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Abstract: The Resource Description Framework (RDF) is the W3C’s graph data model for Semantic
Web applications. RDF graphs are often large and heterogeneous, thus users may have a hard time getting
familiar with the structure and semantics of a graph.
We consider the problem of building automatically, with no user input, compact RDF graph summaries
which represent the complete structure and semantics of the graph, and are representative and accurate
for a large useful dialect of SPARQL. We provide the first technique for building out of an RDF graph
a summary of its explicit and implicit data (the latter is due to RDF semantic constraints); a summary
for which this is possible is termed complete. We introduce four novel summaries and show that two of
them are complete. We provide a sufficient condition for RDF summarization completeness, and show that
bisimulation-based summaries previously studied satisfy this condition.
We implemented a summarization tool and demonstrate its effectiveness through a set of experiments.

Key-words: Semantic Web, RDF, data summary, inference, reasoning, data compression



Résumés orientés requêtes de graphes RDF
Résumé : RDF est le modèle de données du W3C, fondé sur les graphes, pour les applications du Web
Sémantique. Les graphes RDF sont souvent larges et hétérogènes, compliquant la tâche des utilisateurs
qui tentent de se familiariser avec leurs structure et leur sémantique. Nous étudions la construction au-
tomatique, sans aucune information fournie par l’utilisateur, de résumés compacts de graphes RDF, qui
représente leur structure et sémantique complète, et soient représentatifs et précis pour un dialecte large
de requêtes SPARQL. Nous sommes les premiers à présenter une technique pour construire, à partir d’un
graphe RDF, un résumé de ses données explicites et implicites; ces dernières peuvent être présentes dans
le graphe en vertu de ses contraintes sémantiques. Nous appellons un résumé pour lequel une telle tech-
nique existe, un résumé complet. Nous introduisons quatre nouveaux résumés de graphes, et montrons
que deux d’entr’eux sont complets. Nous présentons une condition suffisante pour qu’un résumé RDF
soit complet, et montrons que les résumés basés sur la bissimulation bidirectionnelle de graphes satisfont
cette condition.

Nous avons développé un outil de résumé de graphes, et nous démontrons son intérêt et son efficacité
de façon expérimentale, sur des données synthétiques ainsi que sur des données réelles.

Mots-clés : Web Sémantique, RDF, résumé de données, inférence, raisonnement, compression de don-
nées
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1 Introduction
The Resource Description Framework (RDF) is a graph-based data model promoted by the W3C as the
standard for Semantic Web applications. Its associated query language is SPARQL. RDF graphs are
varied, coming from scientific applications, social or online media, government data etc. They are often
large, and heterogeneous, i.e., resources described in an RDF graph may have very different sets of
properties. An RDF resource may have one or several types (which may or may not be related to each
other) or lack types. RDF Schema (RDFS) statements are sometimes part of an RDF graph, in which
case they lead to implicit data. For instance, if the schema states that anyone having a driver license
is a Human and we know Bill has the driver license 123, then the fact that Bill is a Human is implicitly
present in the graph. According to the W3C RDF and SPARQL specification, the semantics of an RDF
graph G, typically denoted G∞, comprises both its explicit and implicit data; in particular, SPARQL
query answers must be computed reflecting all the explicit and implicit data. These features make an
RDF graph complex, both structurally and conceptually; it is intrinsically hard to get familiar with it,
especially if a schema is absent or describes only part of the data.

We study the problem of RDF summarization, that is: given any input RDF graph G, efficiently build
a compact RDF graph G/≡ which summarizes both the structure and semantics of G. Our summaries can
be used as a GUI with the help of a graph visualization library, e.g., Dot or Prefuse, and/or to inform
RDF processing tools about the complete graph structure and semantics; for instance, they can be
used to suggest queries to users exploring an unknown RDF graph. Toward this goal, we summarize
without any user input or parameter setting. The literature features many summaries, e.g., [11, 9, 7] and
some focus on RDF, e.g., [34, 21, 27] (see also Section 9). The main novelty of our work is to build
from G a summary of both its explicit and implicit data (the latter may not be present in G although it
holds there). We call such summaries complete, and we are the first to define a framework for complete
summarization of semantic-rich RDF graphs. Our summaries can be built efficiently, are 2 to 6 orders of
magnitude smaller than G, and never larger than G.

The contributions made in this work are as follows:
1. We define RDF node equivalence relations taking into account the particular features of RDF, and
based on them define RDF graph summaries as quotient graphs. We show that any such summary is
representative (has some answer for any query that has answers on G) and accurate (any query having
answers on the summary has answer on some graph which it summarizes1).
2. We provide a sufficient condition on an RDF node equivalence relation, for the RDF summary defined
based on this relation to be complete. Moreover, we are the first to provide a concrete method for summa-
rizing the explicit and implicit data without materializing the implicit data. As our experiments confirm,
completeness is desirable as one can get the full graph summary without spending the time to materialize
and the space to store the implicit data. We adapt the classic bisimulation-based summary definitions
from the literature to our framework, and show that the RDF bisimulation summaries defined in our
framework are complete. This novel result nicely complements existing knowledge about bisimulation
summaries e.g., [25, 28, 19, 30, 7].
3. We introduce four novel RDF summaries, based on new RDF node equivalence relations (Section 4
and 5). We show that two of them are complete (based on our sufficient condition), while the two others
are not. Interestingly, incompleteness turns out to be due to separate treatment of RDF nodes having
types; this contrasts with the prominent role played by resource types in previous RDF summarization
proposals [34, 21, 27]. We compare our summaries and analyze relationships between them in Section 6.
4. We have devised summary building algorithms (Section 7) and implemented our proposal in a summary
building tool available for download at [1]. We demonstrate through experiments the strong size reduction
through summarization for many real and synthetic datasets and the scalability of our summary building
algorithms in Section 8.

1As commonly the case, many graphs may have the same summary.
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4 Čebirić, Goasdoué & Manolescu

Assertion Triple Relational notation
Class s rdf:type o o(s)
Property s p o p(s, o)

Constraint Triple OWA interpretation
Subclass s ≺sc o s ⊆ o

Subproperty s ≺sp o s ⊆ o

Domain typing p ←↩d o Πdomain(s) ⊆ o

Range typing p ↪→r o Πrange(s) ⊆ o

Figure 1: RDF (top) & RDFS (bottom) statements.

As an image is worth a thousand words, the Web site [1] provides graphical representations of many
sample summaries.

2 Preliminaries
We introduce RDF graphs and queries in Section 2.1, and requirements for our RDF summaries in Sec-
tion 2.2.

2.1 RDF Graphs and Queries
An RDF graph (or graph, in short) is a set of triples of the form s p o. A triple states that its subject s
has the property p, and the value of that property is the object o. We consider only well-formed triples,
as per the RDF specification [37], using uniform resource identifiers (URIs), typed or untyped literals
(constants) and blank nodes (unknown URIs or literals). Blank nodes are essential features of RDF
allowing to support unknown URI/literal tokens. These are conceptually similar to the labeled nulls or
variables used in incomplete relational databases [2], as shown in [10].

Notations. We use s, p, and o as placeholders for subjects, properties and objects, respectively. Lit-
erals are shown as strings between quotes, e.g., “string”. Figure 1 (top) shows how to use triples to
describe resources, that is, to express class (unary relation) and property (binary relation) assertions. The
RDF standard [37] has a set of built-in classes and properties, as part of the rdf: and rdfs: pre-defined
namespaces. We use these namespaces exactly for these classes and properties, e.g., rdf:type specifies
the class(es) to which a resource belongs. For brevity, we will sometimes use τ to denote rdf:type.

For example, the following RDF graph G describes a book, identified by doi1: its author (a blank node
_:b1 related to the author name), title and date of publication:

G =
{doi1 rdf:type Book, doi1 writtenBy _:b1,
doi1 hasTitle “Le Port des Brumes′′,
_:b1 hasName “G. Simenon”, doi1 publishedIn “1932”}

RDF Schema (RDFS). RDFS allows enhancing the descriptions in RDF graphs by declaring semantic
constraints between the classes and the properties they use. Figure 1 (bottom) shows the four main kinds
of RDFS constraints, and how to express them through triples. For concision, we denote the properties
expressing subclass, subproperty, domain and range constraints by the symbols ≺sc, ≺sp,←↩d and ↪→r,
respectively. Here, “domain” denotes the first, and “range” the second attribute of every property. The
RDFS constraints (Figure 1) are interpreted under the open-world assumption (OWA) [2], i.e., as deductive
constraints: if the triples hasFriend rdfs:domain Person and Anne hasFriend Marie hold in the graph,
then so does the triple Anne rdf:type Person. The latter is due to the domain constraint in Figure 1.

Inria
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doi1

Book

Publication

“Le Port des Brumes”

_:b1

“G. Simenon”

“1932”

Person

writtenBy

hasAuthor

publishedIn

rdfs:subClassOf

rdfs:domain

rdfs:range

rdfs:subPropertyOf

hasTitle

writtenBy

hasName

rdf:type

rdf:type

hasAuthor rdf:type

rdfs:domain

Figure 2: RDF graph and its saturation.

r1 r2 r3

a1 t1

author title
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title editor
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editor comment

Book

τ

r6

τ

Journal

τ

r4

a2 t3

author title

r5

t4

title

editor

Spec

τ

publishedreviewed

Figure 3: RDF graph used for summarization.

Implicit triples are an important RDF feature, considered part of the RDF graph even though they
are not explicitly present in it, e.g., Anne rdf:type Person above. W3C names RDF entailment the
mechanism through which, based on a set of explicit triples and some entailment rules, implicit RDF
triples are derived. We denote by `iRDF immediate entailment, i.e., the process of deriving new triples
through a single application of an entailment rule. More generally, a triple s p o is entailed by a graph
G, denoted G `RDF s p o, if and only if there is a sequence of applications of immediate entailment rules
that leads from G to s p o (where at each step, triples previously entailed are also taken into account).

For instance, assume that the RDF graph G above is extended with the constraints: Book ≺sc
Publication, writtenBy ≺sp hasAuthor, writtenBy ←↩d Book and writtenBy ↪→r Person.

The resulting graph is depicted in Figure 2. Its implicit triples are those represented by dashed-line
edges.

RDF graph saturation. The immediate entailment rules allow defining the finite saturation (a.k.a. clo-
sure) of an RDF graph G, which is the RDF graph G∞ defined as the fixpoint obtained by repeatedly
applying `iRDF rules on G.

The saturation of an RDF graph is unique (up to blank node renaming), and does not contain implicit
triples (they have all been made explicit by saturation). An obvious connection holds between the triples
entailed by a graph G and its saturation: G `RDF s p o if and only if s p o ∈ G∞.
The semantics of an RDF graph is its saturation. RDF entailment is part of the RDF standard itself; in
particular, the answers to a query posed on G must take into account all triples in G∞ [37].

For presentation purposes, we may use a triple-based or a graph-based representation of an RDF

RR n° 8920



6 Čebirić, Goasdoué & Manolescu

graph:

1. The triple-based representation of an RDF graph. We see an RDF graph G as a partition of its
triples into three components G = 〈DG, SG, TG〉, where: (i) SG, the schema component, is the set of all G
triples whose properties are ≺sc, ≺sp, ←↩d or ↪→r; (ii) TG, the type component, is the set of τ triples
from G; (iii) DG, the data component, holds all the remaining triples of G. Note that each of DG, SG, and
TG is an RDF graph by itself.

Further, we call data property any property p occurring in DG, and data triple any triple in DG. For
illustration, we use the graph in Figure 3: class nodes are shown in purple boxes, while TG triples appear
as purple arrows; DG consists of the triples shown in black, while SG is empty. For brevity, we will denote
the data properties appearing in Figure 3 by their starting letters: a, t, e, c, r and p.

2. The graph-based representation of an RDF graph. As per the RDF specification [37], the set of
nodes of an RDF graph is the set of subjects and objects of triples in the graph, while its edges correspond
to its triples. We define three categories of RDF graph nodes: (i) a class node is any node whose URI
appears as subject or object of a ≺sc triple, or object of a ←↩d or ↪→r or τ triple; (ii) a property node
is any node whose URI appears as subject/object of a ≺sp triple, or subject of a ←↩d or ↪→r triple, or
property of a triple2 (iii) a data node as any node that is neither a class nor a property node. Note that the
sets of class nodes and of property nodes may intersect (indeed, nothing in the RDF specification forbids
it), while class nodes are disjoint from data nodes, and property nodes are disjoint from data nodes, too.

Size and cardinality notations. We denote by |G|n the number of nodes in a graph G, and by |G| its
number of edges. Further, for a given attribute x ∈ {s, p, o} and graph G, we note |G|0x the number of
distinct values of the attribute x within G. For instance, |DG|0p is the number of distinct properties in the
data component of G.

Queries. We consider the SPARQL dialect consisting of basic graph pattern (BGP) queries, a.k.a. con-
junctive queries, widely considered in research but also in real-world applications [20]. A BGP is a set
of triple patterns, or triples in short; each triple has a subject, property and object, some of which can be
variables.

Notations. We use the usual conjunctive query notation
q(x̄) :- t1, . . . , tα, where {t1, . . . , tα} are triple patterns; the query head variables x̄ are called distin-
guished variables, and are a subset of those in t1, . . . , tα. For boolean queries, x̄ is empty. The head of q
is q(x̄), its body is t1, . . . , tα; x, y, z, etc. denote variables.

Query answering. The evaluation of a query q against G has access only to the explicit triples of G, thus
it may fail to return the complete answer; the latter is obtained by evaluating q against G∞. For instance,
the query below asks for name of the author of “Le Port des Brumes”:

q(x3) :- x1 hasAuthor x2, x2 hasName x3
x1 hasTitle “Le Port des Brumes′′

Its answer against the explicit and implicit triples of our sample graph is: q(G∞) = {〈“G. Simenon”〉}.
Note that evaluating q only against G leads to the empty answer, which is obviously incomplete. This

is why, in keeping with the RDF and SPARQL standard, our work considers query answering.

2.2 Principles and Design Choices
We decide that the summary G/≡ of an RDF graph G is an RDF graph itself. This gives a natural basis for
completeness, as RDF schema statements can be part of the summary; it also allows to use existing RDF
tools to manipulate the summary. Further, we require summaries to satisfy the following conditions:

2A property node must be a node, i.e., merely appearing in a property position does not make an URI a property node; it also
needs to appear a subject or object in the same or another triple.

Inria



Query-Oriented Summarization of RDF Graphs 7

• Schema independence It must be possible to summarize G whether or not it has RDF schema infor-
mation.

• No user input, no parameters Summarization must not depend user input nor on manually-specified
parameters, as the summary should help users get familiar with the data (and not assume this is
already the case).

• Semantic completeness The summary of G must reflect all the explicit data and the implicit data,
given that the semantic of G is its saturation.

• Tolerance to heterogeneity The summary should enable the recognition of “similar” resources de-
spite some amount of heterogeneity in their properties and/or types

The following properties are of a more quantitative nature:

• Compactness The summary should be typically smaller than the RDF graph, ideally by many orders
of magnitude.

• Representativeness The summary should preserve as much information as possible about the struc-
ture G3.

• Accuracy The summary should avoid, to the extent possible, reflecting data that does not exist in G.

To meet our goals of completeness and representativeness, we will not represent frequent graph struc-
tures differently / at the expense of the less frequent ones. Instead, we need a logical form of representa-
tion, based on queries, as we explain below.

