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Abstract
Full-spectrum dependent types promise to enable the development
of correct-by-construction software. However, even certified soft-
ware needs to interact with simply-typed or untyped programs,
be it to perform system calls, or to use legacy libraries. Trad-
ing static guarantees for runtime checks, the dependent interop-
erability framework provides a mechanism by which simply-typed
values can safely be coerced to dependent types and, conversely,
dependently-typed programs can defensively be exported to a
simply-typed application. In this paper, we give a semantic ac-
count of dependent interoperability. Our presentation relies on and
is guided by a pervading notion of type equivalence, whose im-
portance has been emphasized in recent works on homotopy type
theory. Specifically, we develop the notion of partial type equiv-
alences as a key foundation for dependent interoperability. Our
framework is developed in Coq; it is thus constructive and veri-
fied in the strictest sense of the terms. Using our library, users can
specify domain-specific partial equivalences between data struc-
tures. Our library then takes care of the (sometimes, heavy) lifting
that leads to interoperable programs. It thus becomes possible,
as we shall illustrate, to internalize and hand-tune the extraction
of dependently-typed programs to interoperable OCaml programs
within Coq itself.

1. Introduction
Dependent interoperability is a pragmatic approach to building reli-
able software systems, where the adoption of dependent types may
be incremental or limited to certain components. The sound inter-
action between both type disciplines relies on a marshalling mech-
anism to convert values from one world to the other, as well as
dynamic checks, to ensure that the properties stated by the depen-
dent type system are respected by the simply-typed values injected
in dependent types.1

⇤ This work was partially funded by the CoqHoTT ERC Grant 637339, by
FONDECYT Project 1150017 and the Émergence(s) program of Paris.
1 In this article, we use the term “simply typed” to mean “non-dependently
typed”, i.e. we do not rule out parametric polymorphism.
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Following Osera et al. (2012), we illustrate the typical use cases
of dependent interoperability using the simple example of simply-
typed lists and dependently-typed vectors. For conciseness, we fix
the element type of lists and vectors and use the type synonyms
ListN and VecN n, where n denotes the length of the vector.

Using a simply-typed library in a dependently-typed context.
One may want to reuse an existing simply-typed library from a
dependently-typed context. For instance, the list library may pro-
vide a function max : ListN! N that returns the maximum ele-
ment in a list. To reuse this existing function on vectors requires
lifting the max function to the type 8 n. VecN n! N. Note that this
scenario only requires losing information about the vector used as
argument, so no dynamic check is needed, only a marshalling to re-
construct the corresponding list value. If the simply-typed function
returns a list, e.g. rev : ListN! ListN, then the target dependent
type might entail a dynamic check on the returned value.

Using a dependently-typed library in a simply-typed context.
Dually, one may want to apply a function that operates on vectors
to plain lists. For instance a sorting function of type 8 n. VecN n
! VecN n could be reused at type ListN! ListN. Note that this
case requires synthesizing the index n. Also, because the simply-
typed argument flows to the dependently-typed world, a dynamic
check might be needed. Indeed, the function tail : 8 n. VecN (n
+1)! VecN n, should trigger an error if it is called on an empty
list. On the return value, however, no error can be raised.

Verifying simply-typed components. One can additionally use
dependent interoperability to dynamically verify properties of
simply-typed components by giving them a dependently-typed in-
terface and then going back to their simply-typed interface, thereby
combining both scenarios above. For instance, we can specify that
a function tail : ListN! ListN should behave as a function of
type 8 n. VecN (n+1)! VecN n by first lifting it to this rich type,
and then recasting it back to a simply-typed function tail’ of type
ListN! ListN. While both tail and tail’ have the same type
and “internal” definition, tail’ will raise an error if called with an
empty list; additionally, if the argument list is not empty, tail’ will
dynamically check that it returns a list that is one element smaller
than its input. This is similar to dependent contracts in untyped
languages (Findler and Felleisen 2002).

