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Timelines are Publisher-Driven Caches: Analyzing and
Shaping Timeline Networks

Alexandre Reiffers-Masson, Eduardo Hargreaves,
Eitan Altman, Wouter Caarls, Daniel S. Menasché

ABSTRACT

Cache networks are one of the building blocks of information
centric networks (ICNs). Most of the recent work on cache
networks has focused on networks of request driven caches,
which are populated based on users requests for content gen-
erated by publishers. However, user generated content still
poses the most pressing challenges. For such content time-
lines are the de facto sharing solution.

In this paper, we establish a connection between time-
lines and publisher-driven caches. We propose simple mod-
els and metrics to analyze publisher-driven caches, allowing
for variable-sized objects. Then, we design two efficient al-
gorithms for timeline workload shaping, leveraging admis-
sion and price control in order, for instance, to aid service
providers to attain prescribed service level agreements.

1. INTRODUCTION

Long before the creation of the world wide web, user gen-
erated content, such as personal pictures and news, was al-
ready shared through message boards over bulletin board
systems (BBSes). After 1996, with the rise of the WWW,
message boards of BBSes have been replaced by Internet
forums, which were the precursors of news feeds and time-
lines as implemented by Twitter and Facebook. In a social
network, each user or group of users can manage a timeline,
which will be populated by user-generated content and ac-
cessed by those interested in items posted at that timeline.

Users are divided into publishers and clients. Users who
generate content are referred to as publishers, and consumers
are referred to as clients. While managing a timeline, a user
or group of users subscribe to publishers and a subset of the
contents from these publishers will be posted in the time-
line. Note that in a network where most of the content is
user-generated, the role of each user dynamically changes
between that of a publisher and a client. In this work, our
main goal is to analyze and improve caching strategies ap-
plicable to user-generated content.

User-generated content is fundamentally different from
content generated by big providers in a number of ways. For
the purposes of this work, we stress two of the fundamental
differences. First, a significant portion of the user-generated
content will rapidly become outdated, whereas content gen-
erated by big providers tend to be of interest during longer
periods of time. In part, this is because the filtering pro-
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cess which occurs before the publication of user-generated
content is either non-existing or much less costly than that
faced by big providers before making a film or an album
available to the general public. Second, when clients search
for user-generated content they are typically interested in a
class of items related to a given category or user. For in-
stance, a college student might query for the last posts of his
roommate during vacations. The search for content offered
by big providers, in contrast, usually targets a particular
item.

For the reasons discussed above, content generated by
big providers and user-generated content ask for different
caching policies, which turn out to coexist in today’s Inter-
net. Classical caches serve well the purposes of aiding in
the provisioning of big catalogs of content, with requests is-
sued towards specific items. Request-driven admission and
eviction policies determine which contents must be added
and removed from the cache after a miss occurs, and can
be adjusted to maximize the cache utility as defined by the
service provider |5} |13].

Despite their broad applicability, request-driven admis-
sion and eviction policies fall short to serve user-generated
content. In essence, this is a consequence of the differences
between these two kinds of contents, as described above:
most of the user-generated content is short lived, and re-
quests arrive for content classes rather than content items.
Hence, we posit that publisher-driven caches are the de facto
choice to serve such content. A publisher-driven admis-
sion and eviction policy determines which contents must be
added and removed after a content is published.

In the simplest scenario, the analysis of publisher-driven
caches can be made completely oblivious to clients interests
and request rates. In this case, the occupation of timelines
can be determined exclusively based on the rate at which
publishers post items and the admission and eviction poli-
cies adopted by the timeline managers. First-in first-out
(FIFO) placement is a natural choice; the simplest timelines
are FIFO publisher-driven caches.

One of our aims is to devise admission strategies to max-
imize service providers utility. The admission strategy of
items is a crucial aspect of publisher-driven caches, at the
core of services like Facebook. To appreciate that point, we
resort to a Twitter anecdote. In September of 2014, the
CEO of Twitter announced that it was going to start fil-
tering tweets to improve users experience |10]. However,
after numerous complaints the company reported that the
non-filtered version of the timeline will continue to be avail-
able [8].



