N

N
N

HAL

open science

Fair Multi-agent Task Allocation for Large Data Sets
Analysis

Quentin Baert, Anne-Cécile Caron, Maxime Morge, Jean-Christophe Routier

» To cite this version:

Quentin Baert, Anne-Cécile Caron, Maxime Morge, Jean-Christophe Routier. Fair Multi-agent Task
Allocation for Large Data Sets Analysis. PAAMS 2016 - 14th International Conference on Practical
Applications of Agents and Multi-Agent Systems, Jun 2016, Sevilla, Spain. pp.12, 10.1007/978-3-

319-39324-7 3. hal-01327522

HAL Id: hal-01327522
https://inria.hal.science/hal-01327522
Submitted on 6 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01327522
https://hal.archives-ouvertes.fr

Fair Multi-Agent Task Allocation for Large Data
Sets Analysis*

Quentin Baert, Anne Cécile Caron, Maxime Morge, and Jean-Christophe
Routier

Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en
Informatique Signal et Automatique de Lille, F-59000 Lille, France
quentin.baert@etudiant.univ-lillel.fr,
{anne-cecile.caron,maxime.morge, jean-christophe.routier}@univ-1lillel.fr

Abstract. Many companies are using MapReduce applications to pro-
cess very large amounts of data. Static optimization of such applications
is complex because they are based on user-defined operations, called map
and reduce, which prevents some algebraic optimization. In order to opti-
mize the task allocation, several systems collect data from previous runs
and predict the performance doing job profiling. However they are not
effective during the learning phase, or when a new type of job or data
set appears. In this paper, we present an adaptive multi-agent system for
large data sets analysis with MapReduce. We do not preprocess data and
we adopt a dynamic approach, where the reducer agents interact during
the job. In order to decrease the workload of the most loaded reducer
- and so the execution time - we propose a task re-allocation based on
negotiation.

Keywords: Multi-agent system, Negotiation, Big Data, MapReduce

1 Introduction

Data Science aims at processing large volumes of data to extract knowledge or
insights. Since the technological potential and the societal demand increase, new
methods, models, systems and algorithms are developed. The volume and veloc-
ity of available data requires new forms of processing to enable their analysis. For
this reason the MapReduce design pattern [1] is very successful. The most pop-
ular MapReduce framework is Hadoop, but numerous implementations exist, as
the cluster computing framework Spark [2], or the distributed NoSQL database
Riak built from Amazon Dynamo [3]. In these approaches, the extraction and
processing techniques are distributed and operated without sampling.

Data flows can have periodic (daily, weekly or seasonal) and event-triggered
peak data loads. These peaks can be challenging to manage. In the existing
frameworks, an efficient task distribution (i.e. the key partitioning) requires prior

* This work is part of the PartENS research project supported by the Nord-Pas de
Calais region (researcher/citizen research projects).

knowledge of the data distribution. The partitioning is a priori fixed and so
the workload is not necessarily uniformly distributed. By contrast, multi-agent
systems are inherently adaptive and thus particularly suitable when workloads
constantly evolve.

In this paper, we propose an adaptive multi-agent system for large data sets
analysis based on the MapReduce paradigm. The data processing is distributed
among two kinds of agents : i) the mapper agents filter data; ii) the reducer
agents aggregate the data. In order to balance the workload between reducers,
the tasks are dynamically re-allocated among reducers during the process with-
out sampling. For this purpose, reducers are involved in multiple concurrent
auctions. Our agents negotiate tasks based on their individual workload in order
to decrease the workload of the worst-off agent, i.e. the one which delays the
data processing. We prove that the negotiation process terminates and improves
the fairness which measures if the processing is performed at the expense of the
worst-off agent. We have experimented our multiagent system over real-world
data and our observations confirm the added-value of negotiation.

This paper is structured as follows. Section 2 overviews relevant related works
and introduces the MapReduce design pattern in the background of our work.
Section 3 describes the core of our proposal. Then, we present in Section 4 our
empirical results. Finally, Section 5 concludes.

