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Figure 1: Visual matrix of numerical data (a) ordered randomly (b) and with three algorithms (c-e) revealing different patterns.

Abstract

This survey provides a description of algorithms to reorder visual matrices of tabular data and adjacency matrix of networks.
The goal of this survey is to provide a comprehensive list of reordering algorithms published in different elds such as statistics,
bioinformatics, or graph theory. While several of these algorithms are described in publications and others are available in
software libraries and programs, there is little awareness of what is done across all elds. Our survey aims at describing these
reordering algorithms in a uni ed manner to enable a wide audience to understand their differences and subtleties. We organize
this corpus in a consistent manner, independently of the application or research eld. We also provide practical guidance on
how to select appropriate algorithms depending on the structure and size of the matrix to reorder, and point to implementations
when available.

Categories and Subject Descriptaggcording to ACM CCS) Visualization [Human-centered computing]: Visualization
Techniqgues—

1. Introduction node-link diagrams do. While low-level tasks do not necessarily
. . . . . require to reorder rows or columns [Ber73, GFCO04], higher-level
A Visual Matrixor Matrix Plot is a visual representation of tabular tasks, such as identifying groups or highly-connected vertices, do
data a_llso used to (_:ieplct_ graphs and qetworks by encoding V'Sua”yrequire a reordering of rows, respectively columns, to reveal higher
an adjacency matrix. This representation has been used for almost g ye, hatterns. Figure 1 illustrates howaodordering can reveal
century in many domains: b|o]ogy, ”e““’!ogy’ §OC|§I SCIENCE, SUP- p)hcks along the diagonal of the matrix, indicating densely con-
ply management, transportation and arti cial intelligence. While nected groups in the network. The choice of the ordering highly

most nletwoorlk exg)loratlon too(ljs tr(])day Iev_erage ”Ode"'r_"‘ diagrams, in uences which visual patterns are visible, thus proving a critical
several studies demonstrated that matrix representations are more_ .- ¢ exploration and analysis.

effective for several low-level tasks [GFCO04] (e.g., nding if two
vertices are connected or estimating the network density) and graph
comparison [ABHR13], especially when networks become larger
and denser.

Historically, matrix reordering was donmanually with "the
eye of the artist'[Ber73] and prove to be an extremely tedious
task [Lii10]. The exploration, as well as evaluation of the re-

Since matrices represent connections between vertices by a cellsults, was implicitly done in the process [PDF14]. Today, nu-
at the intersection of a row (source vertex) and a column (target merousautomaticreordering algorithms are described in the lit-
vertex), they do not suffer from occlusion and link crossings as erature [Lii10, MMLO7a]. Such automated matrix reordering ap-
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proaches provide much faster results, the ability to order large ma-  For our empirical comparison, we chose graphs from three dif-
trices, and sometimes can even seek to reveal speci ¢ patterns in theferent categories: (i) a set of graphs commonly used to benchmark
data [WTCO08]. In most cases, respective papers report on bench-matrix reordering algorithms [Pet03], (ii) a set of systematically
marks of calculation complexity and run-time. Some of them in- generated graphs in order to test for speci c graph characteris-
cluding pictures of resulting matrices for individual algorithms or tics, such as density or number of clusters, and (iii) a set of real
subsets. However the problem of assessing the quality of an order-world graphs (social networks, brain connectivity networks). For
ing remains the same; similar to layout algorithms for node-link any of our 150 graphs, we generated an ordered matrix plot which
representations of graphs, knowing which patterns are artifacts of we used as input for our performance measures. This let us with
the algorithms and which patterns represent structure in the data isa total of 4348 matrix plots as basis for our comparison. Graphs
crucial [MBK97]. To the best of our knowledge, there is no coher- and matrices shown in this survey represent a purposeful selec-
ent survey of reordering algorithms for matrices available today. tion. The complete browsable collection can be found online at
Moreover, there exist no visual comparison or methodology that http://matrixreordering.dbvis.de

allows for evaluating the patterns and artifacts each reordering al-
gorithm produces.

In this survey, we describe the main algorithms published for the In the rgminder of this article, we start with a backgrgund on matri>_<
purpose of nding a proper order for the rows and columns com- reordering m.ethods anq challenges. We then prpwde an extensive
posing a visual matrix. For each of the six groups of algorithms SUrvey on existing algorithms. We review and divide 35 exemplary
we could establish, we illustrate the underlying ordering principles Matrix reorderingmplementationto six major categories, as dis-
and discuss pictures of matrices for a set of different graphs. The CuSSed in Section 3, such as Robinsonian-, Spectral-, Dimension
problem of nding agoodordering for the vertices of an adjacency Reduction-, Heuristic-, Graph-Theore_nc-, and_Bl-CIustenng. Then,
matrix is known with multiple nameseriation reordering linear we report on our comparative analysis and discuss the results. We
layout, layout linear ordering linear arrangementumberingla- conc!ude with a list of gwdellne_s,_ which algorithm to ch_oose for
beling andordering In this document, we simply call ieorder- speci c d_ata sets and characteristics, as well as suggestions for fu-
ing, but these terms can be used interchangeably when the contexfUre studies.
is not ambiguous since they are mostly an artifact of their history.

However, the multiplicity of terms testi es of the wide variety of 2. Background
domains that have studied the problem, and this survey tries to sum-
marize and organize this wide diversity.

1.3. Ouitline

This section introduces de nitions and concepts that we rely upon

to describe matrix reordering algorithms. The third subsection also
While we focus entirely to network data (symmetric matrices), presents 4 visual patterns and 2 anti-patterns one can identify in

we found that several ordering methods can similarly be applied visual matrices. We use these patterns to illustrate and compare the

to table data. However, table data can produce visual patterns withalgorithms.

different interpretations and meaning; thus their description and vi-

sual analysis remains future work. -1. De nitions

A graph Gis a coupleg(V; E) whereV is a set of vertices, an is
1.1. Related Surveys a set of edges where:
There has been several prior surveys describing matrix reorder- V="Fvy, ;Vng;

ing approaches. Liiv's overview [Lii10] summarizes the most com-
mon reordering methods, highlighting the historical developments
in various affected domains. Similarly, Wilkinson and Friendly
present an abstract of the history of cluster heatmaps [WF09]. Also,
Wilkinson describes in “Grammar of Graphics” [Wil05] the pro-
cess of creating a range of visual base patterns (cf. Section 2.3)
and compares four reordering approaches with regards to their re- We use the termetworkto describe the graph topology as well
trieval performance. In uential for our evaluation approach is the as attributes associated with vertices (e.g., labels), and attributes
work of Mueller et al., which focuses on interpreting and describing associated with edges (e.g., weights). Most networks used in this
structures in matrix plots [Mue04, MMLO7b, MMLO7a]. Although  survey have names associated with vertices, and positive weights
related, none of these works provide empirical evidence of the in- associated with edges. A weighted gra@fy adds a weight func-
dividual reordering performances with respect to (i) speci ¢ user tionw(e) to G so that:

tasks and (ii) the data set characteristics. w(e) = wi;withw; 2 R* @)

E=fep; ;ang;eZV2 (2)

A directed graphis a graph where the two vertices associated
with an edge are considered ordered. émdirected graphis a
graph where the vertices associated with an edge are not ordered.

1.2. Methodology An ordering or order is a bijectionj (v) ! i fromv2 V to

In contrast to the historically inspired matrix reordering surveyswe i 2 N = f1; ;ng that associates a unique index to each vertex.
are developing our categorization from an algorithm-agnostic point We usg to describe one speci ¢ ordering from the set of all pos-
of view. Speci cally, we are contributing considerations about the sible orderings. A network usually comes with an arbitrary ordering
expected visual patterns that can result from the algorithm's inher- reminiscent of its construction or storage. We call that ordeirthe
ent design and the problem space from which a solution is derived. tial order noted] o(v) to distinguish it from a computed order. A

Cc 2016 The Author(s)
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Figure 2: A Simple Labeled Graph and its Adjacency Matrix

transformation from one ordering to another is callgetemutation
p. Formally, a permutation is a bijectigr{x) ! y such that:

e 2 _ S
P(x) = vi; (xy) 2 N“wherey; = yj) i=j 3
It is usually implemented as a vector containimdistinct indices
in N. We callSthe set of then! possible permutations farvertices.
A permutation can also be represented as an matrix P with all
entries are 0 except that in rawthe entryp(i) equals 1.

An adjacency matrof a graphG, as depicted in Figure 2, is
a square matri where the celim;j represents the edge (or lack
of) for the verticesv; andv;j. It is equal to 1 if there is an edge
e=(vi;vj) and 0 otherwise. When the graph is weighteg; rep-
resents the weight (for clarity purposes, we restricted weights to be
strictly positive in Equation 2).

My Mi:n
M= 2 . . g

Mn:1 Mn:n

(4)

A bipartite-graphor bi-graphis a graphG = (V1;V,; E) where
the vertices are divided into two disjoint s&tsV,, and each edge
€ connects a vertex iy to a vertex invy:

V=Vi[ Vo;V1\ Vb= ; suchthae2 E=V; V, (5)

The adjacency matrix of a bi-graph is generally rectangular, com-
posed ofV; in rows andV; in columns to limit empty cells. We
consider a generalata table such as data presented in spread-
sheet form, a valued bi-graph. A classic example of a bi-graph is a
document-author network with a single relatisrauthorconnect-

ing authors to documents. The adjacency matrix of such bi-graph
includes authors in rows (respectively in columns) and documents
in columns (respectively in rows), a value of 1 marking the author-
ing relationship, and a value of 0 otherwise.

2.2. Related Concepts

In addition to the previous de nitions and notations, this survey fre-
quently bridges graph concepts with linear algebra concepts. Since
readers might not be familiar with these relationships, we summa-
rize them here, introducing concepts often used in this article.

Adjacency matrices typically bridge graph theory and linear al-
gebra, allowing the interpretation of a graph as a multidimensional
(n-dimensional fon vertices) linear system, and vice-versa. We list
below several interrelated properties of networks when considered
as adjacency matrices.

When encoded as an adjacency matrix, a vertex becomes an
dimensionalvector of edges(or edge weights). When the net-

C 2016 The Author(s)
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work is undirected, the matrix symmetric and the vectors can
be read horizontally or vertically. Otherwise, two vectors can be
considered: the vector @icoming edgesand the vector obut-
going edges

Since vertices are vectors, distance measured(x;y) can be
computed between two verticgs;y) 2 V2 (or a similarity or
dissimilarity measures(x;y)). For example, the Euclidean dis-
tancely: d(x;y) between vserticez andy is:
a (& yo? (6)
k2 [1;n]

La(xy) =

Several reordering algorithms usedastance matrix (or sim-
ilarity matrix) as input, which is a square matrX contain-

ing the pairwise distances between multiple vectors. From the
n nadjacency matrix of an undirected graph, one symmetric
distance matrix can be computed of size n. From a gen-
eraln-rows mcolumns matrix, two distance matrices can be
computed: one of siza n for the rows (n-dimensional vec-
tors we will call A), and one of sizen m for the columns
(n-dimensional vectors we will caB). A distance matrix is al-
ways symmetric and positive (it jgositive-de nitemathemati-
cally speaking).

A particularly important distance matrix is tlggaph distance
matrix , which contains the length of the shortest path between
every pair of vertices for an undirected graph. Note that a dis-
tance matrix or more generally a positive-de nite matrix can also
be interpreted as an adjacency matrix of a weighted undirected
graph. Note also that any symmetric matrix can be interpreted as
an adjacency matrix of a valued undirected graph (a graph where
each edge has an associated value).

From any undirected graph, or positive-de nite matrix, many
graph measures can be computed. These can serve as objective
functions to minimize or as quality measures of reordering algo-
rithms. We describe three key measures belmandwidth pro-

le, andlinear arrangement

Let us call | (u;v) the length between two vertices in
G, given a one-dimensional alignment of the vertiges

L) Q) = Jj () j (W]

Bandwidth BW is the maximum distance between two vertices
given an ordey .

BW(j ;G)= max | ((u;v);j;G) )
(yv)2E
Intuitively and visually, when looking at the adjacency matrix
of an undirected graph (a symmetric matrix), the bandwidth
is the minimum width of a diagonal band that can enclose all
the non-zero cells of the matrix. A small bandwidth means
that all the non-zero cells are close to the diagonal. Therefore,
a quality measure is MIBW, the minimum bandwidttof a
graph MNBW(G) = argmin (BW(j ;G)).