To shape timelines, we consider a pricing scheme which
accounts for clients interests and publishers budget. The
occupation of a publisher-driven cache may be set by the
service provider so as to address the possible tension between
publishers who wish to have their contents in cache, and who
pay for the lease of space in timelines, and users who target
items of certain content classes. Client satisfaction will be a
function of the probability that a user interested in a given
class finds at least one item from that class in the timeline.
Publishers utility is a function of the fraction of time in
which its contents are made available in the timeline.

In summary, we provide the following contributions:

Timelines as publisher-driven caches: we establish
a link between timelines and publisher-driven caches, and
make a case for their applicability in order to server user-
generated content;

Models and metrics: we propose simple models and
metrics to analyze publisher-driven caches, allowing for vari-
able-sized objects;

Workload shaping algorithms: leveraging the pro-
posed models and metrics, we design two efficient algorithms
for timeline workload shaping. The first is an admission con-
trol algorithm, posed as the solution of a geometric program-
ming problem, and the second is a pricing control strategy
which modulates the publishers publication rates so as meet
a given target occupation measure at the caches.

Related work.  There is a vast and growing literature
on how to partition [15], prefetch [18] |6] and replicate |9
data among clusters to support the unprecedented increase
in use of online social networks. To the best of our knowl-
edge, our work is the first to consider the specifics of in-
sertion and eviction policies of publisher-driven caches for
user-generated content, and establishing its connections to
timelines. An analytical study of timelines was first pre-
sented in [1], focusing on the competition between publishers
for visibility |12|, rather than on the dynamics and shaping
of user-generated content.

Workload characterization has been considered in [17],
where the authors propose a two-level shot noise model to
capture the distribution of requests for contents which are
clustered into categories. In [7], the authors extend the work
in [17] and propose a model to account for dynamic cata-
logs and content popularities. In this work, in contrast,
we focus on user-generated content, and assume that ex-
ogenous arrivals correspond to new opportunities to store
original items. Therefore, we intrinsically account for con-
tinuously growing catalogs, wherein old items cannot be re-
trieved, noting that user-generated content might populate
request-driven caches in case they turn out to be of interest
over longer horizons.

Workload shaping for request-driven caches is recently re-
ceiving significant attention, to satisfy different service level
agreements under ICN architectures |11} [13]. While previous
works considered gradient descent algorithms to achieve the
desired targets, our shaping algorithms consider publisher-
driven caches and are inspired by previous work on stochas-
tic approximation |2} [4].

2. MODELING TIMELINES WITH VARI-
ABLE-SIZED OBJECTS

We start by considering a model to capture the distribu-
tion of items from different publishers in a given timeline of

size K. We consider a set J := {1,...,J} of J publishers
in a social network. Original contents from publisher j ar-
rive at the timeline according to a Poisson process with rate
Aj, 3 =1,...,J. We can easily extend the results obtained
in this paper for the case of multiple timelines by defining
)\;- as the flow of contents sent by publisher j to timeline 7.
Let A be the total arrival rate, A = ijl Aj. Objects are
divided into blocks of fixed size, and the timeline is divided
into slots. The size of a block is assumed to be equal to that
of a slot. The topmost position of the timeline is position K,
and the bottommost is position 1. For convenience, if there
are no objects of a given publisher in a timeline, we will refer
to the position of the topmost object of such publisher as 0.

Except otherwise noted, we assume that objects may be
partially stored in a timeline. In that case, and assuming
that all content is admitted, upon an arrival a piece of stored
content must be evicted. Depending on the size of the new
object, multiple pieces might need to be removed from the
timeline. Henceforth, we focus on FIFO publisher-driven
caches, which means that the bottommost part of the last
object to be inserted will be the first to be evicted.

Note that we may have multiple objects from the same
source in a timeline at a given point in time. Let k; be
the position of the topmost content from publisher j in the
timeline. The position of an object is defined as the slot
occupied by the topmost element of that object. As we
consider only arrivals of original content, in publisher-driven
caches we do not need to track if a certain content is already
at cache upon its arrival. This is in contrast to request-
based caches, where placement mechanisms have to prevent
duplicate objects.

Assume that upon the arrival of a content from publisher
j there are no other objects from j stored at the timeline. In
this case, we assume that the content from j must be stored,
and we refer to the time until there are again no objects from
j at the timeline as the busy period associated to publisher j.
The busy period plays a role in publisher-driven caches sim-
ilar to the characteristic-time in request-driven caches [13].
In what follows, we provide a characterization of the busy
period and related publisher-driven metrics.