2 Related works

In [1], the authors present the MapReduce programming model and its imple-
mentation for processing large data sets. In this model, while the map function
plays the role of filtering data, the reduce function aggregates data. It allows
programmers without any experience with parallel and distributed systems to
easily use the resources of a large distributed system. MapReduce jobs are di-
vided into a set of map tasks and reduce tasks that are distributed on a cluster
of computers. The MapReduce programming model calls for two user-provided
functions with the following types:
map: (K1,V1) — list[(K2,V2)]

reduce: (K2,1ist[V2]) — list[(K3,V3)]

The partitioner takes the intermediate key-value pairs from the mapper and
splits them into subsets, one subset per reducer such that all values associated
with the same key K2 are grouped into a sequence and passed to a reducer.
By default the partitioner performs a modulo operation of the number of re-
ducers (key.hashCode() % numberOfReducers) whatever the used partitioner
(e.g. YARN or MESO0S). Additionally, the partitioner can be customized in order to
specify which keys need to be processed together in a single reducer. In this way,
the reducer takes pairs of the form (K2,list[V2]) and run the reduce function
once per key grouping. Once it is done, the final key-value pairs (K3,V3) are
written to a file.

Whether a default function or a special one is used, the partitioning is a
priori fixed. It means that this function does not depend on the data, and so the

workload is not necessarily uniformly distributed among the reducers. It results
that the computation time is determined by the most loaded reducer.

In this paper, we focus on reducing the workload of the most loaded reducer.
Several systems have studied the reduce phase optimization, for instance by
predicting the performance with job profiling, collecting data from previous runs
(see [4] or [5]). We do not want to preprocess data (e.g. with a machine learning
phase using a sample dataset) and we prefer a dynamic approach where adaptive
reducers interact during the job. In [6], the authors study unbalanced situations
between mappers or between reducers. They design a system named SkewTune,
which mitigates two types of skew : skew due to an uneven distribution of data
and skew due to some subsets of the data taking longer to process than others.
When a resource is available because its task is completed, SkewTune identifies
the slowest reducer and re-partitions its unprocessed input data. Our approach
is similar but, by contrast, we want the partitioning to be a collective choice of
workers. Moreover, we intend to deal with partitioning a set of values associated
with the same key, and not only partitioning a set of keys. In [7], the authors
propose adaptive mappers to decrease the startup overhead. Such optimization
is complementary to our approach and could be implemented by a MAS.

In our work, the dynamic allocation of tasks is based on a negotiation between
reducers. Social choice theory provides methods for designing and analyzing col-
lective decision by combining individual preferences or welfares. Computational
social choice is often considered as an optimization problem solved by a central-
ized approach (e.g. an auction) where agents report their preferences to the cen-
tral and omniscient auctioneer that determines the allocation consequently [8].
Indeed, such an approach makes important assumptions that correspond to se-
vere drawbacks : (i) it may be too expensive to gather all information in a single
place; (ii) if data evolve during the solving process, it must restart in order to
take the new data into account; (iii) it assumes that agents are fully connected
without restriction and that they can communicate with all others. Typically in
a distributed system, the communication cost depends on the topology of the
network, i.e. physical constraints. We consider here multiple distributed concur-
rent auctions. By contrast, [9] considers MRF in the domain application of UAV
where the underlying assumptions are quite different. For instance, the acquain-
tance network is highly dynamic and the cost of tasks are different from one
agent to another.

3 Proposal

We aim at reducing the workload of the most loaded reducer. For this purpose,
we consider dynamic task re-allocation with a multi-agent system which does
not require a centralized supervision.

In this section, we present our core proposal. First, we overview the pro-
posal. Second, we present our reducer agent architecture. Third, we introduce
the different interaction protocols in which reducer agents are involved. Fourth,
we detail their behaviour. Finally, we present some formal properties.

3.1 Overview

Our contribution aims at providing a balanced reducer tasks partitioning. In
this purpose we propose a task re-allocation based on local decisions where each
reducer is embodied by an agent. This agent is characterized by the bundle of
tasks it must achieve. We assume that each task has a cost, i.e. an intrinsic
characteristic. Therefore, all the agents, with the same capabilities, estimate
their own contributions to the global resolution as the costs of their bundles.

Definition 1 (Allocation/Contribution). Given a set T of m tasks T1,...,Tm
with the associated costs cr,...,c., and a population 2 = {1,...,n} of n re-
ducer agents, a task allocation A is represented by an ordered list of pairwise
disjoint task bundles T; C T, such that 1) T; = T, describing the subset of tasks
owned by each agent i:

A=[T,...,Tp] with1,...,n € 2

The contribution of the agent i at time t within the allocation A is defined such
that:

)= cr +wi(t)

T€T;

where w; is the estimated cost of the work-in-progress of agent i. Before starting
the reduce phase, w;(0) = 0.