Prole PR is:

PRj:G)= &
u2vVv

@ i () ®

whereGu) = fug[f v2 V:(u;v) 2 Eg. Intuitively and vi-
sually, the pro le is the sum, for each colunirof the ma-
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trix, which can be intuitively understood as the “raggedness”: of overall trends and relations. As a result, the analysis of visual
the distance from the diagonal (with coordinatgs)) to patterns in matrices is important, since these patterns can be inter-
the farthest-away non-zero cell for that column (with coor- preted in the user's analysis context, i.e., they relate to an analysis
dinates(i; j)). It is a more subtle measure than the band- question and task at hand, and second, since they constitute the core
width because it takes into account all the vertices and not information of a matrix plot, they allow the analyst to interpret and
only the vertex with the largest length. Thenimum pro le reason about their presence or salience.

s MINPR(G) = argmin (PR ;G)). Ghoniem et al. [GFCO04] found that a range of overview tasks,

such as estimating the amount of nodes or edges, or lower level
tasks such as nding the most connected node, can be answered
with matrices independent of the matrix ordering. On the other
hand, higher level tasks about the speci ¢ topology of the network,
require an appropriate reordering of rows and columns. The graph
It is an even more subtle measure than the pro le since it task taxonomy of Lee [LPF6] states eight speci ¢ tasks which
takes into account all the edges. Thenimum linear ar- can be particularly well facilitated with matrices: retrieving (spe-
rangements MINLA (G) = argmin (LA(j ;G)). MINLA ci ¢) nodes, edges; nding connected components and clusters; as-
is an established performance measure for matrix reordering sessing distributions and cluster memberships, retrieving of (adja-
algorithms [Pet03], since it targets a block-diagonal form of cency) relationships and general topology estimations.

the matrix (cf. Section 10). Extending Wilkinson's [Wil05] and Mueller et al. [MMLO7b]
work, we list below mairvisual patternsn visual matrices, along
with their graph-theoretic interpretations and associated user tasks.

Linear arrangement LA is the sum of the distances between
the vertices of the edges of a graph:
LA ;G6)= L ((u;v)] 5 6):

o

a
(uyv)2E

9)

2.3. Patterns and Anti-Patterns in Matrices

Block Pattern (P1™.): Coherent rectangular areas
appear in ordered matrix plots whenever strongly
connected components or cliques are presentin the
underlying topology. The gure shows 4 discon-
nected cliqgues (complete sub-graphs) containing
4, 3, 2, and 1 vertices. Mathematically, these matrices are called
block-diagonal matrices

Block-diagonal forms are central in the analysis of matrices, since
they directly relate tgartitioning andgroupingtasks of the data.
Blocks visually represent that their contained vertices share a simi-
lar connection characteristic. In a network analysis scenarios these
blocks would be referred to as cohesive groups or clusters. Clear
o block patterns help counting clusters, estimate cluster overlap and
identify larger and smaller clusters. Furthermore, many networks
show block patterns with missing cells, meaning that clusters have
missing connections (i.e., holes) or being connected to other clus-
ters (i.e., off-diagonal dots).

Formally, reordering an undirected netwdBkconsists in comput-
ing one permutatiop 2 Sthat maximizes or minimizes an objec-
tive functionq(p; G), such that:

arg ming(p; G)
p2s

(10)

For exampleq can compute the sum of distanai{x;y) between
vertices according to the ordpy Equation 10 would ndp 2 Sthat
minimizes this sum.

A brute-force approach to return an optimal solution for a sym-
metric matrix would requiren! computations, which renders im-
practical whem gets large. Even fon = 10, computing a global
optimum would take 18.29 hours on a computer that evaluatés 1
permutations per millisecond. For an 1111 matrix, it would take
92.21 days, while a 12 12 matrix would take 36.38 years. Since
a directed network requires two permutations, pnaéor the rows
and onepc for the columns, a brute-force approach would actually
requirenl m! computations.

Off-diagonal Block Pattern (P2a™): Off-diagonal
coherent areas correspond to either sub-patterns of
a block patternor relations in a bi-graph. In the
rst case, the off-diagonal pattern would be visi-

In addition, there is no consensus of an objective functjom :
the reordering literature. Therefore, we cannot understand the re-
ordering problem as a pure optimization problem, and need to con- . ¢ th _
sider reordering algorithms according to the structures they reveal ble in addition to the previous block pattern, and
visually. Therefore, the goal of matrix reordering is to malsal show connections between cliques.
patternsemerge, which represent data properties of the underlying Off-Diagonal blocks map to the user task of understanding how
network. To understand why this is possible, it is essential to real- groups/entities are connected. In the graph task taxonomy of
ize that the order of matrix rows and columns can be freely changed Lee [LPP 06], this pattern would allow approachiagjacency as-
without changing the data in the matrix. sessmenand overviewtasks. In the case of a bi-graph, the off-

diagonal pattern would show consistent mappings from e.g., a set of

Bertin [Ber73, Ber81] developed several important ideas about 5ihors to a set of documents. Just like the diagonal block pattern,
the distinct levels of information contained in data displays and off-diagonal blocks can contain missing connections.

the user tasks—he uses the term questions—that refer to the respec-

tive levels [Ber73, p. 141]. He mentions (i) an elementary level,

comprised of individual graphic elements and the task to under- .
stand their speci cities; (ii) an intermediate level, for the compar- *
isons among subsets of graphic elements and the discovery of ho-
mogeneous information parts; and (i) an overall level, comprised -

Line/Star Pattern (P3F): Continuous horizon-
tal and vertical lines are present in matrix plots if
a vertex is strongly connected to several distinct
other vertices.

This pattern helps the analysts to understand and

Cc 2016 The Author(s)
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Matrix Reordering

bi 3 Robinson [Rob51], Kendall [Ken63], Eisen et al. [ESBB98], Gelfand [Gel71], Hubert [Hub74],
RELREEIED Brusco and Stahl [BS05], Brusco and Stahl [BS06], Brusco et al. [BKS08], Gruvaeus and Wainer [GW72],
(Statistic) Bar-Joseph et al. [BJGJO1], Wilkinson [Wil05], Brandes and Wagner [Bra07], Behrisch et al. [BKSK12]

Sternin [Ste65], Friendly [Fri02], Friendly and Kwan [FKO03], McQuitty [McQ68], Breiger et al. [BBA75]

Spectral
53t Chen [Che02], Atkins et al. [ABH98], Koren and Harel [Kor05]

Dimension Harel and Koren [HK02], Elmqvist et al. [EDG 08], Liu et al. [LHGY03], Spence and Graef [SG74],
Reduction Rodgers and Thompson [RT92], Hill [Hil74, Hil79]

Heuristic Deutsch and Martin [DM71], McCormick et al. [MDMS69, MSW72], Hubert and Golledge [HG81],
Approaches Niermann [Nie05], Wilkinson [Wil05]

Sloan [Slo86, SI089], Harper [Har64], Harel and Koren [HKO02], Rosen [Ros68], Cuthill and McKee [CM69],

Graph George [Geo71], Liu and Sherman [LS76], Chan and George [CG80], King [Kin70], Gibbs et al. [GPS76],
Theoretic Leung et al. [LVW84], Lozano et al. [LDGM12,LDGM13], Pop and Matei [PM14], Lenstra et al. [Len74, LK75],
Bentley [Ben92], Henry-Riche and Fekete [HF06]

Biclustering Hartigan [Har72], Cheng and Church [CCO00], Lazzeroni et al. [LO 02], Turner et al. [TBKO05],
Murali and Kasif [MK03], Kaiser [Kaill], Prelic et al. [PBZ 06], Jin et al. [JXFDO08]

Interactive Bertin [Ber73,Ber81], Perin [PDF14], Brakel and Westenberg [BW13], Roa and Card [RC94], Siirtola [Sii99],
User-Controlled Makinen and Siirtola [MS00], Caraux and Pinloche [CP05]

Figure 3: The taxonomy of the reviewed algorithms. For each algorithm the taxonomy reports rst author, the year and the corresponding
bibliographic reference is given.

reason on the generabnnectivityaspects within the network. In  enclosure reveals no structure. Bandwidth patterns are typical for

a network analysis scenario lines would refer to hubs, i.e., nodes breadth- rst search algorithms where the outer border depicts the

with many connections. The length of a line thereby indicates the stop criterion of the enumeration (cf. Section 8).

number of connections (node degree). However, similarly to the noise anti-pattern, bandwidth patterns al-
low to reason on the absence of (expected) topological aspects and

Bands Pattern (P4X): Off-diagonal continuous facilitate thusoverviewandexplorationtasks [LPP 06].
lines refer to paths and cycles, or meshes in a net-

work. They represent a set of vertices with a few
connections to other vertices. Visually, this pattern

‘ can be regarded as a special case of the line pat-
tern and is useful whenever (adjacency) relationshipscantec-
tivity aspects are in the user focus [LFIB]. In a network analysis
scenario bands would refer connection paths and transition chains,
where the width of the band visually depicts how many distinct
paths could be taken through the network.

Any graph motif has a corresponding visual pattern in a visual
matrix, and we only described the most important ones above. Real
world graphs exhibit a mixture of overlapping patterns appearing
at different scales. Hence, the visual patterns we describe are not
always clearly discernible (Figure 1) and may appear merged to-
gether. Reordering algorithms take into consideration different as-
pects of the topology, inducing different patterns. Others directly
optimize for speci ¢ patterns. Note that several of these algorithms
however fail to reveal any pattern or introduce visual artifacts.

Noise Anti-Pattern (Al Noise (also called

salt-and-peppéris the classic anti-pattern for a  2.4. Implementations
matrix plot. It can be found whenever the row-/
column ordering is not able to reveal the underly-
ing graph topology or if simply no structure exists.
However, submatrices can occur to be noisy, even if other submatri-
ces show structure. Moreover, a matrix can be noisy or show struc-
ture on different levels: locally, i.e. for subgraphs (submatrices),
and globally, i.e. the entire graph (matrix).

The distinction between anti-patterns and the mentioned (inter-
pretable) visual patterns helps the analyst to developvanview
about the topological aspects of the network at hand.

Most of the reordering algorithms are available in public libraries,

although no library implements them all yet. TReorder.js

[Fek15] library provides many algorithms in JavaScript. The
packagescorrplot' [Weil3], ‘biclust' [KLO8] and seri-

ation [HHBO8] provide a large number of seriation algorithms for

tabular data. Several graph algorithms are available in the C++

Boost library [SLLO1].

3. Classi cation of Algorithms

We now survey algorithms for matrix reordering. Our coverage is
Bandwidth Anti-Pattern ( A2K): Bandwidth- or not exhaustive but biased towards impact publications in the re-
sparsity patterns visually group non-zero elements spective sub-domains. There is also a large number of methods to
(connections) within an enclosure around the diag- speed-up or otherwise improve some algorithmic approaches, but
onal. This pattern adds little interpretation asset to we try to capture the most important concepts and algorithms here;
the matrix plot if the inner part of the bandwidth  the details can be found in the original articles that are cited.

C 2016 The Author(s)
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Figure 4: General process of reordering matrices: After an optional partitioning phase of the input data (1), the data is transformed into ¢
problem space related representation (e.g., graphs) (2). Within this problem space, the reordering approaches determine a valid permutati
(3) and assess the reordering based on an algorithm-speci ¢ quality criterion (4). If a suf ciently good ordering is found the matrix is
reordered accordingly (5).

For the purpose of simplicity and understandability, we decided 4. Robinsonian (Statistic) Approaches
to group the algorithms into seven algorithmic families that arise

from thelnhere_ntly shared'reorderlng_concems depicted in our OATA INTERMEDIATE OBJECTS ORDERED
taxonomy in Figure 3. While all algorithms share the same objec- ®@ 5 MATRIX
. .. . . . . ermute
tive of deriving an appropriate matrix reordering, every algorithm ® E ’
itself comprises its own design considerations and decisions. @_’ .
\H permute(
Our classi cation of algorithms is tailored to the central goal Adjacency Matrix Distance Matrix gopinsonian
of providing guidance on what algorithm to use depending on the (Pre-robinsonian)(Pre-robinsonian)
dataset characteristics (e.g., size and structure). During our research ) _ _ _ )
we examined different taxonomies and orthogonal dimensions to Figure 5: Robinsonian Matrix Reordering.

describe algorithms in a comprehensive way; the domain they were

developed in, the mathematical background, and the kind of infor-

mation used to determine the distances between vertices (rows andrhe fundamental idea of all Robinsonian approaches is to reorder a

columns). However, we found that none of those taxonomies was matrix so that similar rows (resp. columns) are arranged close and

expressive enough while remaining simple to classify algorithms. dissimilar rows (res. columns) are placed farther apart.