Let T;(k) € [0,+00) be the expected period of time be-
tween the instant at which the topmost object from pub-
lisher j is at position k € {0, ..., K} until the instant when
the timeline does not have any objects from j. For each j,
we assume 7T5(0) = 0. We refer to Tj(k) as the modified
busy period, and to T;(K) simply as busy period.

Let £ be the finite set of possible object sizes and let pj;; €
[0,1] be the probability that the next arrival of an object
from publisher j has size equal to l € £, where ), . pji = 1.

Let T; be the busy period vector, (73(0),...,T;(K)), and
let Aj be a (K+1) x (K +1) infinitesimal generator matrix
whose kk’-entry is given by

Aj/A, ifk' =K
Aj(k',k,) = Ziej—{j}pil}\i/Av ifk=k—101>0 (1)
, otherwise

We denote by I and 1 the identity matrix and a vector of
all ones, with dimensions (K + 1) x (K + 1) and K + 1,
respectively. Next, we provide a closed form expression for
T;.

LEMMA 1. The busy period vector is given by
T, =1—-A;) 'A"1. (2)



Due to space limitations, all proofs are made available
at [16].The busy period characterization in Lemma [1] will
allow us to prove some of the results in Section [3| about the
convergence of the proposed workload shaping strategies.

REMARK 2. Alternatively, if an item is considered off the
timeline when any part of it is cut off, the following recursive
equation can be used to compute the expected busy period
duration,

Ajp; Ly
Ty(k) =Y T (K—1+1)+
leL A i€ I\{j} l€EL

Next, we consider the fraction of time in which there is at
least one object of publisher j at the timeline. We denote
this probability by 7, where 1—m; is the probability that no
object of publisher j is present at the timeline. The renewal
theorem yields the following relationship between 1 —m; and
Tj (K),

1/X;
1—mj =t —— . 4
TT(K) + 1/ @

Assume that for each j, A; € [\, ], with A; > 0 and
Aj < +o00. Then, the characterization of 1 — m; provided
in the following lemma will allow us to pose the workload
shaping problem as a geometric program.

LEMMA 3. 7; can be expressed as a posynomial.

As an example, consider the case where all objects have
size 1, i.e., pj1 = 1 for all j € £. In this case, the variables
which characterize the content present in each position of
the cache are independent and identically distributed. The
probability that the timeline contains no objects of publisher
j is given by a geometrically distributed random variable,
L—mj= (A1 30, A"

Lemma |1 I together Wlth eq allow us to numerically
compute 1 — 7;. Lemma 1mphes that 1 — 7; is con-
vex with respect to log;, Which will be instrumental in
establishing optimality guarantees of the admission control
problem posed in the next section.

In this section we derived and related two timeline perfor-
mance measures: the busy period and the occupation prob-
ability associated to publisher j. In the following section, we
will use these results to design efficient shaping algorithms
to control these two metrics.

3. WORKLOAD SHAPING

In this section our goal is to investigate how to control the
flow of contents posted in a timeline. We first consider the
admission control, posed as a convex optimization problem.
Then, we move to pricing control mechanisms. We associate
to each publisher a utility, which is a function of its corre-
sponding busy period, and prices are used to match utilities
to a set of given target values.

Admission control: a geometric programming ap-
proach. Next, we consider the admission control problem.
For each j € J let \; € [A;, \;] be the flow rate of contents
from publisher j admitted into the timeline.

The goal of the users managing a timeline is to minimize
a linear combination of the probabilities that there are no

Z Z szl )+%

messages from publisher j at the timeline, for j =1,...,J.
Let b; be the weight associated to publisher j. The larger
the value of bj, the more relevant are the items published
by j for the users managing that timeline. Users may also
wish to set a minimum level of content diversity, and to this
aim we add a term to the objective function which decreases
with respect to Aj;, so as to penalize small flows. Let u; > 0
and v; > 0 be two diversity constants (u; is the diversity
coefficient and v; is the diversity exponent). The larger the
values of u; and v;, the greater the penalty towards small
flows from publisher j. Finally, to control the level of churn
we set a constraint on the total rate of admitted contents,
Zje] Aj = ¢, where ¢ > 0.