Criteria for representativeness and accuracy. For representativeness, queries having answers on G

should also have answers on the summary. Symmetrically, for accuracy, a query that can be answered on
the summary, should also be answerable on the RDF graph itself.

Given an RDF query language (dialect) Q, we define:

Definition 1. (QUERY-BASED REPRESENTATIVENESS) Let G be any RDF graph. G/≡ isQ-representative
of G if and only if for any query q ∈ Q such that q(G∞) 6= ∅, we have q((G/≡)∞) 6= ∅.

Representativeness is desirable as the summary can be used to help users formulate queries: therefore,
it is important to reflect all graph patterns that may occur in the data.

To define accuracy, recall that several graphs may have the same summary, as summarization loses
some information from the input graph; if two RDF graphs differ only with respect to that information,
they have the same summary. We term inverse set of a summary G/≡, the set of all RDF graphs whose
summary is G/≡ (the inverse set is purely conceptual, i.e., we never need to compute it). This leads to the
accuracy criterion:

Definition 2. (QUERY-BASED ACCURACY) Let G be any RDF graph, G/≡ its summary, and G the inverse
set of G/≡. The summary G/≡ isQ-accurate if for any query q ∈ Q such that q((G/≡)∞) 6= ∅, there exists
G′ ∈ G such that q(G′∞) 6= ∅.

The above characterizes the accuracy of a summary with respect to any graph it may correspond to.
Which dialect should we define representativeness and accuracy for? To get compact summaries, we

decide they should not include subject and object values (whether they are URIs, literals or blank nodes);
this follows the observation that there are many orders of magnitude more distinct subject and objects,
than there are distinct properties in an RDF graph [38]. However, we chose to preserve types (classes) and
data properties, as these are essential features of an RDF graph. These choices rule out representativeness
for queries with URIs or literals in subjects or objects positions. Instead, we identify two large and useful
classes of BGPs:

3Clearly, trade-offs exist between compactness and representativeness; we discuss them in Section 6.

RR n° 8920



8 Čebirić, Goasdoué & Manolescu

Definition 3. (RELATIONAL AND RBGP* QUERIES) A relational BGP (RBGP, in short) query is a BGP
query whose body has: (i) URIs in all the property positions, (ii) a URI in the object position of every τ
triple, and (iii) variables in any other positions.

An extended relational (RBGP*, in short) query is a BGP query whose body has (i) URIs or variables
in all the property positions, (ii) a URI in the object position of every τ triple, and (iii) variables in any
other positions.

Both languages forbid URIs or literals in subject and object positions, and require that if type triples
are specified in the query, the type is known. They differ in that RBGPs require URIs in the property
positions, whereas RBGP* also allow variables there. Clearly, RBGPs are a restriction of RBGP*. A
sample RBGP is:

q(x1, x3) :- x1 τ Book, x1 author x2, x2 reviewed x3
while a similar RBGP* is:

q∗(x1, x3) :- x1 τ Book, x1 author x2, x2 y x3
We define RBGP* representativeness and RBGP* accuracy by instantiating Q in Definition 1 and

Definition 2, respectively, to RBGP* queries (Definition 3).
Discussion: preserving joins on literals While an RGBP (or RBGP*) query cannot enforce that the
subject, property or object in a triple is a certain literal or URI (in other words, it cannot express se-
lections), it does express joins. In particular, if the same literal appears in several places in the graph,
an RBGP*-representative summary must preserve the joins enabled by these multiple occurrences. For
instance, consider the graph:

s1 rdf:type city s1 zipCode ”91120”
s2 rdf:type company s2 employeeNo ”91120”
s3 rdf:type person s3 livesIn ”91120”

An RBGP* representative summary must have some results to the hypothetical query asking “cities and
companies such that the zipcode of the first is the number of employees of the second”, because on the
above graph, the query does have results (due to s1 and s2). One may find this query meaningless, and
argue that its non-emptiness on G is an accident. However, the very similar RGBP query “people living
in the zipcode of a city” (which has results based on s1 and s3) is meaningful. In general, without human
user input, it is hard to detect that the summary should preserve the results of one, and not of the other.
Thus, in the remainder of the work, we rely on RBGP* representativeness, knowing it preserves literal-
based joins which may sometimes be seen as accidental. To disable this, it suffices to redefine BGP (thus,
RBGP and RBGP*) query semantics to consider that for query embedding purposes, two occurrences
of the same literal in different places of the graph are not equal, and all our framework would adapt to
this; we do not pursue this option further. (Note that the above discussion only concerns joins on literals;
in contrast, joins on URI are a fundamental aspect of RDF (linked) data, and we consider they must be
preserved by a meaningful summary.)

3 RDF summarization
Keeping in mind the requirements previously stated, to ensure sound-foundation summaries while still
keeping open a space of options, we define our summaries through the classical notion of quotient graph
from graph theory, parameterized by a node equivalence relation. We recall this below:

Definition 4. (QUOTIENT GRAPH) Let A be a label set, G = (V,E) be a labeled directed graph whose
vertices are V , whose edges are E ⊆ V ×V ×A, with labels from A. Let≡ ⊆ V ×V be an equivalence
relation over the nodes of V .

Inria



Query-Oriented Summarization of RDF Graphs 9

The quotient graph of G using ≡, denoted G/≡, is a labeled directed graph having (i) a node nS for
each set S of equivalent V nodes, and (ii) an edge nS1

a−→ nS2 for some label a ∈ A iff there exist two
nodes n1 ∈ S1 and n2 ∈ S2 such that the edge n1

a−→ n2 ∈ E.

Quotient-based graph summaries have been used in the past. The novelty of our work lies in the
equivalence notions we define, and which in particular enable summary completeness w.r.t. explicit and
implicit data. We will rely on:

Definition 5. (RDF NODE EQUIVALENCE) Let ≡ be a binary relation between the nodes of an RDF
graph. We say ≡ is an RDF node equivalence relation (or RDF equivalence, in short) iff (i) ≡ is an
equivalence relation in the classical sense (it is reflexive, symmetric and transitive), (ii) any class node is
≡ only to itself, and (iii) any property node is ≡ only to itself.

where class and property nodes were introduced in Section 2.1.
Next, we first identify interesting relations between the data properties of an RDF graph (Section 3.1).

Building on this, we define two RDF node equivalence relations based on data properties, as well as
another based on node types (Section 3.2); we also reframe the well-known notion of graph bisimula-
tion [15] in our RDF equivalence setting. We formalize RDF summaries and state some of the important
properties they all enjoy (Section 3.3); our novel RDF equivalence relations will lead to defining different
summaries in Section 4 and 5.

3.1 Data property relationships and cliques
We start by considering relations between data properties in a graph G. The simplest relationship is
co-occurrence, when a resource is the source and/or target of two data properties. We generalize this into:

Definition 6. (PROPERTY RELATIONS AND CLIQUES) Let p1, p2 be two data properties in G:
1. p1, p2 ∈ G are source-related iff either: (i) a data node in G is the subject of both p1 and p2, or

(ii) G holds a data node r and a data property p3 such that r is the subject of p1 and p3, with p3
and p2 being source-related.

2. p1, p2 ∈ G are target-related iff either: (i) a data node in G is the object of both p1 and p2, or (ii) G
holds a data node r and a data property p3 such that r is the object of p1 and p3, with p3 and p2
being target-related.

A maximal set of data properties in G which are pairwise source-related (respectively, target-related)
is called a source (respectively, target) property clique.

For illustration, consider the sample graph in Figure 3. Here, properties a and t are source-related
due to r1 (condition (i) in the definition). Similarly, t and e are source-related due to r2; consequently, a
and e are source-related (condition (ii)). Properties r and p are target-related due to r4. The non-empty
source cliques are SC1 = {a, t, e, c}, SC2 = {r} and SC3 = {p}, whereas the non-empty target cliques
are TC1 = {a}, TC2 = {t}, TC3 = {e}, TC4 = {c} and TC5 = {r, p}.

A source clique can be seen as “all the data properties of same-kind resources”; above, it makes sense
to group together properties corresponding to various kinds of publications, such as author, title, editor,
and comment. Similarly, a target clique comprises “the data properties of which same-kind resources are
values”.

It is easy to see that the set of non-empty source (or target) property cliques is a partition over the data
properties of G. Further, if a resource r ∈ G has data properties, they are all in the same source clique;
similarly, all the properties of which r is a value are in the same target clique. This allows us to refer
to the source (or target) clique of r, denoted SC(r) and TC(r). If r is not the value of any property
(respectively, has no property), we consider the target (respectively, source) clique of r to be ∅.

The target and source cliques of the resources in the graph shown in Figure 3 are shown in Table 1.

RR n° 8920



10 Čebirić, Goasdoué & Manolescu

node r1 r2 r3 r4 r5
SC(r) SC1 SC1 SC1 SC1 SC1

TC(r) ∅ ∅ ∅ TC5 ∅
node a1 t1 t2 e1 e2
SC(r) SC2 ∅ ∅ SC3 ∅
TC(r) TC1 TC2 TC2 TC3 TC3

node c1 t4 a2 t3 r6
SC(r) ∅ ∅ ∅ ∅ ∅
TC(r) TC4 TC2 TC1 TC2 ∅

Table 1: Source and target cliques of the sample RDF graph.

Definition 7. (PROPERTY DISTANCE IN A CLIQUE) The distance between two data properties p, p′ in a
source (resp. target) clique is:

• 0 if there exists a resource in G that is the subject (resp. object) of both;

• otherwise, the smallest integer n such that G holds resources r0, . . . , rn ∈ G and data properties
p1, . . . , pn such that r0 is the subject (resp. object) of p and p1, r1 is the subject (resp. object) of
p1 and p2, . . ., rn is the subject (resp. object) of pn and p′.

In Figure 3, the distance between a and t is 0 since r1 has both. The distance between a and e is 1,
while the distance between a and c is 2. Clearly, p and p′ are at distance n for n > 0 iff a resource has
both p and p′′, and further p′′ is at distance n− 1 from p′.

C1 C2

C3 C4

C+
2

C+
1

C+
4C+

3

C∞

Figure 4: Sample cliques of G, their saturations, and their enclosing clique in G∞.

Source and target cliques are defined w.r.t. a given graph G. What is the impact of saturating G on
the cliques? In G∞, every G resource has all the data properties it had in G, therefore two data properties
belonging to a G clique are also in the same clique of G∞. Further, if the schema of G comprises ≺sp
constraints, a resource may have in G∞ a data property that it did not have in G. In turn, this leads to G∞

cliques which “subsume and fuse” several G cliques into one.
For a given clique C of G, we call saturated clique and denote C+ the of all the properties in C

and all their generalizations (superproperties). Observe that C+ reflects only C and the schema of G; in
particular, it does not reflect the data properties shared by resources in G∞, and thus in generalC+ is not a
clique of G∞. The following Lemma characterizes the relationships between cliques of G, their saturated
versions C+, and cliques of G∞:

Lemma 1 (Saturation vs. property cliques). Let C,
C1, C2 be distinct non-empty source (or target) cliques of G.

1. There exists exactly one source (resp. target) clique C∞ corresponding to G∞ such that C ⊆ C∞.

Inria
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2. If C+
1 ∩ C

+
2 6= ∅ then all the properties in C1 and C2 are in the same G∞ clique C∞.

3. Any non-empty source (or target) clique C∞ is a union of the form C+
1 ∪ · · · ∪C

+
k for some k ≥ 1,

where each Ci is a non-empty source (resp. target) clique of G. Further, the above saturated cliques
are all connected through intersections: for any Ci, Cj where 1 ≤ i, j ≤ k with i 6= j, there exist
some cliques D1 = Ci, . . . , Dn = Cj in the set {C1, . . . , Ck} such that:

D+
1 ∩D

+
2 6= ∅, . . . , D

+
n−1 ∩D+

n 6= ∅
4. Let p1, p2 be two data properties in G, whose source (or target) cliques are C1 and C2. Properties

p1, p2 are in the same source (resp. target) clique C∞ corresponding to G∞ if and only if there
exist k non-empty source (resp. target) cliques of G, k ≥ 0, denoted D1, . . . , Dk such that:

C+
1 ∩D

+
1 6= ∅, D

+
1 ∩D

+
2 6= ∅, . . . , D

+
k−1 ∩D

+
k 6= ∅, D

+
k ∩ C

+
2 6= ∅.

Proof. We prove the lemma only for source cliques; the proof for the target cliques is very similar.

1. Any resource r ∈ G having two data properties also has them in G∞; thus, any data properties in
the same source clique in G are also in the same source clique in G∞. The unicity of C∞ is ensured
by the fact that the source cliques of G∞ are by definition disjoint.

2. C+
1 and C+

2 intersect on property p iff there exist some p1 ∈ C1 and p2 ∈ C2 which are special-
izations of the same p (one, but not both, may also be p itself). Independently, we know that there
exist r1, r2 ∈ G such that r1 has p1 and r2 has p2; in G∞, r1 has p1 and p, thus these two properties
are in the same G∞ clique. Similarly, r2 has p2 and p, which ensures that p is also in the same G∞

source clique.

3. Let {p1, . . . , pk} be the data properties that appear both in G and in C∞; it follows from the
saturation rules and the definition of cliques, that k > 0. For 1 ≤ i ≤ k, let Ci be the G source
clique comprising pi. Applying lemma point 1., Ci ⊆ C∞ for each 1 ≤ i ≤ k. Further, it is easy
to see that C+

i ⊆ C∞, since any property that saturation adds to C+
i is also added by saturation to

C∞. Thus,
⋃

1≤i≤k C
+
i ⊆ C∞.

Let us now show that C∞ ⊆
⋃

1≤i≤k C
+
i . Let p ∈ C∞ be a data property, then there exists

a resource r having p in G∞. Then, in G, r has a property p′ which is either p, or is such that
p′ ≺sp p in G∞. Then, in G∞, r has both p and p′, which entails that p′ ∈ C∞. Therefore, p′

is a data property occurring both in C∞ and in G, therefore p′ is one of the properties pi, for some
1 ≤ i ≤ k, that is, p′ ∈ Ci, and accordingly, p ∈ C+

i due to p′ ≺sp p.

Thus, any data property p ∈ C∞ is part of some C+
i .

We must still show that the saturated cliques intersect. If k = 1 the statement is trivially true.
Suppose k ≥ 2 and the statement is false. Let C denote the set {C1, . . . , Cm}; the cliques in C are
pairwise disjoint by definition. Let I ⊆ C be a maximal subset of C cliques such that the saturations
of I cliques all intersect (directly or indirectly). Let J = C \ I be the complement of I; if the last
part of 4. is false, J is not empty. We denote I+, respectively J +, the set of the saturated cliques
from I, resp. J .

No data property pi from I+ can be source-related in G∞ to any data property pj from J +. This
is because source-relatedness requires a resource r having in G∞ both pi and a property p source-
related to pj . If such a property p existed, it would belong both to I+ (since p has a common source
with pi) and to J + (since p is source-related to pj); or, I+ and J + have no property in common.

The lack of source-relatedness in G∞ between pi and pj chosen as above contradicts the hypothesis
that they are part of the same source clique of G∞, namely C∞.