Overall, we derived orthogonal taxonomy families/groups wher- ) ) o )

ever possible, but also use the concept of overlapping and meta Robinsonian methods compute a similarity matrix from e

families to stress the importance of shared concepts or to empha-Vectors (respB) of the (adjacency) matriM. They then try to

size particular features. compute a permuta'tlopr (resp._pc) to transform these S|m|Iar_|ty
matrices into a Robinson matrix or R-matrix. An n symmetric
matrix R is called a Robinson similarity matrix if its entries de-
crease monotonically in the rows and columns when moving away

3.1. Multiple Ways of Reordering from the diagonali.e., if:

We classify the algorithms for computing these permutations, de- ( . .
. . . . . R:j Rk forj<k<i

pending on the stages and intermediate objects required to perform g ' S (11)

the computation. Figure 4 outlines the steps involved in reordering: Rij R fori<j<k

1. Partition the network into connected components and apply the  If instead of computing a similarity we compute a distance, then
reordering in each component separately. For the nal matrix, the entries shoulthcreasemonotonically, but the principle remains
the components are usually concatenated by decreasing sizes. identical. This property means that similar vertices are as close as

2. Transform the data into intermediate objects, such as distance possible in a consistent way.
matrices, Laplacian matrices, or Eigenvector spaces.

3. Create a permutation from those intermediate objects,

4. Assess the qualityof the obtained permutation. If unsatisfactory,
create a permutations, otherwise

5. Apply permutation to the matrix, i.e. reorder rows and columns
in the original visual matrix.

When a similarity matrix can be permuted to become an R-
matrix, it is called aPre-robinsonian matrix(Pre-R) (see Fig-
ure 5 (middle)). The challenge is to nd the permutation. When
found, this permutation can be applied to the similarity matrix as
shown in the Figure 5 (middle), but also to the original malfix

However, there are similarity matrices that are not Pre-R; in other

The following sections will explain which intermediate objects words, not all the similarity matrices can be permuted to become an

as well as permutation and quality assessment methods each algoR-matrix. For real world cases, very few matrices are in fact pre-R.
rithm group employs. Therefore, two problems arise:

Cc 2016 The Author(s)
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1. When a matrix is Pre-R, how to compute the permutation that Algorithm 1 Greedy suboptimal enumeration of matrix permuta-

transforms it into an R-matrix form?

tions [Hub74, CPO5].

2. When a matrix is not Pre-R, what is a good approximation of an

R-matrix and how to compute it? 2:

It turns out that there is a solution to the rst question that has 3
been ignored until recently by the statistical community [ABH98]. :
However, it does not address the second question at all. Therefore, 6;
the heuristics developed to approximate the general Robinsonian .
problem are still useful since they provide many solutions poten- g:

tially applicable to the second question. 9:
10:
Distance/Similarity Measures 11:

The rst step to all the traditional Robinsonian algorithms con- 12

sists in computing the similarity matrices from the (adjacency) ma- ii

trix. Computing a distance—alike the similarity—matrix is always
quadratic in time and space, and it implies choosing a measure. For

1: procedure BIPOLARIZATION ALGORITHM

D distMatrix(M).

Dmax maxupperTrianglgD)).

Peoil[l]  colindeXDmay)-

Prow[l]  rowIndeXDmay).

D  applyPermutatiofpcorrow; D). . Reorganize Distance Matrix

Dmax  maxFromindefrow;;col;;i).

if maxFromIndefrow;;i) > maxFrominde¢col;;i) then
rowDirection  true.

. Distance Matrix

prow[2]  rowIindeXDmay).
else

rowDirection false
Pcoi[2]  colindeXDmay).
end if

D  applyPermutatiofpcorrow; D). . Reorganize Distance Matrix

. . . 16: rindex cindex 3.
distances, classical measures include the well-known nbpns 17:

repeat
n 18: if rowDirectionthen
V= ( A py1=p. 19: Dmax maxFromindegow;;i).
Lo(xiy) =( Sl(xk Y1) P> 0 (12) 20: Prow[rIndeX rowlndg(Dmai).
21: rindext = 1.
The most used afley, L, (see Equation 6), aridi  that simplify 22: else
asLi(x;y) = Ayjxx Y andLi (x;y) = max(jXe  Y«i)- 23: Dmax  maxFromindegcol;;i).

. ) o 24: Pcoifcinde}  colindeXDmay)-
The choice of the measure may not be considered arbitrarily and »5. cindex- = 1.
hassigni cant impacton the visual appearance of the matrix to be 26: end if

calculated. Since this aspect relates also to other matrix reordering27: D applyPermutatiotPcol:row; D)-
families we will discuss distance metrics and parameterizing algo- 28: rowDirection  notrowDirection
rithms in Section 11.2. 29: until rindex= cIndex= jM;j.

30: M applyPermutatio(Pcol:row; M).
31: end procedure

. Reorganize Data Matrix
Algorithms and Variations

We now survey the three main approaches to compute a good per-

mutation for the Robinsonian problem: greedy algorithms, cluster- Brain
187/0.03/5.51)

Petit GD96C
(65/0.06/3.85)

Watts Strogatz 3
(100/0.04/3.98)

Clustered
(70/0.12/8.77)

ing, and optimal-leaf ordering. Almost all algorithms in this group
have to deal with the problem of potentially retrievindgpaal op-
timal solution since a full enumeration of all permutations in the
problem space is mostly infeasible. Few algorithms exist that are
able to retrieve perfect anti-Robinson structures. These methods are
not practical, due to their runtime, but provide an upper bound to
this family of algorithmic methods. For example, the Branch-and-
Bound algorithm or the Heuristic Simulated Annealing approach Brain
from Brusco and Stahl [BS05, BKS08] are able to retrieve global |t
optimum solutions for up to 35 nodes and 3% connections with
CPU times ranging from 20 to 40 min [BS05, p. 263].

Bipolarization [Hub74]

Petit GD96¢
(65/0.06/3.85)

Clustered
(70/0.12/8.77)

Watts Strogatz 3
(100/0.04/3.98)

(a) Greedy Algorithms: For large graphs with hundreds or thou-
sands of nodes, one can enumerate permutations in a greedy faShHierarchicaI Clustering [GW72]
ion. For example, th8ipolarizationalgorithm [Hub74] alternates

between rows and columns to reorganize a distance matrix, placing LIl
the highest dissimilarities in the remotest cells from the diagonal 16710.035:50)
(Algorithm 1). Like most other greedy algorithms, Bipolarization
(depicted in Figure 6(a)) is fast and yields good results whenever
the underlying data structure contains a bi-polar organization (e.g.,
patternd® 1%, P2&", A1E]). However, as already mentioned, greedy
algorithms do not guarantee to nd an optimal solution, but quickly - Optimal-Leaf-Ordering [BJGJO1]
yield a “reasonable good” solution. These solutions can then be im-
proved further by seeking to optimize locally. Figure 6(c) shows
examples of locally optimized matrices.

(b)

Petit GD96¢c
(65/0.06/3.85)

Watts Strogatz 3
(100/0.04/3.98)

Clustered
(70/0.12/8.77)

Figure 6: Examples for Robinsonian Matrix Reorderings.
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(b) Clustering Algorithms: Clustering algorithms, in the context  joint cover of the set of elements, requiring that no gene or sample
of matrix reordering, are based on deriving clusters of “similar” belongs to more than one clust§f SS05, adapted, p. 3-4].

data elements (e.g., nodes) and ordering each cluster individually.
Building on this, Gruvaeus and Wainer [GW72] suggested to order

clusters at different levels using arerarchicalclustering (dendro- choice will disturb grouping patterns. Generally, when clusters ex-

gram). E_Iements at_ the margin of each clust.er, .e. the rst and last ists, (hierarchical) clustering approaches show visually promising
element in the obtained order for the respective clusters, should also

- A : .~ “Tresults, for all linkage functions.
be similar to the rst (or last) element in the adjacent cluster. Fig- g

6(b) sh th It of the hi hical clusteri laorithm b In turn, Robinsonian approaches—in comparison to the other re-
ure 6(b) shows € resutt otne hierarchical clustering aigonithm by ordering approaches—allow incorporating more domain-speci c
Gruvaeus and WaineRSeriationGWy.

knowledge into the analysis process, e.g., by applying domain-
Hierarchical clustering algorithms aim at producing grouping Speci ¢ similarity considerations. The Berti er [PDF14] system

patterns P1MJ)), however, groups are not necessarily placed along uses extensively this exibility to allow interactively speci ed pref-

the matrix diagonal (Figure 6(b)?2"). In biology, Eisen et erences to in uence the reordering algorithm.

al. [ESBB98] used agglomerative hierarchical clustering with av-

erage linkage to reveal interesting phenomena in gene expressiorP- Spectral Methods

data matrices. As also discussed by Wilkinson in “The Grammar

of Graphics” [Wil05, p. 526-527] the choice of the average linkage | DATA INTERMEDIATE OBJECTS ORDERED

method often yields visually good results, but represents a middle- MATRIX

ground between two extremes: single and complete linkage. While /

-
complete linkage tends to produce spherical clusters, single linkage _ e,
tends to produce snakelike clusters. Laplacian Matrix | = "o Y\ ->

=) FEigenspace

Yet, even if the data contains inherent groupings, the similar-
ity function has to be selected with caution, since an inappropriate

(c) Optimal-Leaf-Ordering Algorithms: In addition to the afore-
mentioned clustering approaches, smoothing the clusters by order-
ing the vertices according to their neighborhood similarities reveals
structures more clearly than walking the leaf of the hierarchical
clusters in an arbitrary order. Finding an ordering consistent with
the hierarchical binary tree is known as thptimal-Leaf-Ordering
problem. An optimal ordering is computed globally, so as to min-
imize the sum of distances between successive rows (columns)
while traversing the clustering tree in depth- rst order. For any two
nodesp andq in the binary clustering tree and that share the same
parent, two orders are possib(gx g) or (d; p).

Correlation Matrix

Figure 7: Spectral Matrix Reordering.

Spectral methods relate to linear algebra and use eigenvalues and
eigenvectors to calculate a reordering, i.e. each row (or column) is
projected into the eigenspace where distances between eigenvectors
are used to calculate a reordering (Figure 7). Given a symmetric
matrix M of dimensionn n, we say that is aneigenvalueof M
if Mx = | x for some vectox 6 0. The corresponding vectaris

Bar-Joseph et al. [BJGJO1] describe an exact solution that aneigenvectorAnn nsymmetric matrix has eigenvectors that
has a time complexity oD(n*) and a memory complexity of ~ can be constructed to be pairwise orthogonal, and its eigenvalues
O(n?).Though this can be improved at the expense of more mem- are all real. We refer to the eigenvalues in increasing numbers
ory, usingmemoizatiortechniques. Brandes [Bra07] was able to 12::: In.
present a solution with time complexity 6f(n?log(n)) and mem-
ory complexity of O(n), making it practical for larger matrices.
Figure 6(c) depicts exempli ed matrix reordering results with vi-
sually coherent block pattern®1™)) derived from theRSeri-
ationOLOalgorithm.

Computing the eigendecomposition of a matrix is an expensive
operation. However, since the reordering algorithms will use only
the few rst or last eigenvectors, iterative methods can ef ciently
be used, in particuldPower-Iteration[HK02] (see Algorithm 2).

The Power-iteration method is ef cient when the largest eigen-
values have different magnitudes. Otherwise, the systeifi- is
The quality of Robinsonian approaches is essentially in uenced by conditionedand convergence will be slower or not existent at all.
two choices: (i) the measure of distance (or similarity) and (i) Efcient preconditioningmethods exist to address this problem,
the enumeration approach. The goal of every R-matrix reorder- such as the OBPCGmethod [Kny01], with implementations in
ing approach is to optimize similarity between neighboring rows many popular languages.
and columns. The direct outcome is that block pattefif) are To compute the eigenvectors with the smallest eigenvalues, a
made visible. Hence, Robinsonian approaches should be preferredsimme transformation is required. The mathit = g ! M has
if a dataset partitioning is expected for yet undetermined data sub- o same eigenvectors as a symmetric matisut with the eigen-
groups. On the other hand, even if reordering is less strict than clus-,,5|es in reverse order. The constanis called the Gershgorin

tering, “analysis via clustering makes several a-priori assumptions  y,,;nq [Wat91], which is a theoretical upper bound for (the absolute
that may not be perfectly adequate in all circumstances. First, clus- 51,e of) the largest eigenvalue of a matrix:

tering [...] implicitly directs the analysis to a particular aspect of
the system under study (e.g., groups of patients or groups of co- g= max M+ é iMij (13)
regulated genes). Second, clustering algorithms usually seek a dis- i ' i6i '

Discussion

Cc 2016 The Author(s)
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Algorithm 2 Power-Iteration to compute the r&teigenvalues and v
eigenvectors [HKO02]. 187/0.03/5.51)

1: function POWERITERATIONS(M) . This function computes
X1;%2;: 11 Xk, the rst k eigenvectors of M.