Program extraction. Several dependently-typed programming
languages use program extraction as a means to obtain (fast(er))
executables. Coq is the most prominent example, but more re-
cent languages like Agda, Idris, and F? also integrate extraction
mechanisms, at different degrees (e.g. extraction in F? is the only
mechanism to actually run programs, while in Agda it is mostly
experimental at this point).
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Dependent interoperability is crucial for extraction, if extracted
components are meant to openly interact with other components
written in the target language. While Tanter and Tabareau (2015)
address the question of protecting the extracted components from
inputs that violate conditions expressed as subset types in Coq2,
the situation can be even worse with type dependencies, because
extracting dependent structures typically introduces unsafe opera-
tions; hence invalid inputs can easily produce segmentation faults.

Consider the following example adapted from the book Certi-
fied Programming with Dependent Types (Chlipala 2013), in which
the types of the instructions for a stack machine are explicit about
their effect on the size of the stack:

Inductive dinstr: N! N! Set :=
| IConst: 8 n, N! dinstr n (S n)
| IPlus: 8 n, dinstr (S (S n)) (S n).

An IConst instruction operates on any stack of size n, and
produces a stack of size (S n), where S is the successor constructor
of N. Similarly, an IPlus instruction consumes two values from
the stack (hence the stack size must have the form (S (S n)), and
pushes back one value. A dependently-typed stack of depth n is
represented by nested pairs:

Fixpoint dstack (n: N): Set :=
match n with
| O) unit
| S n’) N ⇥ dstack n’
end.

The exec function, which executes an instruction on a given
stack and returns the new stack can be defined as follows:

Definition exec n m (i: dinstr n m):
dstack n! dstack m :=
match i with
|IConst n) fun s) (n, s)
|IPlus) fun s)
let (arg1, (arg2, s)) := s in (arg1 + arg2, s)

end.

Of special interest is the fact that in the IPlus case, the stack s
is deconstructed by directly grabbing the top two elements through
pattern matching, without having to check that the stack has at least
two elements— this is guaranteed by the type dependencies.

Because such type dependencies are absent in OCaml, the exec
function is extracted into a function that ignores its stack size

arguments, and relies on unsafe coercions:

(* exec: int ! int ! dinstr ! dstack ! dstack *)

let exec _ _ i s =
match i with
| IConst (n, _)! Obj.magic (n, s)
| IPlus _!
let (arg1, s1) = Obj.magic s in
let (arg2, s2) = s1 in Obj.magic ((add arg1 arg2), s2)

The dstack indexed type from Coq cannot be expressed in OCaml,
so the extracted code defines the (plain) type dstack as:

type dstack = Obj.t

where Obj.t is the abstract internal representation type of any
value. Therefore, the type system has in fact no information at all
about stacks: the unsafe coercion Obj.magic (of type 8a8b.a! b)
is used to convert from and to this internal representation type. The
dangerous coercion is the one in the IPlus case, when coercing s

2 In Coq terminology, a subset type is a type refined by a proposition—this
is also known in the literature as refinement type (Rondon et al. 2008).

to a nested pair of depth at least 2. Consequently, applying exec
with an improper stack yields a segmentation fault:

# exec 0 0 (IPlus 0) [1;2];;
: int list = [3]
# exec 0 0 (IPlus 0) [];;
Segmentation fault: 11

Dependent interoperability helps in such scenarios by making it
possible to lift dependent structures—and functions that operate on
them—to types that are faithfully expressible in the type system of
the target language in a sound way, i.e. embedding dynamic checks
that protects extracted code from executing unsafe operations under
violated assumptions.3 We come back to this stack machine exam-
ple and how to protect the extracted exec function in Section 5.