4. The statement follows quite directly as a consequence of the previous one, concluding our proof.
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12 Čebirić, Goasdoué & Manolescu

The lemma is crucial as it states the relationship between the cliques (thus, the summaries) of G and
G∞; our goal is to build the summary of the latter without having access to it, but just access to G. Figure 4
illustrates the lemma. The clique C∞ of G∞ encloses the cliques C1, C2, C3, C4 of G (Lemma item 1).
C+

2 intersects all of C+
1 , C+

3 and C+
4 , thus they are all in the same clique C∞ (item 2), which is the union

of C+
1 , C+

2 , C+
3 and C+

4 (item 3). A chain of intersecting cliques connects e.g., C+
1 through C+

2 to C+
4 .

Item 4 is not illustrated, as individual properties do not show; it follows quite directly from item 3.

3.2 Equivalence relations among graph nodes
We are now ready to introduce two crucial notions of RDF node equivalence based on property cliques:

Definition 8. (STRONG AND WEAK EQUIVALENCE) Strong (denoted ≡S) and weak (denoted ≡W) equiv-
alence are RDF node equivalence relations. Two data nodes of G are strongly equivalent, denoted
n1 ≡S n2, iff they have the same source and target cliques.

Two data nodes are weakly equivalent, denoted n1 ≡W n2, iff: (i) they have the same non-empty
source or non-empty target clique, or (ii) they both have empty source and empty target cliques, or (iii)
they are both weakly equivalent to another node of G.

Observe that strong equivalence implies weak equivalence.
In Figure 3, the resources r1, r2, r3, r5 are strongly equivalent to each other, as well as t1, t2, t3, t4.

Moreover, r1, ..., r5 are weakly equivalent to each other due to their common source clique SC1, as well
as t1, t2, t3, t4 due to their common target clique; the same holds for a1 and a2, and separately for e1 and
e2. In general, weakly equivalent resources can be connected as exemplified in Figure 5, by an alternating
sequence of source and target cliques.

r1

TC1 SC1

r2

TC2

r3

SC2

r4

. . . SCk

r2k

TCk+1

Figure 5: Weakly equivalent resources of G and their cliques.

RDF bisimulation-based node equivalence The classic concept of graph bisimulation has been inten-
sively used to define graph summaries, from [25] to [7] and many others. To clarify the connection with
our work, we revisit bisimulation as an RDF equivalence relation, as follows:

Definition 9. (FW RDF BISIMILARITY) Forward (FW) RDF bisimilarity is an RDF node equivalence
relation such that two data nodes n1, n2 ∈ G are FW-bisimilar, denoted n1 ≡fw n2, iff (i) for every G data
triple of the form n1 p m1 there exists a G data triple of the form n2 p m2 such that m1 ≡fw m2, and
conversely (ii) for every G data triple of the form n2 pm2 there exists a G data triple of the form n1 pm1

such that m1 ≡fw m2.

Similarly, a backward (BW) RDF bisimilarity, noted ≡bw, is defined by inverting the subject and
object positions of triples in the definition above. Further, a forward and backward (FB) RDF bisimilarity
between data nodes, noted ≡fb is defined by nodes that are both FW and BW similar.

In Figure 3, nodes t1, t2, t4 are BW-bisimilar, as they are only targets of the title property from BW-
similar sources r1, r2, r5, since they have no incoming edges. However, no two resources among r1
to r5 are FW-bisimilar (thus, they are not FB-bisimilar either), as they all have different sets of outgo-
ing properties. This example illustrates that bisimilarity is rare in heterogeneous graphs, and accord-
ingly, bisimulation summaries are almost as large at the data e.g., 70% to 99% reported in [19]. Thus,
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bisimulation summaries do not satisfy our compactness requirement. Several works considered bounded
bisimilarity, i.e., accept nodes as bisimilar if they surrounding subgraphs of diameter at most k edges are
bisimilar; small values of k reduce summary size, but then (i) structural and semantic properties are only
guaranteed on a distance of at most k, (ii) it is hard (and lengthy) for users to guess k through repeated
summarization.

The two novel (weak and strong) and three recycled (FW, BW and FB) equivalences mentioned above
ignore possible type triples. The last very simple RDF node equivalence we introduce is:

Definition 10. (TYPE-BASED EQUIVALENCE) Type-based
equivalence (denoted ≡T) between graph nodes is an RDF equivalence defined as follows. Two data
nodes n1 and n2 of G are type-equivalent, denoted n1 ≡T n2, iff they have exactly the same set of types,
which is non-empty.

Recall that some or even all nodes in an RDF graph may lack types; all such nodes are equivalent
from the viewpoint of ≡T.

Clearly, each equivalence relation defines a partition over the data nodes in G.

3.3 RDF summaries
With the RDF equivalence notions in place, we define RDF summaries directly as graph quotients:

Definition 11. (RDF SUMMARY) Given an RDF graph G and an RDF relation ≡ among the nodes of G,
the summary of G by ≡, denoted G/≡, is the quotient of G by the RDF node equivalence relation ≡.

Thus, any RDF node equivalence (in particular, any of the six: ≡W, ≡S, ≡fw, ≡bw, ≡fb and ≡T

introduced in the previous section) leads to a (possibly distinct) quotient summary. It immediately follows
from the definition that the size of a summary is bounded by that of its summarized graph. In practice, as
we will show, our summaries are much smaller than the graph.
Representation function f : By the summary definition, to every node in G corresponds exactly one
node in the summary G≡. We call representation function and denote f≡ (or simply f , when this does
not cause confusion) the function associating a summary node to each G node; we say f(n) represents n
in the summary.

Importantly, any RDF summary enjoys the following property:

Property 1. (SCHEMA PRESERVATION) An RDF graph G and an RDF summary G/≡ of it have the same
schema triples, i.e., SG = SG/≡ holds.

An RDF summary preserves the schema of the summarized graph because (i) class and property
nodes, RDF-equivalent only to themselves, are preserved through a quotient that uses an RDF node equiv-
alence relation, and (ii) schema triples only contain class or property nodes as subjects/objects. As we
shall see, preserving the schema is necessary (but not sufficient) to achieve summary completeness (Sec-
tion 2.2). Further, since the summary is an RDF graph, the subjects of type and data triples in G/≡ must
be URIs.

Further, we find that:

Proposition 1. (SUMMARY REPRESENTATIVENESS) An RDF summary G/≡ is RBGP*-representative.

Proof. We prove the statement for RBGP queries; Proposition 2 (below) carries the statement over to
RBGP*.

Let q be a query such that q(G∞) 6= ∅; we need to show that q((G/≡)∞) 6= ∅.
Let φ : q → G∞ be an embedding, assigning to each query variable v, a node from G∞; we extend φ

to say it maps triple patterns from q into triples from G∞. We need to produce an embedding from q into
(G/≡)∞.

First, consider a triple pattern t of q whose embedding φ(t) ∈ G∞ also belongs to G.
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14 Čebirić, Goasdoué & Manolescu

• If φ(t) is a schema triple, then φ(t) is also in G/≡, since G and G/≡ have the same schema triples.

• Else if φ(t) is a type triple of the form s τ c, the triple f(s) τ c belongs to G/≡, thus also to
(G/≡)∞.

• Otherwise, φ(t) = s p o ∈ G is a data triple, G/≡ holds the triple f(s) p f(o), thus (G/≡)∞ also
comprises it.

Now consider a triple pattern t′ of q whose embedding φ(t′) ∈ G∞ does not belong to G.

• If φ(t′) is a schema triple, then by definition of RDF entailment φ(t′) ∈ (SG)
∞, thus it is also in

(G/≡)∞ since SG = SG/≡ ⊆ G/≡ by definition of a summary.

• Else if φ(t′) is a data triple in G∞, then by definition of RDF entailment, this triple φ(t′) must be
entailed by a data triple td = sd pd od in G and a subproperty constraints ts, i.e., a schema triple in
S∞. As explained above, f(sd) pd f(od) ∈ G/≡; at the same time, ts also belongs (G/≡)∞, since
SG = SG/≡ hence (SG)

∞ = (SG≡)∞. It follows that the inference step which entailed φ(t′) from td
and ts in G∞ also applies on f(s) pd f(od) and ts in (G/≡)∞.

• Otherwise, φ(t′) is a τ triple in G∞. This may result either:

– from a DG triple td = sd pd od and a triple ts ∈ (SG)
∞, if ts is a←↩d or ↪→r triple. This case

is very similar to the one above.

– from a TG triple of the form s τ c1 and a schema triple ts = c1 ≺sc c2 ∈ (SG)
∞, such that

φ(t′) = s τ c2. In this case, G/≡ holds the triple f(s) τ c1 which is also present in (G/≡)∞,
thus the same inference step applies in (G/≡)∞ to produce f(s) τ c2, since SG = SG/≡ hence
(SG)

∞ = (SG/≡)∞.

Thus, any q triple mapped by φ into a data G∞ triple (which may or may not explicitly belong to G) is
also mapped into a corresponding triple in (G/≡)∞.

To conclude this proof, we now need to show that, in addition to the fact that each q triple that has
an embedding in G∞ has also necessarily an embedding in G∞/≡, if q has an embedding in G∞, then q has
also an embedding in (G/≡)∞. This amounts to show that any two q triples t1 and t2 that join and that
have an embedding in G∞ also embed in (G/≡)∞ (i.e., q joins are preserved).

• If both φ(t1) and φ(t2) are schema triples in G∞, then these two triples are also in (G/≡)∞, since
SG = SG/≡ hence (SG)

∞ = S∞G/≡ .

• Else if both φ(t1) and φ(t2) are non-schema triples in G∞:

– If both φ(t1) and φ(t2) are data triples in G∞, there exists a triple t′1) (respt′2) in G, with same
subject/object, from which φ(t1) (resp. φ(t2)) is entailed using a sub-property constraint
t1s (resp. t2s) from S∞. Since φ(t1) and t′1 (resp. φ(t2) and t′2) have the same subject and
object values, then t′1 and t′2 have same values on the places where t1 and t2 join. Therefore,
if we assume that t′1 = s1 p1 o1 and t′2 = s2 p2 o2, the G/≡ triples f(s1) p1 f(o1) and
f(s2) p2 f(o2) necessarily have same values on the places where t1 and t2 join. Moreover,
since SG = SG/≡ hence (SG)

∞ = (SG/≡)∞, these two G/≡ triples and the above-mentioned t1s
and t2s schema triples, produce the counterpart triples of φ(t1) and φ(t2) in (G/≡)∞, which
have same subject and object values. Thus, the q triples t1 and t2 embed in these two (G/≡)∞

triples, if they embed in φ(t1) and φ(t2) in G∞.
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– Else if both φ(t1) and φ(t2) are type triples in G∞, say φ(t1) = u τ c1 and φ(t2) = u τ c2,
then t1 = x τ c1 and t2 = x τ c2 by definition of an RBGP query. As in the cases of single
q triple embeddings, φ(t1) (resp. φ(t2)) results either from a G triple u τ c and a S∞G triple
c ≺sc c1, or a G triple u p u1 and a S∞G triple p ←↩d c1, or a G triple u1 p u and a (SG)

∞ triple
p ↪→r c1. Therefore, since SG = SG/≡ hence S∞G = (SG/≡)∞, for φ(t1) (resp. φ(t2)), there
are either a G/≡ triple f(u) τ c and a (SG/≡)∞ triple c ≺sc c1, or a G/≡ triple f(u) p f(u1)
and a (SG/≡)∞ triple p ←↩d c1, or a G/≡ triple f(u1) p f(u) and a (SG/≡)∞ triple p ↪→r c1,
which entail f(u) τ c1 and f(u) τ c2 in G∞/≡. Thus, the q triples t1 and t2 embed in these two
G∞/≡ triples, if they embed in φ(t1) and φ(t2) in G∞.

– Otherwise, φ(t1) is a data triple in G∞ and φ(t2) is a type triple in G∞. This case is very
similar to the two above case, hence we do not detail it.

• Otherwise, φ(t1) is a schema triple in G∞ and φ(t2) is not a schema triples in G∞. In this case,
since q is an RBGP query, q triples must be such that t1 is s1 p1 o1 with p1 ∈ {≺sc,≺sp,←↩d, ↪→r}
and t2 is either s2 p o2 or s2 τ c.

Since G∞ and G∞/≡ have the same schema, φ(t1) also belongs to G∞/≡. Now:

– If t2 is s2 p o2 then φ(t2) = s, p, o must be either in G or entailed from a G data triple s, p′, o
and a S∞G sub-property triple p′,≺sp, p (see above, for single q triple embedding). If φ(t2) is
in G, then f(s) p f(o) is in G/≡, hence in G∞/≡. Otherwise, f(s) p′ f(o) is in G/≡, p′ ≺sp p

is in SG/≡ (since G and G/≡ have the same schema), thus f(s) p f(o) is in G∞/≡. Since t1
and t2 joins, s and/or p are class/property nodes. If s (resp. o) is a class/property node, then
f(s) = s (resp. f(o) = o). Hence, φ(t1) ∈ G∞/≡ joins with f(s) p f(o) ∈ G∞/≡.

– If t2 is s2 τ c then φ(t2) = s τ c must be either in G or entailed from (i) a G data triple s p o
and a S∞G triple p ←↩d c, or a G data triple s1 p s and a S∞G triple p ↪→r c, or (iii) a G type
triple s τ c′ and a S∞G triple c′ ≺sc c (see above, for single q triple embedding). If φ(t2) is in
G, then f(s) τ c is in G/≡, hence in G∞/≡. Otherwise, f(s) p f(o) or f(s1) p f(s) or f(s) τ c′

is in G/≡, and (since G and G/≡ have the same schema) thus f(s) τ c is in G∞/≡. Since t1 and
t2 can only join on s2, s is a class or property nodes, hence f(s) = s. Therefore, φ(t1) ∈ G∞/≡
joins with f(s) τ c ∈ G∞/≡.

Proposition 2. RBGP representativeness entails RBGP∗ representativeness.

Proof. Let q∗ be an RBGP∗ query which is non-empty on G∞ and G/≡ be an RBGP-representative sum-
mary of G. We show that non-emptiness of q∗ on G∞ entails its non-emptiness on (G/≡)∞.
Given that q∗(G∞) is non-empty, there exists at least an embedding of q∗ into G∞; let q be the query
obtained by replacing in q∗, each variable occurring in the property position by the concrete property
matching it in G∞. Clearly, q has results on G∞, and since G/≡ is RBGP representative, q also has re-
sults on (G/≡)∞. Therefore, q(G∞/≡) 6= ∅, and given that q ⊆ q∗ (query containment), it follows that
q∗((G/≡)∞) 6= ∅.

One can prove in a very similar fashion that summaries are also representative with respect to regular
path expression queries such as the property paths introduced in SPARQL 1.1: any regular path expression
query whose results are non empty on an RDF graph G also has non-empty results on a summary of G.
As a consequence, our summaries also preserve reachability in G: if a path leads from n1 to n2 in G, the
same path also leads from f(n1), representing n1 in the summary, to f(n2).

We are interested in summaries having the following property:
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16 Čebirić, Goasdoué & Manolescu

Definition 12. (FIXPOINT PROPERTY) A summary G/≡ has the fixpoint property iff for any graph G,
(G/≡)/≡ = G/≡ holds.

Intuitively, the fixpoint property expresses the fact that a summary cannot be summarized further,
i.e., G/≡ is its own summary. This is desirable as we wish our summaries to be as compact as possible.
It turns out that any summary has this property (which easily follows from the fact that the summary is a
quotient).

Proposition 3. (SUMMARY FIXPOINT) An RDF summary
based on the ≡S, ≡W, ≡T, ≡fw, ≡bw or ≡fb RDF node equivalence relation has the fixpoint property.