Petit GD96¢c
(65/0.06/3.85)

Watts Strogatz 3
(100/0.04/3.98)

Clustered
(70/0.12/8.77)

2: conste  0:001

3: fori  1;kdo

4: % random

5: R sk Angular Order of Eigenvectors [Fri02]

6: do N X Brain Petit GD96C Watts Strogatz 3 Clustered

7 Xi Xi . orthogonalize 187/0.03/5.51) (65/0.06/3.85) (100/0.04/3.98) (70/0.12/8.77)

8: forj 1;i 1ldo

9: XX X)X

10: end for

11: X Mx

12: Xi &ﬁ (b)
13: while % < 1 e Rank-two Ellipse Seriation [Che02]
14: X X
15:  end for Figure 8: Examples for Spectral Matrix Reorderings.

16: return Xg;Xo; i1 Xk
17: end function

by R = corr(R¢ ) and eventually deriveB™™ with the men-
tioned properties. In 1975 Breiger, Boorman and Arabie [BBA75]
found that the resultant block form of the correlation magik?
Algorithms and Variations (if correctly ordered) represents a valid matrix reordering. Later, in
Spectral methods are used in two ways: (i) using the properties 2002 Chen_[CheOZ] deve_loped th_es_e ideas further and explored a
of the eigenvectors with the largest eigenvalue(s), or (ii) using the rank reduction property with an elliptical structure, even before the

eigenvector with the smallest non-null eigenvalue due to its struc- CONvergence, as Algorithm 3 showcases. Figure 8(b) shows exem-
tural properties. pli ed results for Chen's rank-two ellipse seriation with noticeable

(even though sparse) off-diagonal pattern tendenéiga".
Sternin commented already in 1965 on the useful rank-order
properties of the two eigenvectors corresponding to the two largest Algorithm 3 Rank-two Ellipse Reordering with recursively built
eigenvalues ; andl ; [Ste65] In his divide-and-conquer approach,  pearson correlation matrices [Che02].
he splits the row/column indices into three distinct classes accord-

. o " . . 1: procedure RANK-TwO ELLIPSE REORDERING
ing to their index position and the value of the integral abscissa ».

> S : D distMatrix(M). . Distance Matrix
values of thesecondprincipal component at that speci c indexpo- 3. RO  pearsonCor(D).
sition. Each class is then permuted by the value of the integral ab- 4- i1
scissa of therst principal component at the speci c index position. 5. repeat
) ) ) ) 6: RO PearsonCor(R( D).
Friendly [Fri02] developed this concept further in 2002. He was . i+l
usingcorrelation matricesas opposed to the raw data (Figure 7)to g ypijl rank(R) = 2. _ Recursive Pearson Corr. Matrices

position similar variables adjacently, facilitating perception. More- 9. Get rst two Principal Components (PCs) &f.
over, rather than sticking to the integral abscissa values of the rst 10: Project rows/columns onto the 2D plane of these PCs.
two principal components, he arranges the row/columns based in11: Cut ellipse between the two converged groups.
the angular order of the eigenvectors: 12: p 1D rank approximation.
13: applyPermutatiofp; M). . Final Matrix Permutation

tan 1(32:31) foreq > 0 14: end procedure

tan 1(ez=g1)+ p otherwise

(14)

. . . Solution to the Robinsonian Problem Atkins et al. [ABH98]
The achieved circular order for the row/column vectors is un- paye solved the Robinsonian problem using the eigenvectors of the
folded into a linear arrangement by splitting at the largest gap Laplacian matrix The Laplacian matrix is de ned ds= D M,

between adjacent vectors. Figure 8(a) shows example results for,nereD is the degree matrix anid is the adjacency matrix of the
the RCorrplotSortingAOEalgorithm, depicting visually pleasing

i ) graphG:
global structures, but also bandwidth patter@dX) without rec-
ognizable structure within the band. ( on o
D= k=1Mii ifi=] (15)
A related technique was introduced by McQuitty in 1968 b 0 otherwise

[McQ68], who observed the convergence of recursively formed

(Pearson) correlation matrices into a matrix with the only elements A general grap!G with ¢c connected components hasigenvec-
being 1 and+ 1. Starting fromR™ (the correlation matrix of the  tors with an eigenvalue of 0. If the graph has only one connected
original distance matrix) the sequent®®?:R?;:::) is formed component, thehn, = 0 and the associated eigenvector is a vector

C 2016 The Author(s)
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lled with 1 and notedl. The smallest non-null eigenvallig 1 is v e
called theFiedler valueand the corresponding eigenveckar 1 is 187/0.03/5.51) (65/0.06/3.85)
called theFiedler vectofABH98, Fie73]. The Fiedler vector can be
used to order a graph by ordering the vertices according to the or-
der of the vector values. This order is a solution to the Robinsonian
problem for a Pre-R matrix.

Clustered
(70/0.12/8.77)

Watts Strogatz 3
(100/0.04/3.98)

Discussion Principal Component Analysis [HHBO08]

Spectral approaches using the rst eigenvectors build on the as- Brain
sumption that the core matrix structure can be extracted from REHESEEER)
only a few dominant dimensions. Unfortunately, the eigenvec-
tors are very sensitive to data corrupted with outliers, missing
values, and non-normal distributions [LHGYO03]. In cases where
the underlying correlation-dimension is not uni-dimensional (e.g.
multi-dimensional, or cyclic), such as Wilkinsortgcumplexform
[WIlO5, cf. p. 521], these approaches will fail inherently, producing

Sa|t-and-pepper visual patter). Brain Petit GD96¢ Watts Strogatz 3
187/0.03/5.51) (65/0.06/3.85) (100/0.04/3.98)

Clustered
(70/0.12/8.77)

Petit GD96¢ Watts Strogatz 3
(65/0.06/3.85) (100/0.04/3.98)

(b)

First Principal Component Projection [Fri02]

Clustered
(70/0.12/8.77)

In contrast, spectral approaches using the Fiedler vector seem
robust to noise and tend to generate good results consistently.

6. Dimension Reduction Techniques

Multi-Dimensional Scaling [HHBO08]
DATA INTERMEDIATE OBJECTS ~ORDERED MATRIX|
Figure 10: Examples for Dimension Reduction Reorderings.

A I AT R
° (b) First Principal Component Projection Alternatively, the

principal component can be directly derived from the raw matrix
data; without the intermediate step of building a covariance matrix.
Figure 10(b) shows this approach on exempli ed matrix plots.

Eigenspace

Figure 9: Dimension Reduction Matrix Reordering.

As one can see, Figure 10(@) (PCA) and Figure 10(b)
( First PCP ) resemble each other. However, PCA is able to show
off-diagonal patterns, such &2, more clearly and tends to pro-
duce patterns along the anti-diagonal of a matrix.

Dimension reduction techniques constitute a rather small stream
to the matrix reordering landscape. While the actual mathemati-
cal ideas have been developed centuries ago, their applicability to
meaningful problem instances in terms of size was hindered by the

calculation performance. (c) High Dimensional Embedding: Computing the eigenvectors

The central goal of dimension reduction techniques is to retrieve was long time only possible for small matrices. However, it-
a one-dimensional layout/ordering of the rows/columns that re ects erative approaches (see Algorithm 2) and the ability to paral-
the (non-)linear relationshipdetween them (Figure 9). lelize the calculations (even GPU implementations are available
[And09, KY05]) allow computing the PCA in real-time for large
graphs. A modi ed PCA method, called “High Dimensional Em-
bedding”, is described by Harel and Koren [HKO02]. Their method
The main methods in this eldRrincipal Components Analysis  usesthe rst two/three components of the PCA for laying out node-
(PCA) and variants, antfultidimensional ScalingMDS)) share link diagrams with up to one million nodes in a few seconds. This
the commonality that they decompose varying intermediate objects method was adapted by Elmgqyist et al. for reordering matrices for
(e.g., covariance matrix, normalized data matrix) with the help of a graphs of a million edges [ED®8]. EImqvist et al.'s results show
Singular Value Decompositiqi®VD) step to derive a permutation.  that High Dimensional Embedding results in a visually pleasing

overview, while the local ordering is poévl .

Algorithms and Variations

(a) Principal Component Analysis: One of the most popular

techniques for dimension reduction is Principal Component Anal- (d) Single Value Decomposition:Liu et al. [LHGYO03] follow the
ysis (PCA). PCA computes a projection of multidimensional data idea that data is inherently corrupted with outliers, missing val-
into an n-dimensional space that preserves the variance betweenues, and non-normal distributions that cover up the matrix pat-
elements in the data. In the context of matrix reordering, fie 1 terns. Thus, a row vector approximation with bilinear fors=
principal component of aovariance matrixnust project the data. rim;j + gj is used, where; is a parameter corresponding to ftie
This 1% principal component represents the most variance and ac- row, m; corresponds to théth column andg;j is a residual/error
cordingly the most expressiveness of the data. Figure 10(a) showsvalue. Rows are ordered iteratively by their regression coef cients
matrix plots resulting from th&SeriationPCAnatrix reordering. ri, respectivelyn; for the columns, with the assumption that similar

Cc 2016 The Author(s)
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regression coef cients group visually similar rows/columns. The Pic09] proposé?ivotMDS a sampling-based approximation tech-
equation can be solved using SVD, which decomposes a rectangu-ique for classical MDS, which is able to determine a layout of
lar matrix Dmn into the product of 3 matriceL*dmmsmnVnTn where node-link diagrams in linear calculation time and with linear mem-
UTu=1landvTv=1. Although the method is robust, it is expen-  ory consumption.

sive since its complexity is higher than quadratic in time. Discussion
The central idea of dimension reduction techniques is to take ad-
bility to discover structure in matrices is multi-dimensional scal- vantage of the inherent and potentially hidden (non-)linear struc-
ing (MDS) [BL12]—also denoted as Similarity Structure Analy- tures in the data. This has direct consequences on the matrix plot to
sis. In 1974, Spence and Graef recognized this interrelation and ap-be expected: Normally these approaches favor high-level/coarse-
plied MDS to the matrix reordering problem [SG74]. MDS assigns grained structuresP(™) over ne matrix patterns (e.g., lines
rows/columns to a speci ¢ index in a conceptual one-dimensional (P3F)). While PCA is only able to retrieve linear structures, MDS
space, such that the distances between the respective vectors in thalso allows determining non-linear data relationships. On the other
space match the given dissimilarities as closely as possible. Thehand, there are only rare cases where a non-linear data structure

(e) Multi-Dimensional Scaling: Similar to PCA, another possi-

cost function to be minimized is an overall distortion of the posi-
tions. With this approach MDS can derigen-linear relationships
among the matrix rows/columns.

MDS techniques can be distinguished into two types: (i) non-

should be examined in a matrix form. Other visualizations, i.e., the
raw two-dimensional MDS projection, is better suited for these pur-
poses. In general, Wilkinson notes that SVD and MDS methods are
performing best in terms of the Spearman correlation between the
known row indices (after constructing the matrix) and the permuted

metric MDS, which involves data that is not necessarily all nu-
meric was applied by Rodgers and Thompson [RT92] for matrix
reordering, and (ii) classical MDS which involves numeric data
(preferably variables in the same scale) was applied by Spence
and Graef in [SG74]. Classical MDS algorithm is based on the
fact that the permutation indiceé— or one dimensional coordi-
nate matrices—can be derived by eigenvalue decomposition from

indices [Wil05, p.532].

7. Heuristic Approaches
DATA

INTERMEDIATE OBJECTS

£ Node statistics
” > sort() 4

ORDERED MATRI

T X ) . > Barycentre Graph (?)
the scalar product matrid = XX". To achieve this, each value in - —» minimizeLinkCrossing()—s-
the distance matrix must be squared and “double centered”, such initial
that the columns and rows both have a zero mean. Subsequently ordering Adjacency Matrix

Figure 11: Heuristic Approaches for Matrix Reordering.

the SVD of this (normalized) matrix is calculated and the index )_/
positions are retrieved from the factors returned by the SVD. The
steps in Algorithm 4 summarize the algorithm of classical MDS.
Figure 10(c) shows matrix plots for the saR8eriationMDSlgo-

rithm, resulting in almost identical plots than when using PCA.