Contributions In this paper, we present a verified dependent in-
teroperability layer for Coq that exploits the notion of type equiva-
lence from Homotopy Type Theory (HoTT). In particular, our con-
tributions are the following:

• Using type equivalences as a guiding principle, we give a uni-
fied treatment of (partial) type equivalences between programs
(Section 2). Doing so, we build a conceptual as well as practical
framework for relating indexed and simple types;

• By carefully segregating the computational and logical content
of indexed types, we introduce a notion of canonical equiva-
lence (Section 3) that identifies first-order transformations from
indexed to simple datatypes. In particular, we show that an in-
dexed type can be seen as the combination of its underlying
computational representation and a runtime check that its asso-
ciated logical invariant holds;

• To deal with programs, we extend the presentation to a higher-
order setting (Section 4). Using the type class mechanism of
Coq, we provide a generic library for establishing partial type
equivalences of dependently-typed programs;

• Finally, we illustrate our methodology through a concrete ap-
plication: extracting an interoperable, certified interpreter (Sec-
tion 5). Aside from exercising our library, this example is also
a performance in homotopic theorem proving.

This paper is thus deeply entrenched at the crossroad between
mathematics and programming. From the former, we borrow and
introduce some homotopic definitions as well as proof patterns. For
the latter, we are led to design interoperable—yet safe—programs
and are willing to trade static safety against runtime checks.

2. Partial Type Equivalences
Intuitively, dependent interoperability is about exploiting a kind of
equivalence between simple and indexed types. This section for-
mally captures such an equivalence relation, which we call partial
because, as illustrated previously, some runtime errors might occur
when crossing boundaries.

We use Coq as both a formalization vehicle and an implementa-
tion platform. We make extensive use of type classes (Wadler and
Blott 1989) in order to define abstract structures and their proper-
ties, as well as relations among types. For instance, a partial type
equivalence is a type class, whose instances must be declared in or-
der to state an equivalence between specific types, such as VecN n
and ListN. As opposed to Haskell, type classes in Coq (Sozeau and
Oury 2008) can express arbitrary properties that need to be proven

3 Note that some unsafe executions can be produced by using impure func-
tions as arguments to functions extracted from Coq—because referential
transparency is broken. Designing an adequate protection mechanism to ad-
dress such scenarios is a separate, interesting research challenge.
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when declaring instances—for instance, the monad type class in
Coq defines and imposes the monad laws on each instance.

In this section we progressively define the notion of partial type
equivalences in a general manner. We apply partial type equiva-
lences to the dependent interoperability context in Section 3, fo-
cusing on first-order equivalences between types of data structures.
Later, in Section 4, we build higher-order partial type equivalences
to interoperate between functions that manipulate such structures.

2.1 Type Equivalence
The notion of type equivalence offers a conceptual framework in
which to reason about the relationships between types. Following
intuitions coming from homotopy theory, a type equivalence be-
tween two types A and B is defined by a function f: A! B such
that there exists a function e_inv : B! A, with proofs that it is
both its left and right inverse together with a compatibility con-
dition between these two proofs (Univalent Foundations Program
2013). This definition plays a central role in Homotopy Type The-
ory (HoTT), as it is at the heart of the univalence axiom.

In this paper, we exploit type equivalence as a means to (con-
structively) state that two types “are the same”. In Coq, this
amounts to the following type class definition:4

Class IsEquiv (A B : Type) (f:A! B) := {
e_inv : B! A ;
e_sect : e_inv � f == id;
e_retr : f � e_inv == id;
e_adj : 8 x, e_retr (f x) = ap f (e_sect x)
}.

The properties e_sect and e_retr capture the fact that e_inv
is the inverse of f. The definitions use the identity function id,

and point-wise equality between functions ==. The extra coher-
ence condition e_adj ensures that the equivalence is uniquely de-
termined by the function f, that is, being an equivalence is proof-
irrelevant (where ap f is the functorial action of f, transporting an
equality between x and y to an equality between f x and f y).

2.2 Towards Partial Type Equivalence: The Cast Monad
As illustrated in Section 1, lifting values from simple to indexed
types can fail at runtime. Thus, the type equivalences we are in-
terested in are partial. To denote—and reason about—partial func-
tions, we resolve to use pointed sets (Hyland 1991). In Coq, those
are naturally modeled by working in the Kleisli category of the
option monad, with a None constructor to indicate failure, and a
Some constructor to indicate success.