Proof. We start by some remarks which do not depend on the specific equivalence relation used. Suppose
that a summary does not have the fixpoint property, i.e., G/≡ 6= (G/≡)/≡. By the definition of a quotient
graph, if (G/≡)/≡ and G/≡ differ, then (G/≡)/≡ must have less nodes than G/≡: on one hand, a quotient
summary always has at most as many nodes as the summarized graph; on the other hand, if G and G/≡
had the same number of nodes, they would also have the same number of edges, since the summary edges
are completely determined by the summary nodes and the edges of the original graph.

We now split the discussion for our three RDF equivalence relations and the three ones based on
bisimulation:

Case≡S: if two G/≡ nodes n1, n2 are≡S-equivalent, then both nodes have the same source and target
cliques. In this case, n1 (resp. n2) represents G nodes, each of which has the same source and target
cliques as n1 and n2. Therefore, by definition of a graph quotient, all G nodes represented by n1 and n2
would end up in a single G/≡ node, a contradiction.

Case ≡W: if (G/≡)/≡ has less nodes than G/≡, then there exist two G/≡ nodes n1, n2 that have the
same non-empty source or target cliques. In this case, there exists some property common to these same
cliques, hence all the G nodes represented by n1 and n2 would end up in a single G/≡ node by the
definition of a graph quotient using ≡W, a contradiction.

Case ≡T: if two G/≡ nodes n1, n2 are ≡T-equivalent, then both nodes have the same non-empty type
sets. In this case, n1 (resp. n2) represents G nodes, every of which has the same non-empty type sets as
n1 and n2. Therefore, by the definition of a graph quotient, all G nodes represented by n1 and n2 end up
in a single G/≡ node, a contradiction.

Case ≡fw: if two G/≡ nodes n1, n2 are ≡fw-equivalent, then for every G/≡ node m1 such that
n1 p m1 ∈ G/≡ there exists a G/≡ node m2 such that n2 p m2 ∈ G/≡ and m1 ≡fw m2 and similarly for
every G/≡ node m2 such that n2 p m2 ∈ G/≡ there exists a G/≡ node m1 such that n1 p m1 ∈ G/≡ and
m1 ≡fw m2 . By definition of ≡fw, n1 p m1 ∈ G/≡ iff r1i p r1i

′ ∈ G with n1 representing r1i and m1

representing r1i
′, for 1 ≤ i ≤ k. Similarly, n2 p m2 ∈ G/≡ iff r2j p r

2
j
′ ∈ G with n2 representing r2j and

m2 representing r2j
′, for 1 ≤ j ≤ l. It therefore follows that the G nodes r1i and r2j are ≡fw-equivalent,

for 1 ≤ i ≤ k and 1 ≤ j ≤ l, hence are represented by a single G/≡ node n (instead of two nodes n1 and
n2), a contradiction.

Case ≡bw: the proof derives directly from the above one by considering G/≡ triples in which n1, n2
are objects (instead of subjects).

Case ≡fb: the proof derives directly from the two above ones by considering that n1, n2 are subjects
of G/≡ triples and also objects of some other G/≡ triples.

This has an immediate interesting consequence, considering that an RDF summary belongs to its own
inverse set:

Proposition 4. (ACCURACY) Any RDF summary with the fixpoint property is accurate.

Proof. The proof follows from the fact that any summary has a fixpoint property: a summary G/≡ which
is its own summary, corresponds at least to the RDF graph G/≡ itself.
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An important structural property relates G, G∞ and the representation function f :

Proposition 5. (SUMMARIZATION HOMOMORPHISM) Let G be an RDF graph, G/≡ its summary and f
the corresponding representation function from G nodes to G/≡ nodes. f defines an homomorphism from
G∞ to (G/≡)∞.

Proof. We first show that an homomorphism can be established from the node sets of G∞ to that of
(G/≡)∞.

Recall from Section 2.1 that RDF saturation with RDFS constraints only adds edges between graph
nodes, but does not add nodes. Thus, a node n is in G∞ iff n is in G. Further, by the definition of our
quotient-based summaries (Definition 11), n is in G iff f(n) is in G/≡. Finally, again by the definition of
saturation, f(n) is in G/≡ iff f(n) is in (G/≡)∞.

Therefore, every G∞ node n maps the f(n) (G/≡)∞ node (*).

Next, we show that there is a one-to-one mapping between G∞ edges and those of (G/≡)∞.
If n1 p n2 is an edge in G∞, at least one of the following two situations holds:

• n1 p n2 is an edge in G. This holds iff f(n1) p f(n2) is an edge in G/≡, by definition of an RDF
summary. Finally, if f(n1) p f(n2) is an edge in G/≡, then f(n1) p f(n2) is also an edge in
(G/≡)∞.

• n1 p′ n2 is an edge in G, and p′ ≺sp p is in S∞G , thus n1 p n2 is produced by saturation in G∞. In
this case, we show similarly to the preceding item that f(n1) p′ f(n2) is an edge in (G/≡)∞, hence
f(n1) p f(n2) is also an edge added to (G/≡)∞ by saturation, since (G/≡)∞ and G∞ have the same
(saturated) schema triples (Property 1).

If n1 τ c is an edge in G∞, at least one of the following two situations holds:

• n1 τ c is an edge in G. This holds iff f(n1) τ c is an edge in G/≡, by definition of an RDF summary
(recall that f(c) = c for classes). Finally, if f(n1) τ c is an edge in G/≡, then f(n1) τ c is also an
edge in (G/≡)∞.

• n1 p n2 is an edge in G and p ←↩d c (or p ↪→r c) is in S∞G , thus n1 τ c is produced by saturation
in G∞. In this case, we show similarly as above that f(n1) p f(n2) is an edge in (G/≡)∞, hence
f(n1) τ c is also an edge added to (G/≡)∞ by saturation, since (G/≡)∞ and G∞ have the same
(saturated) schema triples (Property 1).

Therefore, every G∞ edge n1 p n2 (resp. n1 τ c) maps into the (G/≡)∞ edge f(n1) p f(n2) (resp.
f(n1) τ c) (**).

From (*) and (**), it follows that f is an homomorphism from G∞ to (G/≡)∞.

We now consider the completeness requirement introduced in Section 2.2. We want the summary
of G to reflect both the explicit and the implicit triples of G, that is, we would like to compute (G∞)/≡
starting from G/≡ and without saturating G. Recall from Section 2 that the semantics of an RDF graph
is its saturation; thus, any graph having the same saturation as (G∞)/≡ can be seen as the complete
summary of G. Finally, observe that RDF summary nodes are just representatives of the original G nodes,
thus the identity of summary nodes is not as important as the summary structure. Therefore, we are
interested in computing from G and without saturating G, an RDF graph whose saturation is isomorphic
to the saturation of (G∞)/≡. We formalize this by:

Definition 13. (SUMMARY COMPLETENESS) The RDF summary defined by a given RDF node equiv-
alence relation ≡ is complete iff (G∞)/≡ ∼ ((G/≡)∞)/≡, where ∼ denotes isomorphism between the
saturations of two RDF graphs.
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Proposition 5

Theorem 1

(G∞)/≡

G∞

f1

((G/≡)∞)/≡φ defined in Thm. 1

(G/≡)∞

f2

f homomorph. by Prop. 5

G G/ ≡f repr. fn. of summarizing G

∞ ∞

Figure 6: Illustration for Proposition 5 and Theorem 1.

In the above, we used ∼ to denote an isomorphism between two saturated RDF graphs, which more-
over is the identity on class and property nodes (introduced in Section 2).

Definition 13 gives the method we found to compute a graph equivalent to (having the same saturation
as) (G∞)/≡ as follows: summarize G; saturate the result; then summarize it again. In general, we cannot
rule out the existence of other methods to find (G∞)/≡ without saturating G. It is, however, worth noting
that computing (G/≡)∞ (two processing steps starting from G, instead of three) does not suffice, for the
RDF equivalence notions (and thus, the summaries) that we introduce. This will be exemplified e.g., in
Figure 9.

The first major result of our work is:

Theorem 1 (Condition for summary completeness). Let G be an RDF graph, G/≡ its summary and f≡
the corresponding representation function from G nodes to G/≡ nodes.

If the RDF node equivalence relation ≡ satisfies: for every pair (n1, n2) of G nodes, n1 ≡ n2 in G∞

iff f(n1) ≡ f(n2) in (G/≡)∞, then the summary of G through ≡ is complete.

Proof. We start by introducing some notations (see Figure 6). Let f1 be the representation function from
G∞ into (G∞)/≡, and f2 be the representation function from (G/≡)∞ into ((G/≡)∞)/≡.

Let the function ϕ be a function from the (G∞)/≡ nodes to the ((G/≡)∞)/≡ nodes defined as:
ϕ(f1(n)) = f2(f(n)) for n any G∞ node.

Suppose that for every pair (n1, n2) of G nodes, n1 ≡ n2 in G∞ iff f(n1) ≡ f(n2) in (G/≡)∞ holds.
Let us show that this condition suffices to ensure (G∞)/≡ ≡ ((G/≡)∞)/≡ holds, i.e., the ϕ function
defines an isomorphism from (G∞)/≡ to ((G/≡)∞)/≡.

First, let us show that ϕ is a bijection from all the (G∞)/≡ nodes to all the ((G/≡)∞)/≡ nodes. Since
for every pair n1, n2 of G∞ nodes, n1 ≡ n2 iff f(n1) ≡ f(n2) in (G/≡)∞, it follows that (G∞)/≡ and
((G/≡)∞)/≡ have the same number of nodes (*).

Further, a given node n in (G∞)/≡ represents a set of equivalent nodes n1, . . . , nk from G∞. By
hypothesis, n1 ≡ · · · ≡ nk in G∞ iff f(n1) ≡ · · · ≡ f(nk) in G∞/≡ holds. Hence, every node n =

f1(n1) = · · · = f1(nk) of (G∞)/≡ maps to a distinct node n′ = f2(f(n1)) = · · · = f2(f(nk)) in
((G/≡)∞)/≡ (**).

Similarly, a given node n′ in ((G/≡)∞)/≡ represents a set of equivalent nodes n′1 = f(n1), . . . , n′k =
f(nk) in (G/≡)∞. By hypothesis, f(n1) ≡ · · · ≡ f(nk) in G∞/≡ iff n1 ≡ · · · ≡ nk in G∞ holds. Hence,
every node n′ = f2(f(n1)) = · · · = f2(f(nk)) in ((G/≡)∞)/≡ maps to a distinct node n = f1(n1) =
· · · = f1(nk) of (G∞)/≡ (***).

From (*), (**) and (***), it follows that ϕ is a bijective function from all the (G∞)/≡ nodes to all the
((G/≡)∞)/≡ nodes.
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f1(n1) p f1(n2) ∈ (G∞)/≡

n1 p n2
∈ G∞

f1

f2(f(n1)) p f2(f(n2))
∈ ((G/≡)∞)/≡

φ

f(n1) p f(n2)
∈ (G/≡)∞

f2

f

Figure 7: Diagram for the proof of Theorem 1.

Now, let us show that ϕ defines an isomorphism from (G∞)/≡ to ((G/≡)∞)/≡.
For every edge n′1 p n

′
2 in (G∞)/≡, by definition of an RDF summary, there exists an edge n1 p n2

in G∞ such that n′1 p n
′
2 = f1(n1) p f1(n2). Figure 7 illustrates the discussion. Further, if n1 p n2 is in

G∞, then f(n1) p f(n2) is in (G/≡)∞ (Proposition 5), hence f2(f(n1)) p f2(f(n2)) is in ((G/≡)∞)/≡.
Therefore,

• since for every f1(n1) p f1(n2) edge in (G∞)/≡, there is an edge f2(f(n1)) p f2(f(n2)) in
((G/≡)∞)/≡, and

• since ϕ(f1(n)) = f2(f(n)), for n any G∞ node, is a bijective function from all (G∞)/≡ nodes to
all ((G/≡)∞)/≡ nodes,

• it follows that ((G/≡)∞)/≡ contains the image of all (G∞)/≡ f1(n1) p f1(n2) triples through ϕ
(*).

Now, for every edge n′′1 p n
′′
2 in ((G/≡)∞)/≡, by definition of an RDF summary, there exists an edge

n′1 p n
′
2 in (G/≡)∞ such that n′′1 p n

′′
2 = f2(n′1) p f2(n′2). Hence, by Proposition 5, there exists an edge

n1 p n2 in G∞ such that n′1 p n
′
2 = f(n1) p f(n2). Moreover, since n1 p n2 is in G∞, f1(n1) p f1(n2)

is in (G∞)/≡. Therefore, since for every f2(f(n1)) p f2(f(n2)) edge in ((G/≡)∞)/≡, there is an edge
f1(n1) p f1(n2) in (G∞)/≡, and since ϕ(f1(n)) = f2(f(n)), for n any G∞ node, is a bijective function
from all (G∞)/≡ nodes to all ((G/≡)∞)/≡ nodes, (G∞)/≡ contains the image of all ((G/≡)∞)/≡ n

′′
1 p n

′′
2

triples through ϕ−1 (**).

Similarly, for every edge n′1 τ c in (G∞)/≡, by definition of an RDF summary, there exists an edge
n1 τ c in G∞ such that n′1 τ c = f1(n1) τ c. Further, if n1 τ c is in G∞, then f(n1) τ c is in (G/≡)∞

(Proposition 5), hence f2(f(n1)) τ c is in ((G/≡)∞)/≡. Therefore,

• since for every f1(n1) τ c edge in (G∞)/≡, there is an edge f2(f(n1)) τ c in ((G/≡)∞)/≡, and

• since ϕ(f1(n)) = f2(f(n)), for n any G∞ node, is a bijective function from all (G∞)/≡ nodes to
all ((G/≡)∞)/≡ nodes,

• it follows that ((G/≡)∞)/≡ contains the image of all (G∞)/≡ f1(n1) τ c triples through ϕ (*’).

Now, for every edge n′′1 τ c in ((G/≡)∞)/≡, by definition of an RDF summary, there exists an edge
n′1 τ c in (G/≡)∞ such that n′′1 τ c = f2(n′1) τ c. Hence, by Proposition 5, there exists an edge n1 τ c
in G∞ such that n′1 τ c = f(n1) τ c. Moreover, since n1 τ c is in G∞, f1(n1) τ c is in (G∞)/≡.
Therefore, since for every f2(f(n1)) τ c edge in ((G/≡)∞)/≡, there is an edge f1(n1) τ c in (G∞)/≡,
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and since ϕ(f1(n)) = f2(f(n)), for n any G∞ node, is a bijective function from all (G∞)/≡ nodes to all
((G/≡)∞)/≡ nodes, (G∞)/≡ contains the image of all ((G/≡)∞)/≡ n

′′
1 τ c triples through ϕ−1 (**’).

From (*) and (**), and, (*’) and (**’), it follows that ϕ defines an isomorphism from (G∞)/≡ to
((G/≡)∞)/≡.

The condition is sufficient, and we will use it to establish completeness for our summaries based on
strong and weak equivalence; finding a necessary condition is currently open. For the summaries based
on bisimulation, we readily establish based on Theorem 1:

Theorem 2. ≡fw, ≡bw and ≡fb summaries are complete.

Proof. We first prove the claim for ≡fw.
We show this result using the sufficient condition stated in Theorem 1. That is, n1 ≡fw n2 in G∞

holds iff f(n1) ≡fw f(n2) in (G/≡fw
)∞ holds.