—» calculateEntrop(

Heuristics are methods that transform the problem of nding
an ordering into another problem space that abstracts the prob-
lem appropriately and allows for computationally ef cient prob-
lem solving. Heuristic approaches can be separated prb-
lem simpli cation and problem space transformaticapproaches.
Problem simpli cation methods try to use row/column approxima-

Algorithm 4 Double Centering and Singular Value Decomposition
in the MDS Matrix Reordering.

1: procedure MDS MATRIX REORDERING

1
2: D) §d(X‘;XJ’)2' - Squared Distance Malrix  ions to jterate through the permutation possibilities (or a subset
3:  rowMean= mearfM). thereof), while problem space transformation methods are trans-
4: colMean= mearftranspos¢D?)). forming rows and/or columns into other meaningful representations
5. totalMean= mearfrowMeans. (e.g., the nodes of a bi-graph).
6: fori= 0;jD? do
7: for j = 0;jD?j do ) L
8: IJZ)Z(i; jJ)+ i totalMean rowMean colMean; Algorithms and Variations
9: end for (a) Numerical Abstractions: One classical instance for simpli -
10:  end for - Double Centering cation methods is to neglect the row dimensionality and use numer-
11: USV> = SVD(D?) - Singular Value Decomposition jc5| apstractions for each row and/or column instead. Deutsch and
g Le;gen\galgues S M._arti_n [DM?l] proposed tq use thaet_sm row mo_memg nd the
14; for all row2 U do principal axis and thus a single dominant relationship of the data.
15: row  eigenvValues Mean row/column moments are de ned as follows:
16:  end for . Eigenvector Normalization N
17: p U i = aj=1 JMij (16)
18: M applyPermutatio(p; M). . Final Matrix Permutation ! 3 lj\l: 1M;j

19: end procedure

This heuristic approximation is iteratively applisdparatelyon
Alike PCA methods, classical MDS can be heuristically adapted the rows and columns until the simple vector mean quality measure
to allow for larger problem instances. Brandes and Pich [BPOQ7, stabilizes, as Algorithm 5 depicts.

C 2016 The Author(s)
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Algorithm 5 Separately applied row/column ordering with the Algorithm 6 Barycenter Heuristics [MS05].

Mean Row Moments quality criterion [DM71]. 1: procedure BARYCENTER HEURISTIC(graph)
1: procedure MEAN ROW MOMENTS HEURISTIC REORDERING 2: layerl [v2 V whereoutDegree(vB 0]
2: repeat 3: p1  identityPermutation(|layerl|)

3: for all row; 2 M do 4: layer2 [v2 V whereinDegree(v)s 0]
4: Xi  meanRowMome(ow;). 5: p2  identityPermutation(|layer2|)

5: end for 6: repeat

6: p  orderPermutatio(x). 7. for v2 layerldo

7: M permutép; M). . Row Reordering 8: n  outNeighborév)

8: for all col 2 M do 9: positiorfv]  barycentefpa; n)

9: yi  meanColMomeifitol;). 10: p1  orderPermutation(position)

10: end for 11: end for

11: p  orderPermutatiofy). 12: for v2 layer2do

12: M applyPermutatiotp; M). . Column Reordering 13: n inNeighborgv)

13: until Row and column reordering is stable. 14: positiorfv]  barycente(pz; n)

14: end procedure 15: p2  orderPermutation(position)

16: end for
17: until Row and column reordering is stable.
Brain Petit GD96¢ Watts Strogatz 3 Clustered 18: end procedure
187/0.03/5.51) (65/0.06/3.85) (100/0.04/3.98) (70/0.12/8.77) 19: function BARYCENTER(p; ) return &2 nP(vV)

in
20: end function

which the matrix rows correspond to the rst graph partitioning and
the columns to the other partitioning. An adaption of $wgiyama
pp— algorithm is applied to minimize the edge crossings (Figure 13).
(70/0.12/8.77) Algorithm 6 operates on the two “layers” (the two partitions). It is
repeated until the number of crossings does not decrease any more.
Two small changes improve the algorithm results substantially: re-
placing the barycenter by tmeedian[EW94], and applying a post-
processing, repeatedly swapping consecutive vertices on the two
(b) layers as long as it lowers the number of crossings [GKNV93]. This
Anti-Robinson Simulated Annealing [BKS08] algorithm has the tendency to arrange matrix plots, suchcthat
tersstick out in the top left and bottom right corners.

Bond Energy Algorithm [MDMS69]

Brain
187/0.03/5.51)

Petit GD96¢c Watts Strogatz 3
(65/0.06/3.85) (100/0.04/3.98)

Figure 12: Example for Heuristic Matrix Reorderings.

A B C D ) 8 %8 D B A C 132 5 4

McCormick et al. contrast in [MDMS69, MSW72] three differ- A A .‘.-.‘.‘. AN ° :.:,.‘..
ent_heuristics for establishing a matrix reordering_: (i) Moment Or- \ f L o @ ee N N AL T @ @
dering; by means of the mean row moments, (i) Moment Com- ¢ ¢ ¢ s » ojg@® s o 000

pression Ordering; by means of the sum of second moments and

(iii) the Bond Energy Algorithmshort BEA. BEA uses a “mea- ] ] ) o

sure of effectiveness” as a quality criterion, and tries to maximize ~ Figure 13: Reordering using the Barycenter Heuristic [MS05].
the so callecdbond energyver all row- and column permutations.

Figure 12(a) shows matrix plots for tiRSeriationBEAalgorithm, o . . .

which shows tendencies to produce Block-Diagonal matrix forms (€) Entropy Optimization and Genetic Algorithms: Nier-
(P1%) in combination with off-diagonal grouping®2a®) and star mann _[N|e05] uses a genetic algorithm to assess the_ tr_less of
patterns P3H). As seen from the results in Figure 12(a), BEA a matrix permutation by means of an entropy-based objective func-

tries to maximize contiguous chunks, forming more or less concise t'oé' ov(;ar all matlrlx plot p|>_<e_ls. 1|'he Illntwt;:/e idea IS that ? \{ve_lll-
groupings P&, PZ) in the matrix plot. ordered matrix plot—containing locally coherent regions of similar

values (e.g., black or white)—requires a minimum number of bits
Three further heuristics are suggested by Hubert and Golledge:for encoding. In other words, the better a matrix plot can be com-
“Different Counting Rule”, “Gradient Within Rows”, “Szczotka's  pressed, the better is its reordering (under the assumption the data
Criterion” [HG81, p. 436-439]. Makinen and Siirtola [MS00] pro-  contains clusters, groupings, or other partitionings). For the Nier-
pose to reorder the rows/columns iteratively and separately (such agnann's genetic algorithm he models permutations, the individuals
in Algorithm 5) by their weighted row/column sum. Further heuris-  of the algorithm, as arrays of ordering indices. Child individuals are
tics with varying goals are described in [MS14, p. 199]. created from consistently rearranging permutation subsequences in
the parents (crossover) and mutations are implemented by revers-
(b) Barycenter Heuristic: Makinen and Siirtola propose to use ing arbitrary subsequences in the permutation. After each round,
the barycenter heuristidqMSO05] to layout a bipartite graph, in  the tness of every offspring is evaluated. Less t individuals are

Cc 2016 The Author(s)
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discarded, while more t offsprings—in our case permutations—
survive and can reproduce.

Brusco et al. [BKS08] and Wilkinson [Wil05] propose to use
simulated annealing (depicted in Figure 12(b)), a technique similar
to genetic algorithms and used for nding (local) optima in large

search spaces. In each annealing step two rows or two columns
are exchanged and the performance is measured in terms of anti

robinsion events, respectively residual variance.

Discussion

Heuristic approaches transform the matrix reordering problem,
such that speci c assumptions are met. While problem simpli -
cation algorithms are usually fast, they suffer inherently from this
restriction. If a dataset is not of the expected form, the results will
be inappropriate for an analysi&1E). One other problem seems
to be speci ¢ for problem space transformation: The algorithms are

reported to converge slowly and are sensitive to parameter settings.
Also it is questionable whether general settings can be derived or
inherently depend on the structure and size of the data sets. Particu ;.

larly, in these cases, it might be bene cial to (pre-)assess the matrix
in terms of density, clusteredness, etc.

8. Graph-Theoretic Approaches

DATA INTERMEDIATE OBJECTS ORDERED MATRI

& -
Connectivity Graph \
& o e
—> —
Similarity Graph TSP
R
%hortest path matrix TSP

Figure 14: Graph-Theoretic Approaches for Matrix Reordering.

searchmanner, all neighboring vertices sorted by their neighbor-
hood degree (number of common neighbors with the initial vertex).
Figure 16(a) shows exempli ed matrix plots, which depict that this
inherently fast approach tends to produce strong bandwidth anti-
patterns A2K). However, it can also lead to good resuli1M)
within the bandwidth if the graph structure allows for it and—more
crucial—the initial input permutation is appropriate.

Algorithm 7 Bandwidth Minimization with Breadth-First Search
in the Cuthill-McKee Matrix Reordering Algorithm [CM69].

1

: procedure CUTHILL -MCKEE MATRIX REORDERING

2: G(V;E) adjacencyMatrixM).
3: Vstat MinDegregV).
4: p ;[ Vstart.
5: i1 . Initialization
6: repeat
7 neighbors adjacentv;).
8: sortByDegreéneighbors.
9: for all vn 2 neighborsdo
ppl v

: end for
12: i+ 1
13: until i = jVj. . Breadth- rst enumeration
14: M applyPermutatio(p; M). . Final Matrix Permutation

15: end procedure

An improved version of the Cuthill-McKee algorithm, known as
Reverse Cuthill-McKee algorithm, is proposed by George [Geo71].
It reverses the degree ordering of the neighboring vertices in the
breadth- rst search. A comparative analysis of the two variants
shows that this —marginal— change leads to better reordering results
[LS76, p. 207]. Figure 16(a)(b) show exempli ed matrix plots for
both algorithm variants However, in our implementations the algo-
rithms produce visually dissimilar results. Chan and George show
in [CG80] a linear time implementation of the Reverse Cuthill-
McKee algorithm.

The memory consumption for the Cuthill-McKee algorithm was

Graph-based approaches share a commonality with heuristicimproved by King [Kin70]. King uses a local priority queue to

methods: They transform the permutation problem into a related

select the next vertex to visit, based on the number of vertices that

problem space, in this case graph enumeration. The central ideawill be added to the neighborhood list in the subsequent iteration.

of graph-theoretic approaches is to exploit the graph structure for
computing a linear order that optimizes a graph-theoretic layout
cost function. Diaz et al. [DPS02] compiled a list of nine layout
cost functions from which three objectives have been applied in the
context of matrix reordering. We detailed these layout cost func-
tions, along with their visual interpretation in Section 2.2.

Algorithms and Variations

(a) Bandwidth Minimization: In an early approach (1968) Rosen
presented aiterative method to reduce the bandwidth in sparse
matrices [Ros68]. The same central objective is shared by the well-
establishe@Reverse) Cuthill-McKeenatrix reordering algorithms
[CM69,Geo71]. Cuthilland McKee exploit a direct correspondence
between the structure of the coef cient matrix and the structure of
the adjacency matrix to be ordered. Algorithm 7 shows the pseudo
code for the Reverse Cuthill-McKee algorithm. Starting from
a graph vertex with low degree, it enumerates, ibre@adth- rst

¢ 2016 The Author(s)
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Later in 1976, Gibbs, Poole and Stockmeyer focused on runtime
improvements in their populagPSalgorithm [GPS76]GPSde-
creases the search space by starting with a vertex that has a max-
imal distance to another vertex (pseudo-diameter path) and a level
minimization step to reduce the number of vertex enumeration cy-
cles. The GPS algorithm is reported to work up to eight times faster
than the Reverse Cuthill-McKee algorithm.

(b) Anti-bandwidth Maximization: A related and visually in-
teresting adaption of bandwidth minimization was introduced by
Leung in 1984: the matrianti-bandwidth maximizatioproblem
[LVW84]. It says that after a matrix's row/column permutation all
nonzero entries should be located as far as possible to the main
diagonal. Figure 15 shows the exempli ed result of a matrix re-
ordering with respect to anti-bandwidth optimization.

Anti-bandwidth maximization is able to show off-diagonal line
patterns (a sub-form of the bands patté?d, describing paths)
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spreading over the matrix plot. Similar line patterns can be found in v
the analysis of high performance computing clusters [VRHH. 187/0.03/5.51)

Petit GD96¢c
(65/0.06/3.85)

Clustered
(70/0.12/8.77)

Watts Strogatz 3
(100/0.04/3.98)

Alike bandwidth minimization, also anti-bandwidth maximiza-
tion, is in the class ofNP -complete problems [LVW84]. Ac-
cordingly, heuristic approaches were developed to solve the prob-
lem. Lozano et al. [LDGM12] propose a heuristic algorithm based
on variable neighborhood search. Also Lozano et al. [LDGM13] Cuthill-McKee [CM69]
proposed a hybrid approach combining the arti cial bee colony p—
methodology with tabu search to obtain appropriate results in short [Ty,
computational times. A genetic algorithm for bandwidth reduc-
tion, anti-bandwidth maximization and linear ordering is proposed
in [PM14], where an exchangeable cost function guides to the ex-
pected result. Further discussion on anti-bandwidth maximization
is given by Raspaud et al. in [RS@9].