We thus define a specific Cast monad, which is essentially
the option monad.5 We use the harpoon notation * to denote
a (partial) function in the Cast monad: Notation "A * B" :=
(A! Cast B). The Cast monad is characterized by its identity
creturn and binder cbind. We use the traditional do-notation.
For instance, function composition in the corresponding Kleisli
category, denoted �K , is defined as follows:6

Definition kleisliComp {A B C : Type}:
(A* B)! (B* C)! (A* C) :=
fun f g a) b f a ; g b.
Notation "g �K f" := (kleisliComp f g).

We thus closely model the denotational objects we are interested
in (here, partial functions). Crucially, the nature of these objects is

4 Adapted from: http://hott.github.io/HoTT/coqdoc-html/HoTT.
Overture.html#IsEquiv
5 We discuss some specificities of the Cast monad in Section 5.5.
6 In Coq, parameters within curly braces are implicitly resolved.

reflected at the type-level: types play a guiding role in Section 2.3
below, where we lift the notion of type equivalence to the partial
setting.

2.3 Partial Type Equivalence
In this section, we aim at reconciling the general notion of type
equivalence with the potential for errors, as modeled by the Cast
monad. To do so, we observe that the Cast monad induces a pre-
order. This naturally leads us to generalize the equivalence relation
to operate on preorders.

Cast as a preorder with a least element. The notion of preorder
with a least element is naturally defined in Coq with the following
type class:

Class PreOrder? (A:Type) :=
{ rel : A! A! Prop where "x � y" := (rel x y);
? : A;
rel_refl : 8 x, x � x ;
rel_trans : 8 x y z, x � y! y � z! x � z;
?_is_least : 8 a, ? � a
}.

The Cast monad induces a preorder which corresponds to
equality on success values, and considers None as the least ele-
ment of the ordering. More precisely:

Instance PreOrderCast A : Preorder? (Cast A) :=
{| rel := fun a a’) match a with

| Some _) a = a’
| None ) True
end;

? := None |}.

Any preorder on the codomain of two functions gives us a way
to compare these functions pointwise:

Instance Preorder?_fun (A: Type) (B: A! Type)
‘{8 a, Preorder? (B a)} : Preorder? (8 a, B a) :=
{| rel := fun f g) 8 a, f a � g a;
? := fun a)? |}.

Monotone functions. We must now generalize type equivalence
from types equipped with an equality to types equipped with a
preorder. To witness such a partial type equivalence, we shall ask
for a monotonic function, i.e. a function that preserves the preorder
relation (and the least element).7

Record monotone_function X Y ‘{Preorder? X}
‘{Preorder? Y} := Build_Mon
{ f_ord :> X! Y ;
mon :8 x y, x � y! f_ord x � f_ord y;
mon_p : f_ord ? � ?
}.

Notation "X �! Y" := (monotone_function X Y).

Monotonicity is expressed through the functorial action f.(mon),
thus following and generalizing the functorial action ap f of (to-
tal) type equivalences (Section 2.1). We use a type class definition
Functor to overload the notation ap of functorial action. The :>
notation in the field f_ord declares an implicit coercion from X
�! Y to X! Y: we can transparently manipulate monotone func-
tions as standard functions.

7 In Coq, back-quoted parameters are nameless. Records differ from type
classes in that they are not involved in (implicit) instance resolution; other
than that, type classes are essentially records (Sozeau and Oury 2008).
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Partial equivalence. We now capture the notion of a partial
equivalence between two preorders A and B. The definition of
IsPartialEquiv is directly derived from its total counterpart,
by replacing functions with monotone functions, and equality by
the preorder relation �.

Class IsPartialEquiv (A B : Type) (f:A �! B)
‘{Preorder? A} ‘{Preorder? B} := {
pe_inv : B �! A ;
pe_sect : pe_inv � f � id;
pe_retr : f � pe_inv � id;
pe_adj : 8 x, pe_retr (f x) = ap f (pe_sect x)
}.