Mapper phase does not differ from the classical MapReduce model. Mappers
deliver intermediate key-values pairs to the reducers. However for each key-
values, the mappers add information on the cost of a task for these (partial)
values. The default partitioning is then used to achieve the initial distribution
to the reducers.

Reducers receive their pairs (K2,list[V2]) and start their reduce work. Si-
multaneously, the negotiation phase begins in order to decrease the contribution
of the most loaded reducer, such that the reducing phase finishes earlier. The re-
ducer agents communicate with each other to negotiate task delegation. Actually,
they request their peers through cfp (call-for-proposal) in order to alleviate their
contributions. A cfp includes the cost of the submitted task and the proposer’s
contribution.

A reducer bids to take the responsibility of the task in order to decrease the
worst contribution. A bidder makes a proposal iff, after the task transfer, the
worst resulting contribution is smaller than the worst initial one. Formally, its
decision is based on the following local criteria:

Definition 2 (Acceptability criteria). Let A be an allocation of tasks at time
t between n agents (2. The agent j will accept the transfer of the task 7 € T;
from i iff:

ch(t) + ¢ < cMt)

In other words, a participant agrees to be involved as bidder in a negotiation
iff, in case of successful negotiation, its resulting contribution would be strictly
smaller than the initial initiator contribution. Then, for the two involved agents,
the greatest contribution after the transfer is smaller than the greatest one be-
fore. It results that through repeated negotiations, the highest contributions
decrease then the most loaded agents will finish its tasks earlier.

Reciprocally, the initiator of a negotiation can potentially receive several bids
replying to its c¢fp. A bid includes the contribution of the potential supplier. The
initiator selects the winner with the smallest contribution. Formally,

Definition 3 (Selection criteria). Let A be an allocation of m tasks T be-
tween n agents in 2 at time t. If the agent i has proposed to delegate the task T
and it has received some bids from the agents ' C (2, it selects:

argmin({c;‘(t) |jen'?})

In this way, the task transfer allows to load the least loaded reducer in order to
balance the workload. It is worth noticing that evaluating the decision criteria
for the task transfer only requires local information.

The reducers send cfp as long as their previous cfp has not been denied by
all their acquaintances. The protocol ensures that when negotiations stop, there
is no task transfer that could lead to a decrease of the highest contribution.
A reducer resumes sending cfp when it acquires knowledge that some of its
acquaintances are liable to accept it.

3.2 Reducer Agent Architecture

Inspired by [10], we consider that an agent: i) has a unique id; ii) is triggered by
messages delivered in its mailbox; and iii) can create other agents. The reducer
agent creates three agents:

1. a worker agent which locally computes several tasks;

2. a broker agent which negotiates tasks in order to delegate them and poten-
tially adopt additional ones;

3. a manager agent which is responsible of the task bundle to be distributed
between the worker and the broker. The task bundle is sorted based on the
task costs. In order to increase the likelihood to find a supplier, the manager
tries to delegate the task with the lowest cost. By contrast, the task with
the highest cost is locally performed by the worker.

Contrary to the worker agent, the two other ones can both communicate with
other agents via their reducer. While the manager agent receives the mapper
output, the broker negotiates with other brokers. Actually, the reducer agent
plays the role of proxy to forward messages from/toward other agents.

3.3 Protocols

The manager interacts with the worker in order to locally perform some tasks (cf
Fig. 1a). The manager assigns a task to the worker through a Request message
and the worker replies with Done when the task is performed. Then, the manager
is able to send a new task. In order to know the estimated cost of the work in
progress, the manager can also send an Evaluation message to the worker, and
the worker replies with Remaining.

‘ Manager | ‘ Worker | | Submit(task,contribution) 1
: : alt [the broker did not find a supplijer]
I Request(task) 1 | Deny0
I Donel() I | Ready0
alt [the task is already performed by the worker]
(a) Request protocol Cancel(

L.
v

[the task i$ §till in the task bundie]

Broker Manager ‘Worker -
- - - deadline
| Querylattribute) | i Approve() -
1 H >
option /
Evaluation() alt
Remaining(value) s Finish
Inform(value) | | _ Unfinishitask)
' €
option
Request{task)
T ™

b -

(c) Query protocol (b) Submit protocol

Fig. 1: Protocols regulating interactions between the manager, the worker and
the broker of the same reducer agent

The manager interacts with the broker in different ways depending on its
role in the negotiations : a broker can be either the initiator of a negotiation or
it can be one of the bidders.