Petit GD96¢
(65/0.06/3.85)

Clustered
(70/0.12/8.77)

Watts Strogatz 3
(100/0.04/3.98)

(b)
Reverse Cuthill-McKee [Geo71]

Petit GD96c Watts Strogatz 3
(65/0.06/3.85) (100/0.04/3.98)

Clustered
(70/0.12/8.77)

before optimization after optimization Brain
Y . 187/0.03/5.51)

Sloan [Slo86]

Figure 15: An example for the antibandwidth optimization [MS14, Brain Petit GD96C
image courtesy]. 187/0.03/5.51) (65/0.06/3.85)

Watts Strogatz 3 Clustered
(100/0.04/3.98) (70/0.12/8.77)

(c) Prole Minimization: Sloan's algorithm [Slo86, Slo89] has
the goal to reduce the pro le and the wavefront of a graph by re-
ordering the indices assigned to each vertex. Similarly to the GPS pjylti-Scale [KH02]
algorithm pseudo-peripheral nodes are chosen as a start and end

vertices. All other vertices are prioritized by a weighted sum of the  [ESRSEE
distance of the vector to the end vertex (global criterion). Addition-
ally, a local criterion is incorporated with the current vertex degree.
It re ects the status of the renumbering in the neighborhood of a
vertex. Therefore, the Sloan algorithm not only takes into account
the global criterion, but also incorporates local criteria for the re-
ordering process. Figure 16(c) shows exempli ed matrix plots for Traveling Salesman [LK75]
the Sloan reordering algorithm.

(d)

Petit GD96c
(65/0.06/3.85)

Watts Strogatz 3 Clustered
(100/0.04/3.98) (70/0.12/8.77)

Figure 16: Examples for Graph-based Reordering Approaches.

(d) Minimum Linear Arrangement: Koren and Harel propose a
multi-scale approach to deal with the MinLA problem [KCHO2].
In their multi-level algorithm (depicted in Figure 16(d)) the en-

tire graph is progressively divided into lower dimensional prob- Lenstra pointed out that the Bond Energy Algorithm (cf. Section 7)

Ien;i (reordermg 02_?] segment _grap?)t.hThls p;]o_cess |sdreferrect1 _totcould be modeled as two subsequent Traveling Salesman Problems
as the coarsening. The coarsening ot the graph IS based on restric {TSP) for the rows and the columnsdt performs well for this type
ing the consecutive vertex pairs of the current arrangement. In the

. of probleni [Len74, p. 414]. Shortly after, Lenstra and Kan [LK75,
cct:arsest Ievell e?<act SO'U“OF‘S for the Erob::emh_celtqn ble C?lcmatled'p. 724] showed that the bond energy heuristic is a simple subopti-
.T ese sub-solutions are projected back to t € higher ‘eve prob €M mal TSP variant and compared it to the optimal TSP solution.
in the subsequent re nement process until the initial problem is
reconstructed. This re nement step iterates over all local permuta- TSP matrix reordering approaches model each row, respectively
tions and selects the one that minimizes the MinLA (in a dynamic column, as a city and translate the row/column-wise similarity into
programming fashion). Multi-level approaches in general have one virtual distances. Computing an optimal TSP path (a minimum dis-
signi cant advantage: They allow fast exploration of properties re- tance TSP tour with a virtual city that is used for breaking the cycle)
lated to the global structure, while the local structures can be re- corresponds then in nding an optimal matrix permutation, such

ned iteratively if necessary. Further multi-scale graph coarsening that the pairwise similarity is maximized (wrt. the chosen similar-
approaches are described in [OKLS15]. ity function).

(e) Traveling Salesman Problem:In a technical note from 1974

Cc 2016 The Author(s)
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Figure 16(e) shows matrix plots for thiRSeriationTSP algo-
rithm. Internally theConcordeT SP solver [ACRO03] and the 2-OPT
edge exchange improvement procedure [Cro58] is used to mini-
mize the Hamiltonian path length. A different approach is pursued
by the Multiple Fragmentalgorithm, such as described by Bent-
ley [Ben92] or Steiglitz and Weiner [SW68]. It starts by consider-
ing every node in the graph as one independent fragment. Repeat
edly, any edge that will not make it impossible to complete a tour
is added to the closest fragment. Fragments can be merged by a Figure 17: Biclustering Approaches for Matrix Reordering.
connecting edge.

More recently, Henry-Riche and Fekete [HFO06] incorporated in
their MatrixExplorer system the consideration that vertices with Matrix reordering. Biclustering is related to clustering, but com-
similar connection patternshould be positioned next to each other.  Prises a central difference: While clustering can be applied sep-
This has the advantage that not only the coarse matrix plot structure@rately to either the rows or columns of the matrix, biclustering
(groups/cluster patterns) is focused, but also that the local densityPerforms clustering in these two dimensiagisiultaneouslyFig-
of the occurring clusters is optimized. In their approach the authors Ure 17). In other words, clustering derivgtobal data models
use—instead of the adjacency matrix—the shortest path matrix for @nd biclustering algorithms allow identifying subsets of rows and
each connected component of the graph and reorder each compo¢0lumns that reveal a similar activity pattern, and thus have to be
nent with a TSP solver; alternatively a hierarchical clustering can S€en asocal data models

be applied (see also Section 4). Biclustering approaches can be subdivided by the clustering
structure they are able to reveal: Single bicluster, exclusive row
Discussion and column biclusters, checkerboard structure, exclusive rows bi-

clusters, exclusive columns biclusters, nonoverlapping biclusters
with tree structure, nonoverlapping nonexclusive biclusters, over-
lapping biclusters with hierarchical structure, and arbitrarily posi-

The idea to explore the graph structure for computing a linear or-
dering is self-evident and obvious. But, in analogy to our question

What is a good matrix reordering?the graph community is pos tioned overlapping biclusters [MOO04, p. 34]. For a matrix reorder-

ing the questioriWhat is a good 2D graph layout?"These ques- . . o o
tions are yet unanswered in both domains. However, they share the"d task the most general subgroup with arbitrarily positioned over-

common ground that a good result allows perceiving interpretable lapping blclustgrs Is of the hlghest. Interest, since It enable; t.he user
visual patterns. to see overlapping block patterns in the matrix plot. A repetitive ex-

ecution of algorithms that reveals a single bicluster allows nding
Related to this challenge, several of the mentioned approaches arbitrarily positioned submatrices, too.

such as the Multi-Scale or TSP, have the interesting character-

istic that a consistent anitermediatereordering result can be  Algorithms and Variations

shown to the analyst on-the- y, while the actual matrix reordering

takes place. This idea follows thegsults- rst-re ne-on-demand

mantra. On the other hand, when it comes to the optimization

of graph-theoretic layout functions, such as bandwidth or pro le,

these algorithms are solely governed by the assumption that the

data can be brought into this form. This assumption implicitly ne-

glects all other potential patterns in a matrix plot. Though, a ma- parameted.

trix plot that represents patterns along the diagonal well (e.g., clus-  1he pseudo code for the Cheng and Church algorithm is given

ters) will be perceived as interpretable and effective; a goal also in Algorithm 8, depicting two greedy row/column removal/addition
expressed by Bertin [Ber73]. steps that are executed subsequently to nd @nbicluster: Start-

ing from the full matrix, (i) rows and columns with a score higher
The ef ciency aspect has to be regarded, as well. Sloan notes, than the mean squared residue score are deleted; (i) removed rows
that bandwidth and pro le reduction “schemes may be inefcient o columns are added if they do not increase the actual mean
for sparse matrices which contain a signi cant number of zeros in- squared residue score of the bicluster. This approach converges
side the bandwidth envelope” [Slo86, p. 240]. Recently, Wong also ith low mean residue and locally maximal size for @hecluster.
noted that “algorithms such as Fiedler and Sloan consistently re- |n order to nd distinct biclusters, an already identi ed bicluster

quire more time to compute than the others when the graphs grow can be arti cially masked with random noise so that a subsequent
to tens of thousands of nodes” [WMFM13, p. 95]. While this is cer- jqyocation of the algorithm nds a differemt bicluster.

tainly true, a heuristic implementation for most approaches can be
found in the vast literature of the graph-theoric domain.

(a) Single Bicluster Approaches:Cheng and Church [CCO0Q]
present a greedy iterative search algorithm that models the biclus-
tering problem as an optimization problem. The algorithm nds one
d bicluster (or submatrix) at a time with a potentially local opti-
mal mean squared residue score not higher than a user-speci ed

(b) Arbitrarily Positioned Overlapping Biclusters Several algo-
rithms to retrieve arbitrarily positioned overlapping biclusters exist.
For example, th&laid model biclustering algorithm of Lazzeroni
and Owen [LO02] assumes that a matrix can be described as a
Recently, the concept @iclustering also called co- or two-mode linear function of possibly overlapping constant layers that do not
clustering or generalized blockmodeling, gained importance for necessarily have to cover the whole matrix. Iteratively new layers

9. Biclustering Approaches

C 2016 The Author(s)
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Algorithm 8 Cheng-and-Church Biclustering algorithm [CCOQ]. column at the speci ¢ position. Motifs with a low overlap coef -
1: function CHENG AND CHURCH BICLUSTERING cient are discarded. The algorithm is adapted for ordinal and nomi-
2 A rows(M). . De nitions. nal scales in the algorithn@@uestandQuestmefKaill]. A similar
3 B columngM). approach, calleBiMaxwas presented by Prélet al. [PBZ 06].
4 ey Mz . . . _— o
5 on &j2 M (d) A Priori Submatrices: An interesting biclustering variant is
: NETN presented by Jin et al. [JXFDO08]. Based on the assumption that a
6 €aB % set of submatrices of interest is known a priori, the authors try to
7 RSws(i;j)) mj e es+eas. nd a row/column permutation that allows showing these relation-
8  H(Y) Apa: Rg; ships best. For this purpose, the authors generalize the minimum
L CRRIZB AT . linear arrangement problem into ttypergraph vertex ordering
9: Initialize bicluste(l;J) with | = A;J = B. . Algorithm Start. . . 9
10.  while H(1;3) > ddo _ Deletion Phase. problem and propose to solve the submatrix pattern visualization
11: d(i) ﬁéjz‘] RSy(i; ) foralli2 I. prqblem in this prpblem dqmaln. In t_helr suggested algorithm ex-
12: o) ﬁ 8., RSu(i: ) forall j 2 J. |s'F|ng_graph ordering algorithms are incorporated to solve the opti-
13; if maxz ,d(i) > max;z se(j) then mization problem.
14: I Infargmaxd(i)g. Several other biclustering algorithms exist and are discussed in
15: else [MOO04, PBZ 06, TSS05]
16: J  JInfargmaxe(j)g.
i end if Discussion
18: end while
19 10 ;0 3 Biclustering focuses on nding subsets of rows and columns that al-
20:  while H(1%J% < ddo . Addition Phase. low perceiving coherent activity patterns which cannot be seen with
21 (N N a global scope. Biclustering approaches are therefore operating on
22: d(i) ﬁéjza RSy(i; j) foralli 2 Anl. local models By de nition the retrieved biclusters, or submatri-
23: &(j) ﬁém RSy(i; j) forall j 2 BnJ. ces, should form nearly uniformly colored coherent visual block
24: if maxzd(i) > maxz j&(j) then patterns P1M, P2.Y) that stand out from the neutral background
25: 19 1[f argmaxd(i)g. color. This ideal corresponds to the existencé ofutually exclu-
26: else ) sive and exhaustive clusters, and a corresponkiwgy data parti-
27: P J[f argmax e(j)g. tioning [LO 02, p. 62].
28: end if
29:  end while . Initialization Unlike standard cluster matrix reordering approaches (see also
30:  return bicluster [;J. Section 4), biclustering approaches are not necessarily depending
31: end function on a similarity model. In contrast, these approaches even doubt the