In summary, the admission control problem is given as
follows,

m/\ln C(mw Zb 1 —m(A ))—|—’yZuj)\;Uj, (5)
jeTg jeg
DN =6, (6)
jeT
)\j S [S\j,/\}], Vj eJ, (7)

The parameter v serves to balance the two terms of the
objective function. It follows from Lemma [3| that the Hes-
sian of the previous optimization problem is indefinite (the
cost function is a posynomial function). For this reason,
using standard algorithms such as gradient descent to solve
the problem above will be difficult, as in general these al-
gorithms will not converge, and even so, the convergence is
not guaranteed to a global minimum.

To solve the admission control problem, we introduce an
equivalent convex optimization problem. Let U; = log(\;)
and U =log(_,c 7 Aj). If we substitute \; by eUJ in equa-

tion ([4), it follows that 1 — m; is equal to e~ "7 /(T;(K) +
e~Ui). Taking the logarithm of the cost function and of the
constraints, the optimization problem is equivalent to
the following convex problem, which is in turn an instance
of a geometric program [3],

min C(U log(Zb <%>+72ue f”f>,

JET JET

s.t. log <Ze j) < log(¢), 9)

JET
U; € [log( ), log(X)], Vj € T, (10)
with U := (Ux,...,Uys). Note that (6) has been replaced by

an inequality constralnt @D Due to the fact that the cost
function is decreasing in at least one component U, for a
high enough ~, the inequality constraint will always be active
at the optimal admission control. Therefore, given m;(}\;),
for j = 1,...,1, and the associated gradients, Algorithm 1
solves the admission control problem.

Pricing control: leveraging the monotonicity of
the busy period. Next, our goal is to devise a pricing
control scheme over publishers’ flows. To this aim, we lever-
age two properties inherent to our model. Let g; be the price
paid by publisher j per published content. First, the flow
A; of publisher j decreases with respect to ¢;. Second, it
follows from the definition and characterization of the busy



Algorithm 1: Admission control

Input: K, ¢, b, u, v, v, 9

Output: vector of effective arrival rates A

Initialize: U; = log(¢)/J for all j

repeat
(1) compute C(U) and C(U + 61;) using
2)U; «U; — (C(U+61;) —C(U))/(on), ¥Vj € T
(3) project U over (9) and ,

until convergence.

return \ = eV

Algorithm 2: Pricing mechanism
Input: K, a € (0,1), q9, S, J
Output: vector of prices q

Initialize: ¢; = qj(-o) for all j
repeat
(1) update XA + A(q)
(2) compute T;(K;q), Vj € T
(3) update g; using
until convergence.
return q

period that the smaller the flow of publisher 7, the larger the
busy period of publisher j, for i # j.

For each publisher j, we assume that its associated flow
Aj(gj) € [Aj, Aj] is a function of the price g; (different shapes
for \;j(g;) are discussed and illustrated in [2]). Let us denote
by q := (q1,...,qr) the price vector. For each j, let 7 be
the target occupancy of publisher j at the timeline. The
pricing control problem is given as follows,
T;(K;q) *) :

-
V;J (TJ(K§Q) +Xilg;)
A € [N, Al as € 145, @5, Y5 € T (12)

The minimization of is accomplished by adjusting the
control parameter ¢; as follows,

: Tj (K7 q) * ~ ~
o (i (w140 (58 5 ) ) 0)
(13)
for all j € J. Thus, if publisher j timeline occupancy is
greater than 7} its price ¢; increases which produces a de-
crease in A;. Otherwise, ¢; is decreased. Algorithm 2 sum-
marizes the price adjustment strategy. Under mild assump-
tions, Lemma 3| together with [2| imply that Algorithm 2
converges to the optimal solution of the pricing problem.

min

(11)

4. CONCLUSIONS AND PERSPECTIVES

In this paper, we pose a fundamental connection between
timelines used to share user-generated content and publisher-
driven caches. We envision that publisher-driven and clas-
sical request-driven caches are complementary, and will re-
main to co-exist in future Internet architectures as two of
their basic building blocks. We believe that this work opens
up a number of different avenues for future work, including
the control of message sizes and priorities, the estimation of
users interests and its connection to the pricing mechanisms.
Future work also encompasses parameterizing the proposed
models using real data extracted from |14], and numerically
investigating case studies with different instances of the util-
ity functions previously analyzed under the request-driven
cache setting [5, |13].
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