If the broker acts as a bidder (cf Fig. 1c), then it needs to know the local
contribution in order to reply to a Cfp. For this purpose, the broker sends a
Query to the manager which replies with an Inform. Eventually, the broker can
request to the manager a task to perform if it has won the auction. In this case,
this task is added to the bundle.

To delegate a task the manager sends a Submit, then the broker initiates
a negotiation (cf Fig. 1b). If the broker does not find any potential supplier,

it replies to the manager with a Deny. Otherwise, the broker replies with a
Ready message. In the latter case, it is still possible that meanwhile the manager
has given the task, which had been submitted, to the worker. For this reason
the manager can Cancel it. Otherwise, the manager sends an Approve which
confirms the successful delegation with a Finish message. If it is not the case,
the manager receives an Unfinish message and the task returns to the bundle.

Finally, brokers can negotiate a task delegation through an auction (cf Fig. 2).
Such a negotiation is initiated by a broker with a call-for-proposal (Cfp) which
contains the cost of delegated task and its own contribution. Depending on its
own acceptability criteria (cf Def. 2) each of the m participants can either decline
(Decline) or accept the cfp. In the latter case, the participant sends a Propose
containing its contribution. Only the proposal with the smallest contribution is
selected as the auction winner (cf Def. 3). The others are notified by a Reject
while the winner receives an Accept and must then definitely acknowledge the
delegation with a Confirm.

Initiator:Broker Participant:Broker

deadline_/

| CfpltaskCostinitiatorContribution) m

alt [the participant is already a bidder in another ayction or not aC]

aC & By

Decline() i=m (participantContribution+taskCost<
initiatorContribution)

[aC]

Propose(participantContribution) k=m

alt / [the manager cancel]

‘ selected=argmin(participantContributions) Iﬁ Reject() k

[the manager approves]

deadline__/
alt

Reject() k-1

Acceptitask) 1

Confirm()

Fig. 2: Negotiation protocol

3.4 Behaviours

Manager. The manager coordinates the activities of the worker and the broker:
it provides some tasks to the worker and it triggers the broker to emit Cfp. This
coordination is based on some principles: i) the manager gives priority to the
worker: a task is delegated only if the worker is busy. As soon as the worker is
free, the manager gives a new task to it; ii) the manager ensures that a broker is

involved in at most one C£p; iii) the task bundle operates as a priority queue: the
manager gives to the worker the task with the highest cost, and tries to delegate
the task with the lowest cost via the broker. This task bundle is filled initially
by the mappers, and by the broker when it accepts a Cfp.

Additionally, the manager interacts with the supervisor to detect the termi-
nation of the data processing. The manager is idle when both the worker and
the broker are free and the task bundle is empty. The manager is reactivated
when it receives a Request for the broker.

Worker. The worker, which is initially free, becomes busy as soon as it re-
ceives a Request. When the task has been performed, the worker informs the
manager and it becomes free. During its work, a worker can tell to its manager
the estimated remaining cost of the work in progress

Broker. The broker can act as a bidder or as an initiator in a negotiation.

Broker as a bidder. When the broker receives a Cfp, it queries the local contri-
bution to the manager in order to participate in the auction. If the acceptability
criteria, denoted aC (cf Def. 2), is fullfilled, then a proposal is sent. If it is not
the case, then the broker declines to enter the auction and informs the manager
that it is free. Since a broker can be a bidder only in one negotiation at a time,
it does not reply to all the other Cfp but stores them in order to respond as soon
as possible. This mechanism prevents livelocks. When the bidder is informed (or
not) by the initiator of the negotiation outcome: i) either the bidder wins the
auction and it requests the task to its manager and confirms the task delegation
to the initiator; ii) either the bidder does not win the auction (the deadline is
reached or Reject is received) and it informs its manager it becomes free.

Broker as an initiator. When the broker receives a Submit from the manager,
it sends a Cfp to the other brokers. Each reply, whether it is a proposal or
declination, is notified in a map. When all of them are received (or the deadline is
reached), the best proposal (with the lowest contribution) is selected. Obviously,
if no proposal is received the negotiation is cancelled and the broker sends a Deny
message to the manager. Otherwise, the broker selects the auction winner and
rejects the losers. It notifies (Ready) the manager that is has found a supplier.
In return the manager tells if the task is still available or not, resp. Approve or
Cancel. If it is not the case the negotiation is canceled and the winning bid is
rejected. Otherwise, an acceptance is sent and a confirmation is expected.