This holds for class nodes and for property nodes since, by definition, they are only equivalent to
themselves through some RDF node equivalence relation.

Now, consider two data nodes n1, n2 in G∞ such that n1 ≡fw n2 in G∞, and let us show that f(n1) ≡fw

f(n2) in (G/≡fw
)∞.

If n1 ≡fw n2 holds in G∞, then for every triple n1 p m1 there exists a triple n2 p m2 such that
m1 ≡fw m2 holds, and conversely for every triple n2 p m2 there exists a triple n1 p m1 such that
m1 ≡fw m2 holds.

Let P∞n1,n2→m1,m2
be the set of outgoing properties from n1 to m1 and from n2 to m2 in G∞.

In G, the set of outgoing properties from n1 to m1, denoted Pn1→m1
is a subset of P∞n1,n2→m1,m2

,
since by definition the saturation of a graph only adds edges; similarly, in G, the set of outgoing properties
from n2 to m2, denoted Pn2→m2

is a subset of P∞n1,n2→m1,m2
, which may be different from Pn1→m1

.
By definition of a ≡fw-summary, the set of outgoing properties from f(n1) to f(m1) in G/≡fw

is
exactly Pn1→m1 and similarly the set of outgoing properties from f(n2) to f(m2) in G/≡fw

is exactly
Pn2→m2

.
Since G and G/≡fw

have the same schema (Property 1), it follows that in (G/≡fw
)∞, the set of outgoing

properties from f(n1) to f(m1), and from f(n2) to f(m2), is exactly P∞n1,n2→m1,m2
(data edges can

only be added through ≺sp constraints).
Since the above holds for any pair of data nodes n1, n2 such that n1 ≡fw n2 in G∞, and for any of

their G∞ outgoing edges n1 pm1 and n2 pm2, hence f(n1) ≡fw f(n2) in (G/≡fw
)∞ holds.

Now, consider two data nodes f(n1), f(n2) in (G/≡fw
)∞ such that f(n1) ≡fw f(n2) in (G/≡fw

)∞ and
let us show that n1 ≡fw n2 holds in G∞.

If f(n1) ≡fw f(n2) holds in (G/≡fw
)∞, then for every triple f(n1) p f(m1) there exists a triple

f(n2) p f(m2) such that f(m1) ≡fw f(m2) holds, and conversely for every triple f(n2) p f(m2) there
exists a triple f(n1) p f(m1) such that f(m1) ≡fw f(m2) holds.

Let P∞f(n1),f(n2)→f(m1),f(m2)
be the set of outgoing properties from f(n1) to f(m1) and from f(n2)

to f(m2) in (G/≡fw
)∞.

In G/≡fw
, the set of outgoing properties from f(n1) to f(m1), denoted Pf(n1)→f(m1) is a subset

of P∞fn1),f(n2)→f(m1),f(m2)
, since by definition the saturation of a graph only adds edges; similarly,

in G/≡fw
, the set of outgoing properties from f(n2) to f(m2), denoted Pf(n2)→f(m2) is a subset of

P∞f(n1),f(n2)→f(m1),f(m2)
, which may be different from Pf(n1)→f(m1).

By definition of a≡fw-summary, the set of outgoing properties from n1 tom1 in G is exactlyPf(n1)→f(m1)

and similarly the set of outgoing properties from n2 to m2 in G is exactly Pf(n2)→f(m2).
Since G and G/≡fw

have the same schema (Property 1), it follows that in G∞, the set of outgoing
properties from n1 to m1, and from n2 to m2, is exactly P∞f(n1),f(n2)→f(m1),f(m2)

(data edges can only
be added through ≺sp constraints).
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Figure 8: Weak summary of the RDF graph in Figure 3.

Since the above holds for any pair of data nodes f(n1), f(n2) such that f(n1) ≡fw f(n2) in (G/≡fw
)∞,

and for any of their (G/≡fw
)∞ outgoing edges f(n1) p f(m1) and f(n2) p f(m2), hence n1 ≡fw n2 in

G∞ holds.

The proof for ≡bw directly derives from the above one by considering incoming edges instead of
outgoing ones; the proof for ≡fb then derives from those of ≡fw and ≡bw by considering both incoming
and outgoing edges.

4 Weak-equivalence summaries
In this section, we explore summaries based on the weak equivalence ≡W of graph nodes.

4.1 Weak summary
Our first new summary is solely based on weak equivalence:

Definition 14. (WEAK SUMMARY) The weak summary of the graph G, denoted G/W, is its quotient graph
w.r.t. the weak equivalence relation ≡W.

For each set of ≡W-equivalent G nodes, there is exactly one node in G/W. Note that the partition of G
nodes into≡W equivalence classes is also a partition of G data properties at the source, that is: the sources
of G edges labeled with a given data property p are all weakly equivalent. For instance, in Figure 3, the
sources of all “editor” edges are in the weak equivalence class {r1, r2, r3, r4, r5}.

The≡W partition over the set of nodes of G also induces a partition of the source cliques of G. Indeed, if
n1 ≡W n2, their source cliques are connected through a chain of alternating cliques as
sketched in Figure 5; conversely, such a chain, by definition, only connects weakly related resources.
By a symmetrical reasoning, the weak equivalence classes of G also lead to a partition over the target
cliques of G. For instance, in Figure 3, to the equivalent resource set {r1, . . . , r5} corresponds the set of
source cliques {SC1} and the set of target cliques {TC5}. Thus, to each set S of weakly equivalent G
nodes one can associate through a bijection, a set of G source cliques, and a set of G target cliques. This
leads to:

Definition 15. (SET REPRESENTATIVE) Let N be any injective function taking as input two sets of
URIs, and returning a new URI. Let S be an equivalence class of G data nodes w.r.t. ≡W. The weak
summary node representing all S nodes, also called the set representative of S in the summary, is:
N( ∪

r∈S
TC(r), ∪

r∈S
SC(r)).

In the above, N is called on: the set of data properties from all the target cliques of S nodes; and the
set of data properties from all the source cliques of S nodes. We will use N to denote any function which
assigns URIs to nodes in quotient (RDF) graphs.
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Notations. We use Nr to denote the weak summary node representing a resource r ∈ S, and NTC
SC to

denote N(TC, SC). For simplicity, we will mostly omit the set delimiters when showing TC and SC,
and omit one such set altogether if it is empty.

For any resource r ∈ G which has types and a non-empty source or target clique, its types are carried
to Nr in the weak summary.

In the particular case where a data resource r ∈ G is neither the source nor the target of data properties,
i.e., TC(r) = SC(r) = ∅ (thus r can only appear in τ triples), r is represented by N(∅, ∅) which we
denote Nτ in the sequel. Observe that if a resource r such that TC(r) = SC(r) = ∅ has types, the weak
summary carries the respective types to Nτ .

The weak summary of the graph in Figure 3 is shown in Figure 8. Its nodes are: Na,t,e,c
r,p for the

relatedness partition set {r1, . . . , r5}. The target properties of this node are TC(r4) since the other nodes
have empty target clique; the source properties are those in SC(r1) which is also the source clique of all
the other resources in the set; Nr

a for the set {a1, a2}; Nt for the relatedness partition set {t1, t2, t3, t4}
etc. The edges from Na,t,e,c

r,p to Na and Nt copy the outgoing edges of r1, represented by Na,t,e,c
r,p ; the

edge to Np
e is due to r2 and r3; the edge to Nc is due to r3. The edge from Nr

a to Na,t,e,c
r,p is due to a1,

and the edge from Np
e to Na,t,e,c

r,p is due to e1. The τ edges outgoing Na,t,e,c
r,p are due to the resources r1,

r2 and r3; the creation of Nτ (shown in purple font) is due to the node r6 in the original graph.
The weak summary has the following important properties:

Proposition 6. (UNIQUE DATA PROPERTIES) Each G data property appears exactly once in G/W.

Proof. First, note that any two weak summary nodes n1, n2 cannot be targets of the same data property.
Indeed, if such a data property p existed, let TC be the target clique it belongs to. By the definition of the
weak summary, n1 was created by a call to N(UTC1, USC1) such that TC is included in the union of
target cliques UTC1. Similarly, n2 was created by a call to N(UTC2, USC2) such that TC is included
in the union of target cliques UTC2. Then, UTC1 ∩ UTC2 ⊇ TC 6= ∅, which contradicts the fact that
different equivalence classes of G nodes correspond to disjoint sets of target cliques. The same holds for
the sets of properties of which weak summary nodes are sources. Thus, any data property has at most one
source and at most one target in G/W. Further, by the definition of the summary as a quotient, every data
property present in G also appears in the summary. Thus, there is exactly one p-labeled edge in G/W for
every data property in G.

Importantly, the above Property 6 warrants that the number of data edges in G/W is exactly |DG|0p , the
number of distinct data properties in G. Thus, its number of data nodes is at most 2|DG|0p . The number of
type triples in G/W is bound by min(|TG|e, 2|DG|0p ∗ |TG|0o|): the latter corresponds to the case when every
data node in G/W is of every type in TG.

The next important property enjoyed by weak summaries is completeness, in the sense of Defini-
tion 13. Figure 9 exemplifies this, by tracing the transformation of a graph G on one hand, into G/W,
(G/W)

∞, and then ((G/W)
∞)/W; and on the other hand, from G to G∞ then (G∞)/W. The graph at the bottom

right in the figure is at the same time ((G/W)
∞)/W and (G∞)/W.

W-summary completeness is our most technically invoved result. To establish it, we rely on the next
Proposition:

Proposition 7. (SAME CLIQUES-W) G∞ and (G/W)
∞ have identical source clique sets, and identical

target cliques sets. Further, any node n in G∞ has the source clique SC and target clique TC iff f(n)
in (G/W)

∞ has the source clique SC and target clique TC, with f the representation function (recall
Proposition 5).

Proposition 7 is established based on Proposition 5, and on the following Lemma:
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Figure 9: Weak summary completeness illustration (summary nodes shown as unlabeled circles).

Lemma 2. Data properties are target-related (resp. source-related) in (G/W)
∞ iff they are target-related

(resp. source-related) in G∞.

Proof. We prove the lemma for target-related properties.
“Only if”: If data properties are target-related in (G/W)

∞, then they belong to a same target clique
TC∞W in (G/W)

∞.
By Lemma 1, point 3, it follows that TC∞W is the union of the saturations of a set of G/W cliques

(TC1
W )+, (TC2

W )+, . . . , (TCmW )+. Then:

• For every 1 ≤ j ≤ m:

– TCjW is the target clique of a G/W node nj ;

– nj represents a set of weakly-equivalent G resources, which are targets only of properties in
TCjW . Thus, the properties in TCjW are target-related in G.

– Thus, in G∞, also, the properties in TCjW are target-related.

– From this and the definition of a saturated graph and of a saturated target clique, it follows
that the properties from (TCjW )+ are target-related in G∞.

• Further, still by Lemma 1, point 4, each (TCjW )+ intersects at least another (TClW)
+ for 1 ≤ l 6=

j < m, thus the target properties in all the (TCjW )+ for 1 ≤ j ≤ m, and in particular p, are
target-related to each other in G∞. Thus, p is target-related in G∞ to all properties from TC∞W .

“If”: if data properties are target-related in G∞, then they belong to a same target clique TC∞ in G∞.
Let n1, . . . , nk be the set of all G resources which are values of some properties in TC∞. By definition
of an RDF summary and Proposition 5, each image of f(ni) = N(∪r∈Sni

TC(r),∪r∈Sni
SC(r)) of ni,

RR n° 8920
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for 1 ≤ i ≤ k is at least the object of the same properties as ni, hence all the properties of TC∞ in G∞

are target-related in (G/W)
∞.

The completeness of W-summaries, stated by Theorem 3 below, is then shown based on Proposition 7
by proving that W-summaries enjoy the sufficient condition stated by Theorem 1.

Theorem 3 (W-completeness). Weak summaries are complete.

Proof. We show that W summaries enjoy the sufficient condition for completenes stated in Theorem 1.
That is, given two nodes n1, n2 in G∞, f the representation homomorphism corresponding to the weak-
equivalence relation ≡W, and f(n1), f(n2) the images of n1, n2 in (G/W)

∞ through f (recall Proposi-
tion 5), let us prove that: n1 ≡W n2 in G∞ iff f(n1) ≡W f(n2) in (G/≡W

)∞.
Two summary nodes are weakly-equivalent if they have the same non-empty source or target clique. The
claim to prove hence immediately follows from Property 7, which guarantees that n1 and f(n1), resp. n2
and f(n2), have the same source and target cliques.

Weak summary size. The size of the weak summary is at most that of the original graph. This bound
is reached if all nodes have distinct source and target properties. Moreover, Property 6 entails that the
number of data edges in G/W is exactly the number of distinct data properties in G. Thus, its number of data
nodes is at most twice this number. The number of type triples in G/W is bound by the smallest between
the number of type edges in G.

4.2 Typed weak summary
In this section, we introduce a variant of the W-summary, based on the simple idea that RDF type informa-
tion, when available, can be used to consider equivalent resources having the same set of types (recall that
an RDF node may have 0, 1 or more types, not necessarily related). This summary represents all G nodes
having the exact same types together, while for untyped resources, it reverts to the quotient by the weak
equivalence relation ≡W. Such type-conditioned summarization can be seen as applying two consecutive
quotients to G. We start by introducing two helper notions:

Definition 16. (TYPE-BASED SUMMARY) The type-based
summary of G, denoted G/T, is the summary of G through the ≡T equivalence relation.

G/T groups together typed resources which have the same non-empty set of types, and copies each
untyped G node, since none of them is equivalent to any other node. We assume available an injec-
tive function C which, called on a non-empty set of class URIs from G, returns a fresh URI (not in G).
Figure 10 illustrates a type-based summary; observe the nodes produced by calls to C.

Further, we introduce:

Definition 17. (U-WEAK EQUIVALENCE AND SUMMARY)
Two nodes in a graph G are untyped-weak equivalent, denoted
n1 ≡UW n2, iff n1 and n2 have no type in G and n1 ≡W n2.

The untyped-weak summary of G, denoted G/UW, is its summary through ≡UW.

Untyped weak equivalence is the weak equivalence ≡W restricted to untyped resources only. The
untyped-weak summary G/UW treats the G triples whose subject and object lack types exactly like G/W, and
leaves all typed resources untouched. We can now define:

Definition 18. (TYPED WEAK SUMMARY) The typed weak summary G/TW of an RDF graph G is the
untyped-weak summary of the type-based summary of G, namely (G/T)UW.
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Figure 10: Type-based summary G/T of the RDF graph in Figure 3.
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Figure 11: Typed weak summary G/TW of the graph G in Figure 3.

For example, Figure 11 shows the typed weak summary of the RDF graph in Figure 3. Compared
with G/T from which it is built (Figure 10), the typed weak summary represents all editors with a single
node, all titles with a single node etc., like G/W (Figure 8). However, in contrast with G/W, G/TW represents
publications by three distinct nodes, depending on their types.

Proposition 8. (TW-INCOMPLETENESS) Typed weak sum-
maries are incomplete.

Figure 12 shows a counter-example. In G and G/TW, resources are untyped; a typed resource only
appears due to saturation and the constraint a ←↩d c. Thus, in G/TW, one (untyped) node represents all
data property subjects; in (G/TW)

∞, this (single) node gains a type, and in ((G/TW)
∞)/TW, it is represented

by a single node. In contrast, in G∞, one resource is typed and the other one isn’t, leading to distinct nodes
in (G∞)/TW. This cannot be isomorphic with the result obtained from G if one starts by TW summarization,
thus by Definition 13, G/TW is not complete.