rationale of an equal weighting of rows and/or columns. Cheng and

Church state that any such similarity formula leads to the discovery
are added to the model, so that the new layer minimizes the sum©f Some similarity groups at the expense of obscuring some other
of squared errors. The Plaid model biclustering algorithm was im- Similarity groups [CCOO, p. 1].
proved by Turner et al. [TBKOS], using a binary least squares al-  Another central difference to the other reordering approaches is
gorithm to update the cluster membership parameters. This takesthe notion of data partitioning. While standard approaches mostly
advantage of the binary constraints on these parameters and allowsacilitate a data separation into exclusive groups, biclustering ap-
to simplify the other parameter updates. proaches generalize this assumption: data items may be contained
(c) Biclusters with similar Visual Patterns: Another approach, ir? several overlapping clusters. Thi§ understf’;\nding is based on the
called xMotifs is presented by Murali and Kasif [MK03] for the circumstances of the gene expression o_lomaln, where co-reg_glatory
biological gene expression analysis domain. The authors state tha@€N€ patterns are represented by (multiple) subsets of conditions.
“a conserved gene expression motif or xMotif is a subset of genes  Generally, it has to be noted that the approaches in this eld are
whose expression is simultaneously conserved for a subset of samnot restricted to a-priori constraints on the organization of biclus-
ples [...] If we map each gene to a dimension, each sample to a ters, which allows for more freedom, but consequently leads to a
point, and each expression value to a coordinate value, an xMotifis higher vulnerability to over tting. This is especially obvious in the
identical to a multi-dimensional hyperrectangle that is bounded in  high parameter sensitivityn many cases only slight modi cations
the dimensions corresponding to the conserved genes in the motifof the input parameters lead to empty biclustering result sets and
and unbounded in the other dimensigr{#4K03, p. 2]. In other even erroneous matrix permutations. However, this problem is mit-
words, the xMotif algorithm searches for biclusters that share a igated by the fact that most algorithms are greedy implementations,
common visual pattern or motif. To achieve this goal, the data is which allows a fast but potentially locally optimal result.
discretized into statistically signi cant intervals—sometimes even
binarized. In a probabilistic approach, randomly chosen “seed”
columns are iteratively compared against growing sets of “discrim-
inant” columns. For these discriminant columns, all rows are incor- The previous sections grouped algorithms into six categories, de-
porated into the bicluster if they share a common state with the seedscribed the underlying methods, and showed examples of resulting

10. Performance Comparison

C 2016 The Author(s)
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matrices. In this section we look at two measures to quantify “per-  Family Name Implementation
formance” of an algorithm: (i) algorithm runtime and (ii) Linear Robinsonian ierarchical Cluster Java [ESBBOS]
Arrangement score (LA), a measure for the compactness of blocks ®) Bipolarization Java [Hub74]
in matrices. A matrix, ordered by an algorithm, results loa LA RSeriationGW Reeriation[HBH14]
score if it reveals coherent blocks in the matrix (Figure 18 (left, cen- RSeriationBEA Rseriation[HBH14]
ter left)). In the opposite case, a matrix results inigh LA score RSeriationOLO Rseriation[HBH14]
if it is noisy (Figure 18 (center right, right)). Comparing both mea- RSeriationHC Rseriation[HBH14]
sures can inform the tradeoff betwekast algorithms andrisually Spectral RCorrplotSortingAOE Borrplot [Weil3]
pleasingreordering results. (S) RCorrplotSortingFPC Rorrplot [Wei13]
RSeriationCHEN Rseriation[HBH14]
Example Low LA Example Low LA Example High LA Example High LA |('|He)U|'iStiC F?(?V\\IIVSSLZJHT ((I’DAESC():)
Median Iteration
Mean lteration
V-Cycle
Dimension RSeriationMDS Reriation[HBH14]
) . Reduction (D)  RSeriationPCA Beriation[HBH14]
Linear Arrangement Quality Measure Graph Multiple-Fragment Java [Ben92]
. . . (G) Multi Heuristic
Figure 18: Examples of low/high scores for the Linear Arrange- Multi-Scale Java [KH02]
ment quality criterion. Cuthill-McKee Java [CM69]
Reverse Cuthill-McKee Java [CM69]
For our analysis, we obtained implementations of 35 algorithms, Degree (Ascending) Java
representative for the groups in Section 3. We used these algorithms Local Re ne Java
to reorder matrices for 150 graphs, resulting in 4348 of 5250 total RSeriation TSP Reriation[HBH14]
reordered matrices (35150). The missing ones are erroneous re- RSeriationBEATSP Reriation[HBH14]
sults (e.g., not all row/column indices were returned or indexes oc- S!oan C++ Boost E)boo]
cur multiple times), which we attribute to issues with parameters, Bi-Clustering }:régiclusteringBCPlaid C;CEZ?F&O%(])]
especially problematic for Biclustering approaches (cf. Section 9). ®) RBiclusteringBCBimax Roiclust[KLOS]
For each trial (i.e., reordered matrix) we measured runtime and RBiclusteringBCQuest Riclust[KLO8]
LA score, as well as captured the visual matrix in a picture. We pro- RBiclusteringBCQuestmet  Biclust[KLO8]
vide online the browsable collection of all matrices and associated RBiclusteringBCQuestord  Biclust[KLO8]
measures atttp:/matrixreordering.dbvis.de 22:2:3::3::3322;’1;;% ﬁ:g:ﬁ{itgg}
RBiclusteringBCSpectral Riclust[KLO8]

10.1. Design and Setup

Table 1: Overview of tested matrix reordering implementations.
The table shows (i) the algorithm group according to our taxon-
omy, (ii) the internal identi er and (iii) the implementation source
or respective publication for our Java implementations.

Algorithms We selected 35 algorithms satisfying the following
criteria: (i) well-known and used in practice, (ii) available and ac-
cessible implementation, and (iii) runtime complexity is reasonable
given the tested datasets.

107 random graphs generated to control for graph charac-
teristics such as size, density, and number of clusters. We
generated graphs using the random graph generators in Net-
workX [Net]. We tested the following types of graphs: bi-
partite graphs, clustered graphs, graphs with small-world graphs
(Watts-Strogatz), and graphs with power-law degree distribution
(Albert-Barabasi).

Graphs To obtain a large and heterogeneous collection for graphs,  For this analysis, we categorized graphs according to two mea-
we selected 150 graphs from three different sources and with vary- sures:size (i) small (25-100 nodes), (iijarge (100-1500 nodes)

ing characteristics (e.g., size, density, cluster coef cient). Interested anddensity (i) sparse(density of 0.05 - 0.28), (iilense(density
readers can explore the relations and distributions within this multi- of 0.28-0.6).

dimensional feature space of graph measures in an interactive dash-

board on our website. In the following we present only a higher Setup We generated all trials on an Intel Core i7-2600 Quadcore
level overview of the selected graphs: (3.4 GHz) PC with 16 GB RAM (DDR3-PC3-10600) and a 120 GB
SSD. The PC is operated by Windows 7 Enterprise Edition and
runs R in the version 3.1.2, Java SE 7. We excluded transfer and
preprocessing times from the measured execution time.

For example, we tested the two Branch-and-Bound algorithms
BBURCGand BBWRCQR seriation package [BS05]), but opted
to remove them due to their long runtime. Our experiments reveal
them being impractical for graphs larger than 30 nodes. Table 1
gives an overview of the selected algorithms, the group they belong
to (Section 3), and the source of their implementation.

20real-world graphs from the Pajek graph collection [BM98].
23 test graphsfrom the Petit TestsuitgPet03], one of the pri-
mary benchmark suites used in the literature for comparing ma-
trix reordering algorithms. We conducted the computation with a Java program. We

¢ 2016 The Author(s)
Computer Graphics Forunt 2016 The Eurographics Association and John Wiley & Sons Ltd.



M. Behrisch et al. / Matrix Reordering Methods for Table and Network Visualization

included 19 implementations from the R packagesor- 11. Discussion and Research Directions
rplot’ [Weil3], “biclust' [KLO8] and “seriation' [HHBO8]. For
these R packages we used the R-Proxy implementation from
Nuitor¥ to send and receive information from Java to and from
an R server. We invoked two algorithms, taken from the C++ Boost
library [SLLO1], via the Java Native Interface (JNA). We imple-
mented in Java several algorithms for which we could not nd any ~ Our empirical experience tends to indicate that a higher visual
reference implementation. quality requires more sophisticated approaches and thus, more time
to calculate. This may prove problematic in scenarios where pro-
viding rapid feedback is more crucial than displaying the highest
10.2. Results and Findings quality result. In fact, there are many trade offs pertaining to the se-
lection of a reordering algorithm. In this section, we discuss strate-
gies to select an algorithm, explain how several of them can be pa-
rameterized and brie y discuss interactive approaches to introduce
the human in the loop. We conclude by discussing the limitations

The question: “What is a good matrix reordering?” does not have

a unique answer. However, we consider a “bad” ordering, one that
fails to reveal patters such as those described in Section 2.3, when
they actually are present in the data (e.g., clusters, hubs, bi-graphs).

Runtime Figure 19 shows runtime statistics in milliseconds for
each of the four graph groupsmall-sparse, small-dense, large-
sparse andlarge-dense

Graph-theoretic algorithms (e.gCuthill-McKee King, Sloan of our survey and outline directions for future work.
Multi-Scalg and some Robinsonian algorithms (eBipolariza-
tion, Multi-Heuristic, Hierarchical Clustering are returning re- 11.1. Selecting a Matrix Reordering Algorithm

ordering results mostly below 10@0sec More interestingly, these
algorithms are nearly independent from the graph topology. For ex-
ample, it appears that the runtime is not in uenced by variation in
the degree of clustering of the graph.

While ideally one would provide speci ¢ guidance on which algo-
rithm to select and which parameter settings to use with respect to
data and tasks, there are too many open research questions remain-
ing to provide formal and robust guidelines at this point. Instead,

R SeriationandBiclusteringalgorithms, independent from their ~ we provide several insights on which speci ¢ matrix reordering al-
algorithm family, tend to perform slower than graph-theoretic algo- gorithm and parameter setting proves to be effective, based on our
rithms. This could be due to (i) particular sophisticated implemen- observations in Section 3, the analysis in Section 10 and our own
tations, and/or (ii) the data structures used. However, theoiR empirical knowledge gathered by applying reordering algorithms
rplot package is as fast as the fastest algorithms, which makes itin domain-speci ¢ applications.
unlikely that the used data structure (access times on the row- or
column vectors and random cell access) has a signi cant impact on
the overall calculation time.

Fast algorithms rst —Fast reordering approaches can produce
results in sub-second runtime when the data structure matches char-
acteristics that this algorithm is optimizing for. Others are robust to

Runtime for large graphdage) are still< 3000msec An ex- certain properties of the data, making them practical to at least try
ception areRSeriationBEAand RSeriationARSAwith a runtime rst. For example,Cuthill-McKee (see: Section 8) oRCorrplot-
about 144000 msecand 24000 msecrespectively, on the “c4y” SortingAOE(see: Section 5) algorithms produce results at near-
real-world Integrated Circuit (IC) network with 1366 nodes and interactive processing rates, almost independently of the matrix
2915 edges. density. However, results are tailored for a speci ¢ data structure

and, when not present, these algorithms often produce anti-patterns

Linear Arrangement Linear Arrangement (LA) is a loss function ~ (A1E) or depict calculation artifactsA@L), such as described
that refers to the minimum linear arrangement problem (e.g., de- I Section 23 From our emplrlcal experimentations, we .note that
scribed in [KCHO2]). As Figure 18 depicts, it allows assessing the !fafast algorllthm reveals.desweq pat.ter.ns, amore sophisticated one
visual quality of a matrix plot: The exempli ed low LA scores refer 1S unlikely to improve on its quality signi cantly.
to the block patternRf1™ andP2a"), while high scores prove to be Heuristic algorithms offer tradeoffs—Heuristic approaches
valid indicators for noisy plotsA1Ed). offer a good tradeoff between runtime and quality. They often pro-
duce more patterns than very fast algorithms, and improve them via
emultiple iterations. The freedom to interrupting them after a certain
number of iterations enables to strike the balance between runtime
and (potentially measurable) quality. For example, Baeycenter
or RSeriationARSAlgorithm (cf. Section 7) can be stopped in early
iterations, but generally require more to produce higher quality re-
sults. These algorithms tend to rst reveal data partitioning (e.g.,
connected components, sub-networks), but patterns within these
partitions require more iterations.