Halting cfp. When a reducer receives decline messages from all its acquain-
tances in response to its Cfp, it is useless to emit again the Cfp if the context
does not change. The reducer can then enter in a paused state to prevent send-
ing useless Cfp. In this state the reducer can still respond to other’s Cfp. It
leaves this state only if the context changes. The handling of this state is not
detailed here due to lack of space. But the principle is the following: the con-
text change means that an unfulfilled acceptability criteria can become fulfilled.

The only possibilities are: (i) one new task is added to the bundle and then
the reducer’s contribution increases; (ii) the reducer is informed that some ac-
quaintance’s contribution has decreased (one of its acquaintances has delegated
a task or its worker has done a task). Even if one of these events occurs, there
is no guarantee that the satisfiability criteria becomes satisfied. However the re-
ducer can estimate whether there is a chance this happens since it keeps track
of its acquaintances contributions. This is done by storing (and updating) infor-
mation on contributions received through acquaintances Cfp. Thus, the reducer
can estimate the chance for the satisfiability criteria to become fulfilled by one
of its acquaintance and therefore for its Cfp to be successful. When it is the
case, the reducer leaves the paused state. In the next section, Theo. 3 tells that
after a finite number of negotations, every agent will be in paused state. Theo. 4
tells that this happens only when no task transfer could produce a better task
partitioning.

With workers accomplishing their tasks, the context changes and some new
task transfer could be possible. For instance, this can be the case if one of the
worker works more slowly that expected. In this case, agents will un-pause and
begin a new negotiation phase that will produce a better new task distribution,
i.e. a distribution for finishing the job earlier.

3.5 Results

First of all, we can remark that a negotiation improves the fairness which mea-
sures if the processing is performed at the expense of the worst-off agent. The
tasks are distributed in a more egalitarian way after a negotiation.

Property 1 The variance of the reducers contributions decreases after one suc-
cessful negotiation.

Proof 1 Let 2 = {1,...,n} be a set of n reducer agents. Let us consider a
successful negotiation led by the agent 1. We denote:

— (¢i)ieqn, the contributions of the agents before the negotiation;

— (¢})ien, the contributions of the agents after the negotiation;

— =231 ¢; =LY c the mean contribution’;

— Var = X" | (ci — €)? the variance of the contributions before negotiation;

— Var' = X% (c, — €)? the variance of the contributions after negotiation.

Let ¢ > 0 be the cost of the negotiated task and k the reducer agent which has won
the negotiation. Due to the acceptability criteria of the participant k, ¢, +c¢ < c1,
socp+c—c1 <0. Then Var' — Var < 0.

It is worth noticing that the whole process also improves the fairness.

Property 2 The successful iterated negotiations make the variance of the con-
tributions decrease.

! Tt is worth noticing that the negotiation is conservative.

Proof 2 The protocols ensure that no agent is simultaneously involved in sev-
eral negotiations: bidder and initiator roles are mutually exclusive for the broker
agent; when committed as bidder in negotiation the broker agent does not reply
to the requests for other negotiations.

It results that every negotiation is independent. Then the outcome of a nego-
tiation does mot impact another one. According to Theorem 1 every success-
ful negotiation makes the variance of contributions decrease, independently of
other negotiations, then during the iteration of such negotiations the variance
decreases.

Finally, the negotiation process terminates.
Property 3 The iteration of successful negotiations terminates.

Proof 3 Acccording to Theorem 2, the variance strictly decreases (and is pos-
itive) during iterated successful negotiations, and the number of tasks is finite,
then after a finite number of negotiations the variance can no more decrease then
successful megotiation are no more possible.

Negotiation process is correct: when it halts, no other task tranfer could
alleviate the most loaded agent.

Property 4 When iteration of sucessful negotiations terminates, there exists
no task transfer that could decrease the most loaded agent constribution.

Proof 4 Let agent j be the most loaded and T be the smallest task of agent j.
Let us assume that there exists some agent i, with contribution c;, such that i
accepting the transfer of task T results in a decrease of the highest contribution.
This implies that ¢; + ¢ < c;.

Then i would have make a proposal to a cfp from j for task T. This cfp would
have been successful which is a contradiction.

4 Experiments

In order to evaluate our proposition, we have reimplemented the classical MapRe-
duce using the default partitioning function and our multiagent system with the
Scala programming language and Akka’s actor implementation.

We have performed several experiments. In all of them, our adaptive process
leads to a better task allocation. Due to the lack of space, we have chosen to
present a particular illustrative one. It considers the historical weather data in
France available since 1996. It contains more than 3 millions of observations over
62 stations (800 Mo). We aims at counting the number of observations per half
degree of temperature (cf Fig. 3).