Typed weak summary size. The size of the typed weak summary is at most that of the original graph.
This bound is reached if all nodes have distinct types.
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Figure 12: Typed weak summary completeness counter-example.

5 Strong equivalence summaries
We now present summaries based on the strong RDF node equivalence. Strong summaries (Section 5.1)
are mainly based on this; typed strong summaries (Section 5.2) give preeminence to types.

5.1 Strong summary
Definition 19. (STRONG SUMMARY) The strong summary S is an RDF summary based on the strong
equivalence ≡S.
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Figure 13: Strong summary of the RDF graph in Figure 3.

Recall from the definition of ≡S that only data nodes having the same source clique and the same
target clique are equivalent in this sense. Thus, it is easy to establish a bijection between any pair (source
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clique, target clique) of a data node in G, and a node in the strong summary. To follow through this
intuition, in this section, we denote by NTC

SC the node representing the set of ≡S-equivalent nodes of G
having the target clique TC and the source clique SC.

For example, the strong summary of the graph of Figure 3 is shown in Figure 13. The strong summary
comprises the nodes:

• N(∅, SC1) = Na,t,e,c, for r1, r2, r3 and r5;

• N(TC5, SC1) = Na,t,e,c
r,p , for r4;

• N(TC1, SC2) = Na
r , for a1;

• N(TC2, ∅) = Nt, for t1, t2, t3 and t4;

• N(TC3, SC3) = Np
e , for e1;

• N(TC3, ∅) = Ne, for e2;

• N(TC4, ∅) = Nc, for c1;

• N(TC1, ∅) = Na, for a2;

• N(∅, ∅) = Nτ for r6;

• Book, Journal, and Spec are copied from the schema of G.

As a result, the number of data nodes in the data component DSG is bound by min(|DG|n, (|DG|0e)2)
(recall the notations introduced in Section 2.1). Indeed, SG cannot have more data nodes than G; also, it
cannot have more nodes than the number of source cliques times the number of target cliques, and each
of these is upper-bounded by |DG|0e. By a similar reasoning, the number of data triples in SG is bound by
min(|DG|e, (|DG|0e)4). In the worst case, TSG has as many nodes (and triples) as TG; SSG is identical to SG.

Similarly to weak summaries, strong summaries are complete (Definition 13); this is our last major
theoretical result. We prove this based on counterparts of statements established for GW:

Proposition 9. (SAME CLIQUES-S) G∞ and (G/S)
∞ have identical source clique sets, and identical

target cliques sets. Further, any node n in G∞ has the source clique SC and target clique TC iff f(n)
in (G/S)

∞ has the source clique SC and target clique TC, with f the representation function (recall
Proposition 5).

The above Proposition follows directly from Proposition 5 and the following Lemma:

Lemma 3. Data properties are target-related (resp. source-related) in (G/S)
∞ iff they are target-related

(resp. source-related) in G∞.

Proof. “If”: if data properties are target-related in G∞, then they belong to a same target clique TC∞

in G∞. Let n1, . . . , nk be the set of all G resources which are values of some properties in TC∞. By
definition of an RDF summary and Proposition 5, each image of f(ni) = N(TC(ni), SC(ni)) of ni, for
1 ≤ i ≤ k is at least the object of the same properties as ni, hence all the properties of TC∞ in G∞ are
target-related in (G/S)

∞.
“Only If”: if two data properties p1 and p2 are target-related in (G/S)

∞, then they belong to a same
target clique TCS,∞, in which they are at distance n ≥ 0, i.e., they are target-related because of a set⋃n
i=0{ri+1} of nodes (recall Definition 7) which all have the target clique TCS,∞. In G/S, each such ri+1

has a target clique TCS
i ⊆ TCS,∞, moreover each ri+1 results from a set of G nodes nji+1, j ≥ 1, which

by definition of a strong RDF summary, have all the source clique TCS
i . Hence, every such nji+1 node

has target clique TCS,∞ in G∞ (since G and G/S have the same schema), in which p1 and p2 are target
related.
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28 Čebirić, Goasdoué & Manolescu

a1 ≺sp a, a2 ≺sp a

r3

r2

r1 z1

z2

z3

x1

x2

b

c

a1

a1

a2

G

a1 ≺sp a, a2 ≺sp a

N({}, {a2})

N({c}, {a1})

N({b}, {a1}) ab

c a1

a2

G/S

a1 ≺sp a, a2 ≺sp a

r3

r2

r1 z1

z2

z3

x1

x2

b

c

a1

a
a1

a
a2

a

G∞

a1 ≺sp a, a2 ≺sp a

N({}, {a2})

N({c}, {a1})

N({b}, {a1})b

c

a1

a
a1

a
a2

a

(G/S)
∞

a1 ≺sp a, a2 ≺sp a

N({}, {a1, a2, a})

N({c}, {a1, a2, a})

N({b}, {a1, a2, a})b

c

a1

a
a1

a
a2

a

((G/S)
∞)/S = (G∞)/S

Figure 14: Illustration of the strong completeness statement (some summary nodes are shown as unla-
beled circles).

Based on Proposition 9, we prove that GS enjoys the sufficient condition stated by Theorem 1:

Theorem 4 (S-completeness). Strong summaries are complete.

Proof. We show that S summaries enjoy the sufficient condition for completenes stated in Theorem 1.
That is, given two nodes n1, n2 in G∞, f the representation homomorphism corresponding to the weak-
equivalence relation ≡S, and f(n1), f(n2) the images of n1, n2 in (G/S)

∞ through f (recall Proposi-
tion 5), let us prove that: n1 ≡S n2 in G∞ iff f(n1) ≡S f(n2) in (G/≡S

)∞.
Two summary nodes are strongly-equivalent if they have the same non-empty source or target clique. The
claim to prove hence immediately follows from Property 7, which guarantees that n1 and f(n1), resp. n2
and f(n2), have the same source and target cliques.

Figure 14 illustrates completeness on an example.

Strong summary size. The number of data nodes in the data component DSG is bound bymin(|DG|n, (|DG|0e)2)
(recall the notations introduced in Section 2.1). Indeed, SG cannot have more data nodes than G; also, it
cannot have more nodes than the number of source cliques times the number of target cliques, and each
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of these is upper-bounded by |DG|0e. By a similar reasoning, the number of data triples in SG is bound by
min(|DG|e, (|DG|0e)4). In the worst case, TSG has as many nodes (and triples) as TG; SSG is identical to SG.

5.2 Typed strong summary
The summary presented here is the counterpart of the typed weak one from Section 4.2, but based on
strong equivalence.

Definition 20. (U-STRONG EQUIVALENCE AND SUMMARY) Two nodes in a graph G are untyped-strong
equivalent, denoted n1 ≡US n2, iff n1 and n2 have no type in G and n1 ≡S n2. The untyped-strong
summary of G, denoted G/US, is its summary through ≡US.

Untyped strong equivalence restricts strong equivalence to untyped resources only. The summary G/US
summarizes untyped data resources in strong fashion, and leaves all typed resources untouched (each is
≡US to itself). We can now define:

Definition 21. (TYPED STRONG SUMMARY) The typed strong summary G/TS of an RDF graph G is the
untyped-strong summary of the type-based summary of G, namely: (G/T)/US.

In our example, it turns out that G/TS for the RDF graph in Figure 3 coincides with the G/TW one shown
in Figure 11. As can be easily seen from their definitions, the type-weak and type-strong summaries
behave identically on the triples involving typed resources; on the untyped ones, the difference is of the
same nature as the difference between the strong and weak summaries.

Proposition 10. (TYPED STRONG INCOMPLETENESS)
Typed strong summaries are incomplete.

More generally, in the presence of domain (←↩d) or range (↪→r) RDF schema constraints, one cannot
compute (G∞)/TS from G because the TS summary represents typed resources differently from the untyped
ones. The←↩d and ↪→r constraints may turn untyped resources into typed ones, thus leading to divergent
representations of the data nodes of G in G/TS and respectively (G∞)/TS. Thus, one cannot build from G,
without saturating it, a graph isomorphic to (G∞)/TS.
Typed strong summary size. Similarly to the type weak summary, the size is at most that of the original
graph. This bound is also reached if all nodes have distincts types.

6 Summary comparison
How do our summaries relate to each other, and how can one compare them? G/W and G/S are complete
(Theorems 3 and 4), while G/TW and G/TS are not (Propositions 8 and 10).

Composing summaries. One can easily prove that (G/S)/W = G/W, i.e., one could compute G/W by
first summarizing G into G/S, and then applying weak summarization on this (typically much smaller)
graph; similarly, one can show that (G/TS)/TW = G/TW. It is also the case that (G/W)/S = G/W, i.e., strong
summarization cannot compress a weak summary further, and similarly (G/TW)/TS = G/TW. Figure 15
summarizes the main relationships between summaries.

Size comparison. As a consequence of the above, G/W has at most as many nodes and as most as many
edges as G/S (weak summarizes at least as much as strong), and similarly, the typed weak summary G/TW
summarizes at least as much as the typed strong summary G/TS.

Accuracy comparison. Another interesting measure is the closeness between a graph and its summary.
By Definition 11, any subgraph of the G can be embedded through homomorphism in any summary of
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Figure 15: Main relations between our summaries.

G; however, the opposite is not true, as the representation of data nodes by summary nodes may lead to
subgraphs in the summary which do not exist in G. For instance, G/W in Figure 8 a node has outgoing
edges labeled a and e, whereas such a node does not exist in the original graph (Figure 3). Formally:

Definition 22. (ACCURACY LOSS) The accuracy loss of a summary G/≡ w.r.t. G, denoted AL(G/≡, G), is
the percentage of connected subgraphs of G/≡ which are not isomorphic to any subgraph of G.

The k-level accuracy loss, denoted ALk(G/≡, G), for some k ≥ 2, is the percentage of connected
subgraphs of G/≡ of size at most k, which lack isomorphic counterparts in G.

The lower AL, the more accurate the summary is w.r.t. G. Computing AL(G/≡, G) may be costly be-
cause of an excessively high number of summary subgraphs to check. SinceALk(G/≡, G) ≤ AL(G/≡, G),
we measure ALk(G/≡, G) and use it as a lower bound approximation for AL. Note that small G≡ sub-
graphs show up in queries at least as frequently as larger ones, thus accuracy errors on small subgraphs is
an interesting measure.

It is easy to see that for any graph G, summary G/≡ and integers k1, k2 such that k1 < k2,ALk1(G/≡, G) ≤
ALk2(G/≡, G). This is because any summary subgraph of size k1 which has no isomorphic image in the
graph, is a subgraph of many subgraphs of size k2, which obviously are not isomorphic to a subgraph of
G, either.

Clearly,AL andALk depend the RDF equivalence≡. At one extreme, if every node is only equivalent
to itself, the summary has the size of G, and no accuracy loss. Conversely, if all data nodes are equivalent,
the summary has a single node, having all types from G and an edge going from the node to itself for
every data property in G. This maximizes AL for a given graph.

Relation with bisimulation summaries. Recast in our framework, the three RDF bisimulation sum-
maries are complete (Theorem 2). Our W and S summaries are symetric w.r.t. G edge source and target
nodes, thus the comparison with the unidirectional FW and BW bisimulation summaries is limited. A
deeper comparison is possible and interesting with the (symetric) FB-bisimulation summary G/fb. Since
G/fb preserves G structure and thus node cliques, we have (G/fb)/W = G/W and (G/W)/fb = G/W, and similar
statements for G/S, G/TW, and G/TS. Different from our summaries, G/fb guarantees AL = 0, but it is
usually much larger, as illustrated in Section 3.2 and in our experiments, making it impractical for our
goals.

7 Summarization algorithms
We have implemented a summarization tool (15.000 lines, Java 1.8) which, given an RDF graph G, builds
G/W, G/TW, G/S and G/TS. G is initially stored in a PostresSQL server, in a dictionary-encoded triple table;
summaries are built mostly in memory and relying also on a few SQL queries. For efficiency, the al-
gorithms for building GW and GTW are significantly different from following the summary definitions, and
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we outline them below. GS and GTS are built in a fashion closer to the definitions. We introduce the data
structures and then describe our algorithms.

Weak Typed Weak Strong Typed Strong
rd, dr X X X X
dcls X X X X
clsd X X

dpSrc, dpTarg X X
srcDps, targDps X X

dtp X X X X
sc, tc X X

sToSc, oToTc X X
scToSrc, tcToTarg X X

Figure 16: Overview of the data structures for different summaries.

7.1 Data structures
Currently, our summary graphs are built in memory, based on the Trove library4 providing efficient col-
lection data structures. We represent G URIs by integers, and store them in a set of map/ multi-map
data structures, listed in Figure 16, together with the summaries which use them. All structures are not
needed by all summaries, but many of them are used repeatedly. We describe them below, underlined for
visibility.

rd maps G data nodes to their the G/≡ representative; the dr multimap stores the reverse mapping
(summary node to all G node it represents). We call class set a set of types attached to a same resource
in G; to each non-empty class set corresponds exactly one node in G/TW and G/TS. clsd associates the
corresponding summary node to each class set, while dcls stores the class set of every (typed) data node
from G. In a weak summary G/W, every data property appears only once (Property 6); in G/TW, appears
at most once with an untyped source and untyped target (it may appear several times e.g., with subjects
of different types and/or with typed vs. untyped subjects, see the four title edges in the G/TW summary
in Figure 11). The maps dcls, dpSrc and dpTarg associate to a data property, its source and target (in
GW), respectively, its (possible) single untyped source and untyped target (in GTW). Conversely, for each
G data node (for GW), respectively, for each untyped G data node (G/TW), the sets of data properties it is a
source, respectively target of are stored in the maps srcDps (targDps). dtp maps every data property
to the summary triple(s) it appears in. Each source and target clique is assigned an integer ID, and the
IDs are stored in two lists, sc and tc. sToSc and oToTc associate to each data node, the ID of its source
respectively target clique. Finally, for each source (target) clique ID, the G/S (and G/TS) nodes having that
clique are stored in scToSrc and tcToTarg.

7.2 Summarization algorithms
Building G/W and G/TW requires a single pass over the data. We create candidate summary nodes as we
go over the G triples, and record the association between G nodes and the respective summary nodes in
the maps described above, gradually gaining knowledge about the data properties that each G node is a
source and target of. When nodes share a source or target property, their summary representative nodes
are fused (again based on Property 6). Building G/S and G/TS require a first pass to compute the cliques,
and a second one to build a summary node for each (source clique, target clique) pair associated to one
or several G nodes.

4http://trove.starlight-systems.com/
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Algorithm 1 Summarizing data triples in G/W

Input: Data triples table DG, the summary G/W
Output: Data triples represented in G/W

1: for each s p o in DG do
2: src← getSource(s, p, G/W)
3: targ ← getTarget(o, p, G/W)
4: // getTarget may have modified src and vice-versa
5: src← getSource(s, p, G/W)
6: targ ← getTarget(o, p, G/W)
7: if !existsDataTriple(G/W, src, p, targ) then
8: createDataTriple(G/W, src, p, targ)

9: procedure CREATEDATATRIPLE(G/W, src, p, targ)
10: dtp.put(p, src p targ)
11: dpSrc.put(p, src), srcDps.put(src, p)
12: dpTarg.put(p, targ), targDps.put(targ, p)

Summarizing data triples in G/W. Algorithm 1 shows the procedure for summarizing data triples in a
weak summary. The methods getSource and getTarget implement the representation functions, which
map data nodes from G to data nodes in G/W. These methods create the respective nodes the first time they
are called for a specific data property; on subsequent calls, the respective nodes are returned.