Figure 20 depicts boxplots for our Linear Arrangement exper-
iments under varying topology aspects: We can see that spars
graphs lead to a consistent high median LA score; however the
mean scores (dotted line) and the prominent Whisker lines indi-
cate the strong variance within the data. Noteworthy algorithms are
the Reverse Cuthill-McKee and the Sloan algorithm (both graph-
related algorithms), which tend to produce consistently either low
scores or end up with noisy visual matrices. In the taxonomy group
of large and dense graphs (Figure 20(d)) we can derive similar
tendencies: graph-related measures often outperform Robinsonian, Optimizing for cluster identi cation —For scenarios where
Spectral and BiClustering methods. identifying clusters is essential, we recommend selecting (hierar-
chical) clustering approaches, since they explicitly detect clusters
and order each one individually, placing them at the matrix diag-
Y https:/nuiton.org/projects/nuiton-j2r/ onal. A good example islierarchical Clustering(cf. Section 4).
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(a) Small Sparse Graphs (b) Small Dense Graphs

(c) Large Sparse Graphs (d) Large Dense Graphs

Figure 19: Calculation time (in msec) for each graph category (small/large versus sparse/dense).

(a) Small Sparse Graphs (b) Small Dense Graphs

(c) Large Sparse Graphs (d) Large Dense Graphs

Figure 20: Linear arrangement Scores for each graph category (small/large versus sparse/dense).
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Alternatively spectral algorithms also highlight clusters in the data  More sophisticated techniques, such as the earth movers dis-
set since similarly connected nodes are located close in Eigenspacetance, or statistically inspired distance considerations (i.e., Jenson-
A good example iRRSeriationCheifcf. Section 5). Shannon Divergence ot %) cannot be found in the current litera-
ture for matrix reordering. Gregor et al. [GLE5] recently made

an attempt at empirically deriving the impact of the respective dis-
tance functions for visual tasks. They found that for feature retrieval
tasks, the Manhattan Distance is a robust choice and outperforms
Jensen-Shannon Divergence and even the Euclidean Distance.

Quality takes time—If the previous algorithms fail to reveal
patterns, or if the patterns produced are not matching the tasks
and scenario, one may need to compromise on runtime and opt
instead for remaining algorithms. Through our experimentations,
we observed that Optimal-Leaf-Ordering (cf. Section 4) tends
to produce visually coherent and well organized block-diagonal

forms. Note that we consider higher visual quality when local (sub- Visual Pattern AssessmentSeveral approaches are tailored to

structures and patterns are dlscernab]e in the ”.‘aF”X plot. ',L\S ad- produce block-diagonal pattern81®l). Unfortunately, if the data
rect consequence, algorithms attempting to optimize functions on does not contain such patterns, these algorithms mostly fail to re-

the Tntlrf da}:ﬁ may noht be aBblT tci grasp these prrllenorfr:ena. Fgr Xeal any pattern. More work is required to design algorithms that
ample aigorthms such as piclustering approaches often produces,. s o gifferent other patterns. A crucial research direction is to

visually interprete_lb_le (sub-)structures if, and only if, appropriate develop quantitative measures to evaluate the quality of these pat-
parameters_ pertaining to the cl_usters are set. Another exar_nple_ A&erns and thus craft objective functions to optimize or assess the
the Traveling Salesmen algorithms (cf. Section 8), considering algorithms' performance

distances between each pair of vertices, which often reveal local
patterns (e.g., cliques or hubs) but may fail to optimize the general

matrix bandwidth. Human-Assisted Reordering While automatic reordering algo-
rithms ideally take the burden off the user while producing high
11.2. Opportunities and Future Directions quality results, it may not happen often in practice. To address

shortcomings of certain algorithms and enable the user to steer al-
gorithms by making decisions at critical points, interactive reorder-
ing techniques started to appear. We point to several examples in
this section, however, note that a complete review of these tech-
nigues is out of scope of our survey.

While this document describes existing solutions to reorder matri-
ces, there are still many opportunities to improve these solutions
and provide better ones. We list here some possible future work
and pitfalls of our approach.

Global vs Local Algorithms vary on their strategy to explore the We can broadly categorize interactive reordering techniques
search space: top-down or bottom-up. Top-down approaches fo-in two categories: interactive and semi-assisted (steering). Berti-
cus on optimizing a global structure metric (eMylti-Scalg Sec- er [PDF14], TableLens [RC94] and InfoZoom [SBBY6] are exam-

tion 8), while bottom-up approaches may retrieve local graph struc- pjes of interactive techniques, providing a user interface in which
tures (e.g.Bipolarization Section 4). The strategy has a directim-  sers can manually reorder rows and columns. Compare to Bertin's
pact on the visual results. The majority of algorithms proposed in jnjtial physical device that enable users to move a single row or col-
this article are bottom-up approaches. umn at a time [Ber81], strategies used in these pieces of software
Hybrid approaches are an interesting future direction, where re- provide grouping and aggregation mechanisms that enable to move
trieving global structures is in the focus of the rst iterations, and Sets or rows and columns at a time, decreasing the labor to reorder a
further (potentially different) algorithms can be applied to sub- matrix. In addition, Berti er provides primitives to let users change
networks in later iterations. Another interesting research direction the visual style of the resulting visual matrices, an important step
relates to multi-scale approaches which could allow a user to re- towards communication of the results to an audience.
trieve results at different scales of interest (e.g., entire data, con-

nected component, sub-network). On the other hand, MatrixExplorer [HF06], Select Objec-

tive Measures [BW13], or PermutMatrix [CP05] provide semi-
Similarity/Distance Calculation An important parameter for re- ~ 2utomatic approaches and enable the user to steer or guide algo-
ordering algorithms, especially crucial for Robinsonian algorithms fithms when reordering a matrix. For example, MatrixExplorer en-
(cf. Section 4), is the choice of the distance metric between nodes 2PI€ the user to select subsections of the matrix to reorder in addi-
(rows and columns). However, there is no simple method to choose tion to interactive reorder_lng of individual rows or columns. Per-
a good measure given a speci ¢ graph or task. Gelfand [Gel71] mutMatrlx prov@es a su!te of features to en,’.;lblle. users.to apply
notes the importance of these considerations and describes thredifferent reordering algorithms and a set of primitives to identify,
exemplary similarity functions, which should be applied with re- sglect and manipulate substructures of the matrix (e.g., clusters,
spect to the different data domaiis1], [true; falsd, (1 ;1 ). cliques or sub-trees).

Alternatively, domain-speci ¢ considerations can be included  While these techniques can address shortcomings of certain al-
into the distance calculations, such as in Eisen et al. [ESBB98]: gorithms and leverage human and computer skills, these systems
gene offset shifts over a log-scaled correlation coef cient are ap- are still in their infancy and rather rare in practice. We believe some
plied to analyze gene similarity. Behrisch et al. [BKSK12] calculate of the most exciting advances for matrix reordering will occur in
text similarity on news articles and present the pair-wise compar- this space, as our research community crafts visual analytics sys-
isons in a matrix format. tems that leverage user interaction and automatic algorithms.
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11.3. Limitations Factors in Computing Systengdew York, NY, USA, 2013), CHI '13,
. o . . ACM, pp. 483-492. 1
This survey presents a categorization of matrix reordering ap- ) ) )
[ACRO3] APPLEGATED., Cook W., ROHE A.: Chained lin-kernighan

proaches into six reprderlng famllles, sharing similar reordering for large traveling salesman probleniSFORMS Journal on Computing
concepts. Our goal is to provide a central document where con- 15 1 (2003), 82-92. 15
cepts from multiple disciplines are de ned and related, algorithms And09] ANDRECUTM.: Parallel gpu implementation of iterative pca al-

grouped in categorigs and discussed.in contrast to .each other, and, gorithms. Journal of Computational Biology 181 (2009), 1593—1599.
nally, examples of visual results provided systematically. 10

While we discussed at length several alternatives to our present[BBA75] BREIGERR. L., BOORMAN S. A., ARABIE P.: An algorithm
taxonomy, possibly able to better capture nuances between differ- for clustering relational data with applications to social network analysis

i h f ted t id t i7ati f and comparison with multidimensional scalidgurnal of mathematical
ent approaches, we nally opted to provide a categorization of re- oy cnoiogy 123 (1975), 328-383. 5, 9

ordering algorithms as simple as possible. We believe matrix re- . . .

ordering algorithms are a fundamental barrier for the use of matri- [Ben92] BEnTLEY J. J.: Fast algorithms for geometric traveling sales-
} 9 g e i ; : man problems.ORSA Journal on computing 4 (1992), 387-411. 5,

ces in practice today. By providing a straightforward classi cation 15,17

and formulating mechanl_sms and approaches in simple term§, We[Ber73] BERTIN J.: Sémiologie Graphique - Les diagrammes, les re-

hope to help a wide audience better understand these algorithms  sequy, les cartesEditions Gauthier-Villars, Paris, 1973. 1, 4, 5, 15

and integrate them in future systems and libraries. [Ber81] BERTIN J.: Théorie matricielle de la graphiguommunication

While we gave insights in discussion on how to select algorithms ~ etlangages 481 (1981), 62-74. 4, 5, 20
for certain data characteristics or speci ¢ tasks (e.g., identifying [BJGJ01] B:R-JOSEPHZ., GIFFORDD. K., JAAKKOLA T. S.: Fast op-
clusters), matching systematically algorithms and tasks (for exam- timal leaf ordering for hierarchical clusterin@ioinformatics 17 suppl
ple the tasks described by Lee et al. in [LPB]) is extremely 1(2001), 522-529. 5,7, 8
challenging. We decided against attempting to describe this match-[BKS08] Brusco M. J., KOHN H.-F., STAHL S.: Heuristic imple-
ing formally as there are still many unknowns and doing so would menta_ltion o_f dynamic pro_gramming fot_’ matrix permutation problems in
require a substantial amount of future work. In particular, we do igmlbénatonal data analysigsychometrika 738 (2008), 503-522. 5, 7,
not think this is possible without developing measures to assess '

e b [BKSK12] BEHRISCHM., KRSTAJIC M., SCHRECK T., KEIM D. A.:
and quantify visual patterns produced reliably. The News Auditor: Visual Exploration of Clusters of Stories. Aroc.

EuroVA International Workshop on Visual Analyti@12), Eurograph-

ics, pp. 61-65. 5, 20
. . . . . [BL12] BORG l., LINGOES J.: Multidimensional similarity structure
I\/!atnx rggrderlng .algorlth.ms are essential to mgke patterns in ma- * analysis Springer Science & Business Media, 2012. 11
tr_nces_wsnble. While previous surveys on glgonthms centergd on [BM98] BATAGELJ V., MRVAR A.: Pajek-program for large network
hlsto_rl_cal- and domaln-r_elated aspects, thl§ present work aims at" analysis. Connections 212 (1998), 47-57. 17
providing a comprehensive overview and guidance for selecting al-
gorithms according to their performance and ability to reveal vi- ) )
sual patterns. We collected 35 reordering algorithms from different [BPO7] BRANDES U., PiCH C.: Eigensolver methods for progressive
disciplines and organized them in six families. We explained and multidimensional scaling of large data. [Braph Drawing (2007),

p . g ) e p ‘ Springer, pp. 42-53. 11

related major concepts from different disciplines to enable a wider
audience to understand the approaches and underlying mechanism&
of these reordering algorithms.

12. Conclusion

[boo] :BOOST C++ Library: http://www.boost.org .17

ra07] BRANDES U.: Optimal leaf ordering of complete binary trees.
Journ. of Discrete Algorithms,3 (2007), 546 — 552. 5, 8

[BSO5] BRUSCOM. J., STAHL S.: Optimal least-squares unidimensional
From our observations and experiments with these algorithms, scaling: Improved branch-and-bound procedures and comparison to dy-

we created an online repository of over 4500 visual matrices, and hamic programmingPsychometrika 7@ (2005), 253-270. 5, 7, 17
included practical guidance for selecting and comparing them. Our [BS06] Brusco M., STAHL S.: Branch-and-Bound Applications in
general goal with this survey is to lower the barrier for using matri- ~ Combinatorial Data AnalysisStatistics and Computing. Springer, 2006.
ces in visual exploration systems and libraries across many disci-
plines. By gathering the knowledge in a central document, we also [BW13] BRAKEL R. B. J. V., WESTENBERGM. A.: COMBat : Visual-
hope to inspire more research to develop novel strategies to reorder 1Zing Co-Occurrence of Annotation Terms. 17-24. 5, 20
matrices, novel approaches to assess the quality of their results, aCC00] CHENG Y., CHURCH G. M.: Biclustering of expression data. In
well as to develop high-quality libraries to reorder matrices for im-  1sSmb(2000), vol. 8, pp. 93-103. 5, 15, 16

proving their visualization and exploration. [CG80] CHAN W.-M., GEORGEA.: A linear time implementation of
the reverse cuthill-mckee algorithnBIT Numerical Mathematics 2a
(1980), 8-14. 5, 13
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