We consider 10 mappers and 20 fully connected reducers. Fig. 4 shows the
contributions of reducers in both cases. On the left, the default partitioning
function leads to an unfair distribution of tasks where only a few reducers are

70000

60000

50000

40000

30000 |-

Number of records

20000

10000

-40 20 0 20 40 60
Temperature

Fig. 3: The number of records per half degree of temperature.

committed to perform tasks. We can observe that the MAS balances the work-
load between reducers since the tasks are dynamically re-allocated among reduc-
ers during the process. The overloaded reducers delegate some of their tasks to
unoccupied agents. Actually, the contributions of the worst-off agent is reduced
by 72 %, and then the fairness which measures if the processing is performed
at expense of the worst-off agent is improved in proportion. Moreover the ratio
between the least loaded reducer and the most loaded one shift from 0 to 0.7.

800000 800000

700000 700000

600000 600000

500000 500000

|

400000 I
N

1

400000

Contributions

300000 300000

200000 | — — - -
N EREEN | . —
100000 II II I IIIII-I II

0
23456789 101M121314151617181920 123456 789101M121314151617181920
Reducers Reducers

200000

Il | S .
1
.
| I
Contributions

100000

0

Fig.4: The contributions of reducers for the classical MapReduce (at left) and
for our multi-agent system (at right).

5 Conclusion

MapReduce applications are complex to optimize, because they are based on
user-defined operations and the programmer need to understand the implemen-
tation of the framework (for instance, Hadoop). In particular, it is difficult to
manage the allocation of work among reducers, since the distribution of tasks
is statically fixed. This can lead to an unfair distribution. Our MAS consists
of a distributed model of computation, inherently adaptive. Therefore, we have
defined in this paper an implementation of MapReduce where task allocation

is the result of negotiations between agents during the reduce phase, with only
local decisions taken by reducer agents (i.e. no global supervisor), and without
preprocessing the data. More precisely, our model is based on reducers composed
of three coordinated agents, manager, worker and broker. In order to balance
the workload, these complex reducer agents negotiate tasks based on their indi-
vidual contributions in order to decrease the contribution of the worst-off agent,
i.e. the one which delays the data processing. Our experiments over real-world
data confirm that MAS are suitable to design such adaptive allocation.

We consider several perspectives for this work. We are currently distributing
the implementation of the framework. Then, we will be able to compare with
other skew reduction techniques and measure the communication cost. Another
improvement we consider is to split the large key tasks such that the subtasks
can be negotiated. Our long-term project consists of tackling complex workflows
of jobs and adapting the network of acquaintances to the physical constraints.

References

1. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: Sixth Symposium on Operating System Design and Implementation. (2004)
137-150

2. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In: Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, USENIX Associa-
tion (2012) 15-28

3. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: Proceedings of the 21st ACM SIGOPS Symposium on
Operating Systems Principles (SOSP ’07). (2007) 205-220

4. Lama, P., Zhou, X.: Aroma: Automated resource allocation and configuration
of mapreduce environment in the cloud. In: Proceedings of the 9th Internatinal
Conference on Autonomic Computing (ICAC’12). (2012) 63-72

5. Verma, A., Cherkasova, L., Campbell, R.H.: Aria: Automatic resource inference
and allocation for mapreduce environments. In: Proceedings of the 8th Internatinal
Conference on Autonomic Computing (ICAC’11). (2011) 235-244

6. Kwon, Y., Balazinska, M., Howe, B., Rolia, J.: Skewtune: Mitigating skew in
mapreduce applications. In: Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD’12. (2012) 25-36

7. Vernica, R., Balmin, A., Beyer, K.S., Ercegovac, V.: Adaptive mapreduce using
situation-aware mappers. In: Proceedings of the 15th International Conference on
Extending Database Technology, EDBT’12. (2012) 420-431

8. Brandt, F., Conitzer, V., Endriss, U.: Computational Social Choice. In: Multiagent
Systems. MIT Press (2013) 213-380

9. Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., Rodriguez-Aguilar, J.A., Tambe,
M.: Engineering the decentralized coordination of uavs with limited communication
range. In: Proc. of CAEPIA. LNAI 8109 (2013) 199-208

10. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for ar-
tificial intelligence. In: Proceedings of the 3rd International Joint Conference on
Artificial Intelligence. (1973) 235-245