Algorithm 2 shows how we map the subjects of data triples in G to data nodes in G/W. After the
method getSource has been executed, the source node of the property p, denoted srcu, and the node
representing the subject s, denoted srcs must be the same. If neither srcu nor srcs exist yet, src will be a
new data node representing s (line 5). In the cases when one of the nodes exist and the other does not, we
simply use the existing node as src (lines 5-10). Moreover, if srcs had not existed, it means that s was
unrepresented, so we assign src as its representative (line 7). On the other hand, if both srcu and srcs
exist and they are the same, it does not matter which one we choose as src (line 12). When they differ,
we have to merge them (line 14). The mergeDataNodes method replaces the node with less edges.
The remaining node becomes the source/target of all the edges of the replaced node, and it is assigned to
represent all the resources represented by the replaced node. Therefore, this method updates the replaced
node in any of the maps rd, dr, dpSrc, srcDps, dpTarg, targDps, with the remaining node. Effectively,
merging data nodes that are attached to common properties gradually builds property cliques. The method
getTarget in Algorithm 1 is very similar to getSource , the only difference being in passing the object
o instead of the subject, and working with untyped property targets instead of sources.

Algorithm 3 outlines the summarization of type triples in G/W. It iterates over the subjects and classes
of all type triples and tries to represent each resulting pair as follows. We look up the summary data node
src representing s. If s is attached to any data property in G, this means s has already been represented
when summarizing data triples and we assign its representative data node to src and we add the class to
the class set of src. Otherwise, s has some types but no data property, thus we record it as a typed-only
resource. Once all type triples whose subjects also had some data property have been represented, if there
are any typed-only resources, we represent them as well. The procedure representTypedOnly creates the
single data node Nτ representing all resources from the list of typed-only resources and having all the
types of typed-only resources (recall Section 4.1).

7.2.1 Typed weak summmary

Summarizing data triples in G/TW. The basic procedure for summarizing data triples in G/TW (Algo-
rithm 4) is very similar to the one of weak presented in Algorithm 1, with the difference that the entries
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Algorithm 2 Representing the subject s of a data property p in G with a data node in G/W

Input: s, p, G/W
Output: Data triples represented in G/W Variables:

srcu data node representing an untyped source of p

srcs data node representing a (possibly typed) resource s

1: procedure GETSOURCE(s, p, G/W)
2: srcu ← dpSrc.get(p)
3: srcs ← rd.get(s)
4: if srcu =⊥ ∧ srcs =⊥ then
5: return createDataNode(G/W, s)
6: else if srcu 6=⊥ ∧ srcs =⊥ then
7: rd.put(s, src), dr.put(src, s)
8: return srcu
9: else if srcu =⊥ ∧ srcs 6=⊥ then

10: return srcs
11: else if srcs = srcu then
12: return srcs
13: else
14: return mergeDataNodes(G/W, srcs, srcu)

15: procedure CREATEDATANODE(G/≡, r)
16: d← newInteger
17: rd.put(r, d), dr.put(d, r)
18: return d
are stored to the maps only if src and targ respectively, are untyped5. Further, the mapping of data nodes
in G/TW is similar to the one of weak summary; they diverge when both srcs and srcu exist. The decision
on merging data nodes depends on the typing of srcs. If srcs is typed, or it is untyped but already the
same as srcu, we choose srcs as src (lines 12-13). On the other hand, if the two nodes are both untyped
and different from each other, we must merge them (line 15). Therefore, in the typed weak summary only
untyped data nodes may be merged, while the weak allows for the merging of typed data nodes as well.
More precisely, since in the weak summary the data triples are represented before the type triples, the typ-
ing information is not yet available - the merged nodes may or may not be typed. However, in the typed
weak summary the type triples are represented first and taken into account during the summarization of
data triples to build a finer-grained summary.

Summarizing type triples in G/TW. Algorithm 5 shows how we summarize type triples in the typed weak
summary. For each distinct subject we retrieve its class set (line 3) and the representative data node of
the class set (line 4). Observe that in a typed weak summary there is one data node per distinct class
set which represents all subjects having the class set. If such a data node already exists for the given
class set, we simply store it as the representative of the current subject (line 6). Otherwise, we create a
new data node d, which represents s and has the same class set as s (line 8). Further, d is stored as the
representative of its class set (line 9).

Summarizing schema. Prior to summarization, the encoded schema table was created. Since the schema
of G and G/≡ is the same, no action is needed. JDBC. The results of all queries issued to Postgres are

fetched through JDBC. A JDBC parameter that can have an impact on the summarization time is the fetch

5Since in G/TW all typed data nodes are created before untyped ones and the assigned values are sequential, the method
isTyped(d) is as simple as checking whether d is less than or equal to the highest typed data node.
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Algorithm 3 Summarizing type triples in G/W

Input: Type triples table TG, the summary G/W
Output: Type triples represented in G/W

1: toRes← [ ]; toCls← [ ]
2: for each (s, c) in TG do
3: repr ← representTypeTripleG/W, s, c
4: if repr = false then
5: toRes.add(s), toCls.add(c)

6: if toRes.size > 0 then
7: representTypedOnly(G/W, toRes, toCls)

8: procedure REPRESENTTYPETRIPLE(G/W, s, c)
9: d← rd.get(s)

10: if d =⊥ then
11: return false
12: clsd ← dcls.get(d), clsd.add(d, c)
13: return true
14: procedure REPRESENTTYPEDONLY(G/W, toRes, toCls)
15: Nτ ← newInteger
16: for each r in toRes do
17: rd.put(r,Nτ ), dr.put(Nτ , r)
18: clsd ← dcls.get(Nτ )
19: for each c in toCls do
20: clsd.add(c)

size. Larger fetch size is better because there are less real connections to the database to get all the results.
But too large a fetch size will make you wait until that many results are available. The optimal fetch size
will vary depending on the hardware setting.

7.2.2 Strong summary

Summarizing data triples in G/S. Instead of building the cliques gradually as in the weak summary, in
Algorithm 6 we compute all source and target cliques at the very beginning (lines 1-2). Then in lines
3-15, for each data node d in G, a representative data node drepr is assigned in G/S. This data node drepr
must have the exact same source and target clique as d, and there can be at most one such node for any
two source and target cliques. Finally, for each data triple s p o in DG, we retrieve the representative data
node of s, denoted src, and of o, denoted targ, forming a data triple src p targ in G/S. The method for
creating the data triple is the same as for the weak summary in Algorithm 1.

The procedure buildSourceCliques(DG, G/S) invokes the procedure computeSourceClique(G/S, s, Ps)
shown in Algorithm 7 for each subject in DG and the set of data properties of which it is the source.

First, in Algorithm 7 (lines 3-6) we try to find an existing source clique, denoted srcClq, that shares
at least one property with Ps. If such a clique exists we simply add to it all the properties from Ps (line
8). Otherwise, srcClq is a new set with all the properties of Ps, and we add it to the list of all source
cliques sc in G/S (lines 10-11). Finally, srcClq is assigned to s in sToSc (line 12).

The procedures for building target cliques are very similar to these described for the source cliques,
so we omit the discussion.

Summarizing type triples in G/S. The types in G/S are summarized in the same manner as for the WG,
described in Algorithm 3.
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Algorithm 4 Representing the subject of a data property in G with a data node in G/TW

Input: The subject s of the data triple, the property p of s, the summary G/TW
Output: Data triples represented in G/TW

1: procedure GETSOURCE(s, p, G/TW)
2: srcu ← dpSrc.get(p)
3: srcs ← rd.get(s)
4: if srcu =⊥ ∧ srcs =⊥ then
5: return createDataNode(G/TW, s)
6: else if srcu 6=⊥ ∧ srcs =⊥ then
7: rd.put(s, src), dr.put(src, s)
8: return srcu
9: else if srcu =⊥ ∧ srcs 6=⊥ then

10: return srcs
11: else if srcu 6=⊥ ∧ srcs 6=⊥ then
12: if isTyped(srcs) ∨ (srcs = srcu) then
13: return srcs
14: else
15: return mergeDataNodes(G/TW, srcs, srcu)

Algorithm 5 Summarizing type triples in G/TW

Input: Type triples table TG, the summary G/TW
Output: Type triples represented in G/TW

1: typ← evalSELECT s, c FROM TG ORDER BY s

2: for each distinct s in typ do
3: clss ← dcls.get(s)
4: d← clsd.get(clss)
5: if d 6=⊥ then
6: rd.put(s, d), dr.put(d, s)
7: else
8: d← createDataNodeG/TW, clss, s
9: clsd.put(clss, d)

10: procedure CREATEDATANODE(G/TW, r, clsr)
11: d← newInteger
12: rd.put(r, d), dr.put(d, r), dcls.put(d, clsr)
13: return d
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Algorithm 6 Summarizing data triples in G/S

Input: Data triples table DG, the summary G/S
Output: Data triples represented in G/S

Variables:

scId, tcId - source (target) clique ID

DSC , DTC - the set of source (target) data nodes in G/S representing the source clique scId (target
clique tcId)

1: buildSourceCliquesDG, G/S
2: buildTargetCliquesDG, G/S
3: for each distinct data node d in DG do
4: scId← sToSc.get(d), tcId← oToTc.get(d)
5: DSC ← scToSrc.get(scId)
6: DTC ← tcToTarg.get(tcId)
7: if DSC ∩DTC 6= ∅ then
8: rd.put(r, drepr), dr.put(drepr, r)
9: else

10: drepr ← createDataNode(G/S, d)
11: scToSrc.put(scId, drepr)
12: tcToTarg.put(tcId, drepr)

13: for each s p o in DG do
14: src← rd.get(s), targ ← rd.get(o)
15: if !existsDataTriple(G/S, src, p, targ) then
16: createDataTriple(G/S, src, p, targ)

Algorithm 7 Computing source cliques in G/S

Input: The summary G/S, subject s from DG, the set of data properties Ps of which s is the source
Output: sc list and sToSc map of G/S populated

1: procedure COMPUTESOURCECLIQUE(G/S, s, Ps)
2: srcClq ←⊥
3: for each c in sc do
4: if c ∩ Ps 6= ∅ then
5: srcClq ← c
6: break;
7: if srcClq 6=⊥ then
8: srcClq.addAll(Ps)
9: else

10: srcClq.addAll(Ps)
11: sc.add(srcClq)

12: sToSc.put(s, sc.indexOfsrcClq+1)
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Graph G |G|
∣∣G/W∣∣ ∣∣G/TW∣∣ ∣∣G/S∣∣ ∣∣G/TS∣∣
cfW cfTW cfS cfTS

John Peel 271k 33 51 99 61
(BBC Radio) 8223 5320 2741 4448

INSEE Geo 369k 311 360 317 361
1186 1025 1164 1022

DBpedia Person 8M 10 12 28 17
788957 657464 281770 464092

DBLP 150M 71 258 206 285
2123767 584447 731978 529079

LinkedCT 49M 442 505 729 598
111050 97196 67331 82081

LinkedMDB 6.14M 8 12 8 12
118155 78770 118155 78770

LUBM 1M 162 267 208 267
7579 4599 5903 4599

LUBM 10M 162 267 206 267
74013 44907 58204 44907

LUBM 100M 162 267 209 267
705897 428297 547155 428297

WatDiv 10M 124 982 249 1187
88035 11117 43841 9196

BSBM 1M 1046 3054 1067 3054
956 327 937 327

BSBM 10M 4066 14813 4101 14813
2591 711 2569 711

BSBM 100M 13390 40270 13429 40270
7775 2585 7753 2585

Figure 17: Summary graph sizes and compression factors (rounded down to the closest smaller integer)
for various graphs.
Proposition 11. (ALGORITHM CORRECTNESS) Given an RDF graph G: Algorithms 1 and 3, together,
build the weak summary G/W. Algorithms 4 and 5 build the typed weak summary G/TW. Algorithm 6 shows
how to build the strong summary SG; building TSG is very similar.

Algorithm complexity. The complexity of building G/W and G/TW is dominated by the cost of merging
summary nodes, in the worst case, once per triple in G, leading to O(|G| · DPG), where DPG is the number
of distinct data properties in G. To build G/S and G/TS, we actually compute the cliques. First, we find the
distinct data properties of every distinct data node in G, at a cost of O(N · log(N) + |G|), where N is the
number of data nodes in G. Then, for each data node n, we examine all the cliques known so far, to see if
some should be fused due to the data properties of n: in the worst case we may do DPG fusions at a cost of
DPG each, thus a total cost of DPG2. Further, if there are fusions, the associations between the data nodes
previously visited and their cliques need to be updated. A (very pessimistic) upper bound for the number
of nodes concerned is N. Thus, the complexity of this stage is in O(N(N + DPG2)); this dominates the
complexity of the first step and thus dictates the complexity of building G/S and G/TS. As our experiments
show next, the actual scale-up is much better, and close to linear in |G|.

Computing accuracy loss. We developed a tool which enumerates summary subgraphs and for each
subgraph, asks an existential SQL query to check if the subgraph has matches in the data. Our algorithm
enumerates smallest subgraphs first, and re-uses the knowledge that a certain subgraph has no matches in
G to avoid asking queries that correspond to larger graphs comprising the empty one (as we can ascertain
the larger graph has no matches, either).
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8 Experimental results

Settings. We implemented our algorithms in Java 1.8, and relied on Postgres for storing the integer-
encoded triple table. The computer had an Intel Xeon CPU E5-2640 v4 @2.40GHz and 124 GB of
memory; we used PostgreSQL v9.6 with 30 GB of shared buffers and 640 MB working memory. The
JVM had 70 GB of RAM.

Datasets. We summarized synthetic RDF graphs: BSBM [3], LUBM [12] and WatDiv (http://dsg.
uwaterloo.ca/watdiv/) benchmark datasets, as well as real-life graphs: the John Peel BBC Ra-
dio Sessions (http://dbtune.org/bbc/peel/), French INSEE Geo geographic data (http://rdf.
insee.fr/geo/index.html), DBLP, the DBpedia Person dataset (http://wiki.dbpedia.org/
Downloads2015-04), Linked Clinical Trials (LCT) [24] and LinkedMDB [14]. Their sizes (in triples)
are denoted |G| in Figure 17.

Summary size. We define the compression factor cf≡ as |G|/|G/≡|, the ratio between the numbers
of triples in G and in the summary. (Since schema triples are the same, compression comes from the
representation of G data triples through G/≡ triples.) Figure 17 shows the size of various summary and the
resulting compression factor underneath; cf values higher than 104 appear in bold font. The compression
factor is at least 300, more usually above 103, and up to 2 · 106 for DBLP dataset; G/W is typically
smallest, while the G/TW and G/TS may be up to one order of magnitude larger. The LUBM and BSBM
1M and 100M triples synthetic datasets offer an interesting contrast. LUBM compresses rather well;
the number of data edges does not increase as the data grows. This enables higher cf values from
4 · 103 to 7 · 105. BSBM is harder to compress, which correlates with its higher number of distinct
data properties (642 to 8082), which also grows with the data size, classes grow from 159 to 2019, and
schema triples from 150 to 2010). BSBM compression factors range from 327 to 7775, more modest
but still very significant. The compression factor increases with the data size in both cases, highlighting
summarization’s particular interest for large graphs. For LinkedMDB, compression factors higher than
105 contrast with the compression factor of 1.42 reported in [19] for the fb-bisimulation summary.

