: Briand, L.C., Williams, C. (eds.): MoDELS. Lecture Notes in

Computer Science, Vol. 3713, Springer, Heidelberg, Germany (2005) 476-491

9. M1 Global Solutions.: Model Driven Software Development and Offshore Outsourcing.

(2004)

10. Seidewitz, E.: What models mean. IEEE Software, Vol.20, Issue 5 (2003) 26

11. Bran, S.: The pragmatics of model-driven development. IEEE Software, (2003) 20:19

12. Anneke, G., Kleppe, J. W., Bast, W.: MDA Explained: The Model Driven Architecture:

Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA

(2003)

13. OMG, Meta Object Facility (MOF) Specification, 2003. Object Management Group,

http://doc.omg.org/formal/02-04-03

14. Weis, T., Ulbrich, A., Geihs, K.: Model Metamorphosis. IEEE software, IEEE computer

society (2003)

15. Kalnins, A., Vitolins, V.: Use of UML and Model Transformations for Workflow Process

Definitions, Databases and Information Systems. In: Vasilecas, O., Eder, J., Caplinskas, A.

(eds.): BalticDB&IS'2006. Vilnius, Technika (2006) 3-15

16. Heitkoetter, H.: Transforming PICTURE to BPMN 2.0 as Part of the Model-Driven

Development of Electronic Government Systems. In Proceedings of HICSS (2011) 1-10

17. Macek, O., Richta, K.: The BPM to UML activity diagram transformation using XSLT. In

Proceedings of DATESO (2009) 119-129

18. Roebuck, K.: Model-driven Architecture (MDA): High-impact Strategies - What You

Need to Know: Definitions, Adoptions, Impact, Benefits, Maturity, Vendors, USA (2011)

88-90

19. Apostolopoulos, H., Maroukian, K.: Model Driven Architecture Transformation for

Business Models: Decision Analysis Based on a Collateral Analysis Model. 13th

International Conference on Informatics and Semiotics in Organisations, Leeuwarden, The

Netherlands (2011) 33-39

20. Lano, K.: Advanced Systems Design with Java UML and MDA. Elsevier, Oxford, UK

(2005)

21. Kolovos, D., Paige, R., Rose, L., Polack, F.: The Epsilon Book, Structure (2010) 178

22. Lano, K., Poernomo, I., Kolahdouz-Rahimi, S.: Comparative Evaluation of Model

Transformation Specification Approaches. International Journal of Software and

Informatics, Vol. 6, Issue 2, (2012) 233-269

http://doc.omg.org/formal/02-04-03