A more detailed look at BSBM summarization is provided in Figure 18, which shows node and edge
counts for summaries of BSBM graphs of various sizes. The horizontal axis is labeled in input triples; the
vertical axis is in log scale. For reference, we plot the number of class nodes of G next to the summary
data nodes, and the number of schema edges next to the edge counts. The figure shows that G/W and G/S
strongly summarize graph structure, while G/TW and G/TS which isolate typed from untyped data nodes
lead to larger, more complex summaries.

Summarization time. Figure 19 shows the average time (in seconds, 3 executions) to build summaries;
they go up to 800 seconds for 100M triples. Times for the LUBM and BSBM synthetic data are plotted
(both axis are logarithmic, the horizontal axis labeled in |G| triples). The graphs show that summarization
time grows almost linearly, and the time to build G/W grows fastest. This is because building G/W and G/S
maximizes the number of nodes for which cliques are analyzed and fused; in contrast, when building G/TW
and G/TS, the cliques of typed data nodes are never constructed (directly or indirectly). We also see that
G/S and G/TS are oftentimes more expensive to build than G/W and G/TW; this is because of the extra effort
needed to build the cliques, while G/W and G/TW use a more direct, faster method. We find summarization
times acceptable, also considering that this is an off-line task.

Building complete summaries. Figure 20 shows the time to build the complete weak and strong sum-
maries: by saturating and then summarizing ((G∞)/W and (G∞)/S); and separately, by summarizing G

first, then saturating and then summarizing again, taking advantage of Theorems 3 and 4. For saturation,
we used the algorithm described in [10]. ×W, respectively×S denote the speed-up factors achieved thanks
to the completeness theorems. Figure 20 shows that computing (G∞)/W, (G∞)/S by the indirect method
given by the completeness theorems is much faster; indeed, this method reduces the size of the graph in
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Figure 18: Summary node counts (top) and edge counts (bottom) for BSBM graphs.
the first place, making subsequent operations more efficient.

Dataset Weak Strong Typed Weak Typed Strong
John Peel AL2 = 81 AL2 = 29 AL2 = 15 AL2 = 14

AL3 = 96 AL3 = 53 AL3 = 30 AL3 = 30
INSEE AL2 = 41 AL2 = 36 AL2 = 1 AL2 = 1

Geo AL3 = 68 AL3 = 64 AL3 = 5 AL3 = 5
LUBM 1M AL2 = 61 AL2 = 30 AL2 = 0 AL2 = 0

AL3 = 83 AL3 = 53 AL3 = 0 AL3 = 0
DBpedia AL2 = 0 AL2 = 0 AL2 = 0 AL2 = 0

People AL3 = 2 AL3 = 4 AL3 = 1 AL3 = 0
DBLP AL2 = 48 AL2 = 38 AL2 = 44 AL2 = 39

BSBM 1M AL2 = 78 AL2 = 0 AL2 = 65 AL2 = 0

Table 2: Bounded accuracy loss values.

Accuracy loss. Table 2 shows the accuracy loss ALk (in %, rounded to the lower closest integer) for
k ∈ {2, 3} on various RDF graphs; the lowest value(s) on each row are in boldface. G/W and G/S have
comparable accuracy losses, while on the other hand G/TW and G/TS are significantly more accurate. The
difference is dramatic for LUBM and DBpedia, where TW and TS have 0 accuracy loss for k = 2, just
as the DBpedia TS summary for k = 3, while the DBpedia TW summary has a minimum loss of 1% for
k = 3.

Experiment conclusion. Our experiments have shown that our summaries can be built efficiently, and
they reduce graph sizes by factors hundreds up to 2 · 106. This confirms their power of compactly
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Dataset |G| G/W G/S G/TW G/TS
John Peel 271k 0.33 1.37 0.43 0.98

INSEE Geo 369k 0.58 1.65 0.55 1.50
DBpedia 8M 9.73 25.85 6.82 21.80

DBLP 150M 434.88 636.56 175.87 12412.49
LinkedCT 42M 74.55 314.75 88.73 252.38

LinkedMDB 6.14M 1.12 3.49 0.90 3.06
LUBM 1M 1.34 3.30 1.33 3.20
LUBM 10M 13.92 28.27 10.42 31.14
LUBM 100M 221.62 403.97 132.89 457.63
WatDiv 10M 14.78 22.77 8.33 21.02
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Figure 19: Summarization times (s) for various RDF datasets
Dataset (G∞)/W ((G/W)

∞)/W ×W (G∞)/S ((G/S)
∞)/S ×S

INSEE Geo 49.17 1.25 39.33 45.94 1.70 27.02
LUBM 1M 20.77 1.42 14.62 21.27 2.72 7.8

LUBM 10M 220.36 12.31 17.90 219.64 34.04 6.45
BSBM 1M 22.88 1.42 16.11 16.33 3.25 5.02

BSBM 10M 301.98 134.06 2.25 213.73 71.13 3.01
DBLP 465.09 14.83 31.36 434.87 43.28 10.04

Figure 20: Times (s) to generate semantically complete summaries.
representing RDF graphs. G/S and G/TS take longer to compute than G/W and G/TW since the former actually
compute cliques, while the latter rely instead on Property 6 for a more efficient method. Weak summaries
are often less accurate, but the opposite also occurs, e.g., on the DBPedia person dataset; weak summaries
compress more (and thus are smaller). If summary size or building time are a concern, we recommend
using G/W; otherwise, GS may give finer-granularity information.

9 Related Work

Graph summarization has a long history and many applications. We survey general graph summarization
works (with no specific focus on RDF graphs) in Section 9.1, then discuss RDF-specific summarization
proposals in Section 9.2.
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9.1 Non-RDF graph summaries

Such summaries ignore graph semantics, thus summary completeness, a main focus of our work, is not
in general guaranteed.

Several works built graph summaries as a support for graph indexing. In this context, for each sum-
mary node, we store the IDs of the original graph ndoes represented by the summary node; this set is
typically called the extent. Given a query, evaluating the query on the summary and then using the sum-
mary node extents allows to obtain the query results.

Dataguides [11], and in particular the so-called strong dataguide, were among the first proposals
for structural summaries (also called a-posteriori schemas) of RDF graphs. Dataguides do not compare
directly with our approach, since they are not quotient graphs: in particular, a graph node may be repre-
sented by more than one dataguide node, which is impossible in a quotient-based summary. A dataguide
may be larger than the original graph, and its construction has worst-case exponential time complexity.

[25, 6, 16, 8] build quotient summaries based on (sometimes unidirectional, sometimes k-bounded)
bisimulation; we have discussed the relationship between our and bisimulation summaries in Section 6.
The complexity of building a bisimulation summary is typically O(E · log(N)), where E is the number of
edges and N is the number of nodes in G.

[24] explores efficient answering of neighbor queries over a compressed social network graph, while
minimizing the number of bits per edge required for storage, by relying on covers of an input graph.
Thus, the focus is entirely different than ours, which is efficiently representing all RBGP queries from an
RDF graph G into its summaries, while preserving the semantics of G, by grouping similar nodes based
on equivalence classes.

[9] considers reachability and graph pattern queries on labeled graphs, and builds answer-preserving
summaries for such queries; this property subsumes accuracy and representativeness. However, their
query semantics is not based on graph homomorphisms, which underlie SPARQL and the dialects we
use, but on bounded graph simulation. Under this semantics, answering a query becomes P (instead of
NP ), at the price of not preserving the query structure (i.e., joins).

[32] proposes the SNAP (Summarization on Grouping Nodes on Attributes and Pairwise Relation-
ships) technique which, given a set of properties the user is interested in, produces a summary that groups
the interesting nodes in the incoming RDF graph, based on their roles with respect to the user-specified
properties. (The authors consider graphs where nodes have “attributes” and “relationships”; this can be
seen as a restriction of RDF where we do not consider types nor schema information.) SNAP partitions
nodes into classes that may end up being too many and too small (two few nodes will be equivalent). For
more flexibility, the authors also propose k-SNAP where the similarity requirement between nodes of the
same class is relaxed and the summary is computed taking into account a space budget (i.e., , a maximum
summary size). Thus, while SNAP is based on strict graph relations, k-SNAP mixes in a quantitative
component (with a threshold of 50% proposed by the authors at some point etc.). Our work is different in
that we request no user input and propose complete, logical-oriented summaries.

[5] introduces an aggregation framework for OLAP operations on labeled graphs. The authors assume
available an OLAP-style set of dimension with their hierarchies, and measures, and based on them they
define a “graph cube” and investigate efficient methods for computing it. The authors also frame graph
topological information as dimensions, and use them for graph aggregation. This is quite different from
our framework, which is based on logical representation of structure and semantics.

[4] considers node- and edge-labeled graphs and focuses on building a set of randomized summaries,
so that one can mine the summary set instead of the original graph for better performance, with guaranteed
bounds on the information loss thus incurred. Semantics and properties such as those of our summaries
are out of their scope.

[39] seeks to identify frequent subgraphs and store extent information from those, so as to answer
queries asking for the respective part of the graph. This approach by design does not reflect all data and
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is based on numeric information, as opposed to our summaries. [40] is very similar, but considers trees
instead of graphs.

A graph core C for a given graph G is a graph such that an isomorphism exists between G and C, and C

is the smallest graph with this property6. Our summaries are not cores of G, since we cannot guarantee a
homomorphism from any of them to the G. In exchange, all of our summaries can be built in polynomial
time in the size of G, while computing the core is much harder.

A separate brand of works is interested in computing approximate summaries of graphs, to be used to
efficiently answer queries with an acceptable level of error [26, 18]. The focus is on graph compression
while preserving bounded-error query answering and/or the ability to fully reconstruct the graph from the
summary, with the help of so-called “corrections” (edges to add to or remove from the “expansion” of
the summary into the regular part of the graph it derives from). [22] focuses on summarizing undirected,
node-labeled graphs; nodes are partitioned, while edge information is preserved under the form of the
number of edges within each partition set, and number of edges between every two such sets. These
works contrast with the full representativity, accuracy and completeness we aim at.

[23] surveys many other quantitative, mining-oriented graph sampling and summarization methods.

9.2 RDF graph summaries
Several works have more recently target the construction of RDF graph summaries. Still, most ignore
RDF semantics, or make limitating assumptions on the input RDF graph, while we target general graphs,
with or without schema statements. Overall, our work is the first to consider the issue of building complete
RDF summaries, and to provide a method for doing it and a sufficient completeness condition.

[36] builds a tree-structured index of an RDF graph by picking some “centroid” RDF graph nodes and
organizing information about the graph in a tree; if one views the index as a summary, it is not a quotient,
and since inference is not considered, it is not complete, either.

[28] introduces a simulation RDF quotient based on triple (not node) equivalence; the summary is not
an RDF graph. (Intuitively, simulation is a unidirectional “half” of bisimulation, e.g., to define FW RDF
similarity, remove item (ii) from Definition 9). For compactness, they bound the simulation, for small k
values, e.g., 2; this enables compression factors of about 104. They use summaries to reduce query join
effort, but do not consider the possible schema, nor summary completeness.

[30] considers the problem of efficiently building a quotient summary of RDF graphs based on the
bisimulation relationship between nodes. The authors present several algorithms, in particular based on
MapReduce, but do not reserve any special treatment to RDF class and/or property nodes; this would
allow in particular to summarize different classes into a single node, e.g., if the classes only participate
to triples as subjects of the subclassOf property. Such schema triple summarization compromises com-
pleteness, as it is not possible to build the summary of G∞ out of a summary that does not preserve the
schema of G.

[33] has as main goal to answer queries over RDF graphs and proposes to help this based on a structure
index, which is defined as a bisimulation quotient; the authors show that the summary is representative.
Further, the authors study limited versions of the bisimulation quotient by considering: only forward
bisimulation; only backward bisimulation; only neighborhoods of a certain length. The authors do not
consider graph semantics, nor completeness.

[29] presents SAP HANA’s approach for working with graph data. They consider a restricted RDF
model where every node has exactly one type; to simplify the experience of users querying graphs, they
propose that users specify some simple summarization rules (summarization here viewed as aggregation)
together with their query, rules whcih the system applies to group the query results. Beyond its restricted
data model and lack of support for RDFS inference, the work has clearly a very different focus and does
not aim to produce an interesting representation of the whole graph as we do.

6https://en.wikipedia.org/wiki/Core_(graph_theory)
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[21] introduces an RDF summary graph which they use to support keyword search in RDF graphs.
They restrict RDF graphs so that (i) one resource can have at most one type, and (ii) same-type resources
have similar sets of data properties. These restrictions make the summarization problem significantly
different from ours, as we do not make such restrictive assumptions. The authors do not consider inference
either.

[13] applies a graph clustering algorithm (in particular METIS7) to determine the best partitioning
to use in order to store an RDF graph in a distributed system. The partitioning criterium is quantita-
tive (METIS seeks to minimize edges across partitions, thus strong connections will tend to keep nodes
together). Such partitioning is not a quotient graph and properties such as accuracy and completeness
cannot be guaranteed.

[7] also considers summaries defined as quotients based on bisimulation, disregarding the role played
by schema triples, and proposes a highly parallel implementation based on the GraphChi framework.
They show how to use the summary as a support for query evaluation: incoming SPARQL queries are
evaluated on the summary and then the results on the summary are transformed in results on the original
graph by exploring the extents of summary nodes.

[17] uses a density-based clustering algorithm to identify nodes with similar structure in an RDF
graph; the goal is to propose an RDF type for each cluster of resources and identify relations between
these types. Thus, the authors do not consider RDF schema information that the graph may already have,
nor are they interested in accuracy, completeness etc. for the result of their clustering.

[35] aims to summarize an RDF Schema based also on the frequency of representation of various
schema features in the data graph. The approach makes several limitative assumptions on the RDF data
model, e.g., that each resource has exactly one type etc. While our summaries do not reduce the size
of an RDF Schema, they allow to significantly compress general RDF graphs (with or without schema
information) and enjoy several interesting properties.

[31] focus on summarizing RDF graphs which may have subtype and subproperty triples, but they do
not consider domain and range, and instead rely on abstract knowledge patterns, expressing something
related but different: the pattern c1 p c2 states that a dataset holds at least one resource of type c1
having the property p whose value is a resource of type c2. (In contrast, recall that the domain constraint
p ←↩d c1 states that any resource having property p is also of class c1.) A summary is a set of types, a
set of AKPs, and some statistics; the authors are only concerned with the minimality of their summaries
and do not consider properties such as accuracy, representativeness, completeness etc.

10 Conclusion
We studied the construction of complete summaries of RDF data, accounting for all its structure and
semantics; in particular, we focused on quotient graph summaries, widely studied in the literature. We
introduced four novel summaries, two of which (as well as bisimulation-based ones) are complete. All our
summaries are representative and accurate w.r.t. a large and useful dialect of SPARQL; they can be built
efficiently and achieve RDF graph compression factors of 102 to 2 · 106; the highest values are reached
for real-life datasets. Future work will improve scalability by leveraging a massively parallel platform
such as Spark. We are also interested in devising advanced visualizations of our RDF summaries.
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