2.4 Partial Type Equivalence in the Kleisli Category
The preorder over Cast types yields the expected notion of type
equivalence in the Kleisli (bi-)category defined in Section 2.2.
Composition amounts to monadic composition �K , and identity
to monadic identity creturn. We substantiate this intuition by
specifying a monadic equivalence to be:

Class IsPartialEquivK (A B : Type) (f:A* B) := {
pek_inv : B* A ;
pek_sect : pek_inv �K f � creturn ;
pek_retr : f �K pek_inv � creturn;
pek_adj : 8 x,

((pek_sect �V (id2 f)) �H idL f) x =
(↵ f pek_inv f �H ((id2 f) �V pek_retr) �H idR f) x

}.

Note that the definition of pek_adj is more complicated than for
partial equivalences, as explained in Section 2.5 below.

As a sanity check, we can prove that lifting an equivalence
yields a partial type equivalence in the Kleisli category, meaning
in particular that pek_adj is a conservative extension of e_adj to
the Kleisli category.

Definition EquivToPartialEquivK A B (f :A! B) :
IsEquiv f! IsPartialEquivK (clift f).

2.5 A (Bi-)Categorical Detour
The various notions of equivalence presented above (total, partial,
and partial in the Kleisli category of the Cast monad) follow a
common pattern—they are all instances of the concept of adjunc-
tion in a bicategory, coming from the seminal work of Bénabou
(1967). Recall that 2-categories generalize categories by introduc-
ing a notion of 2-cells, i.e. morphisms between morphisms, but let-
ting compatibility laws hold strictly. In the setting of type theory,
the fact that compatibility laws are strict means that they hold def-
initionally by conversion in the system. Bicategories generalize 2-
categories by allowing compatibility laws not to be defined strictly,
but up-to an invertible 2-cell.

Relaxing compatibility laws up-to invertible 2-cells is not nec-
essary to describe (total) type equivalence because associativity and
identity laws hold strictly on functions between types, as they are
directly captured by �-reduction.

For partial type equivalence, strict laws for composition also
hold because we are dealing with proofs of monotonicity that are
irrelevant in the sense that they are stated on a notion of preorder
that lives in Prop. Note that we could have defined a proof-relevant
preorder and monotonicity condition, in which case the need to go
to a bicategorical setting would have manifested itself at this stage.

When considering the Kleisli category induced by the Cast
monad, however, it is not possible to avoid bicategories anymore
because, for instance, associativity of Kleisli composition does
not hold strictly. Indeed, the different order in which arguments

are evaluated (i.e. in which effects are performed) matters, and so
associativity only holds up to a proof term. That is, there is a term to
make explicit the associativity of composition (we express it from
left-to-right but the converse also holds):

Definition ↵ {X Y Z T: Type} (f:X* Y) (g:Y* Z) (h:Z* T):
h �K (g �K f)) � (h �K g) �K f.

In the same way, we need to exhibit the usual morphisms:

idR f : creturn �K f � f (right identity law)
idL f : f �K creturn � f (left identity law)
�V : f � f’! g � g’ (vertical composition)! g �K f � g’ �K f’
�H : e � f! f � g! e � g (horizontal composition)
id2 f : f � f (2-identities)

It follows that the definition of pek_adj is merely the expected
formulation of the compatibility of an adjunction in a bicategory.

3. Partial Type Equivalence for Dependent
Interoperability

We now exploit partial type equivalences to setup a verified frame-
work for dependent interoperability. In this context, we are specifi-
cally interested in partial equivalences between indexed types, such
as VecN, and simple types, such as ListN. We call this kind of par-
tial type equivalence a dependent equivalence.

A major insight of this work is that a dependent equivalence
can be defined by composition of two different kinds of type equiv-
alences, using subset types as intermediaries:

• a total equivalence between indexed types and subset types
of the form {c:C & P c} whose logical content P—i.e. static
invariants—is carefully quarantined from their computational
content C—i.e. runtime representation;

• a partial equivalence between subset types and simple types, in
the Kleisli category of the Cast monad.

The resulting dependent equivalence is therefore also a partial type
equivalence in the Kleisli category.

For instance, to establish the equivalence between VecN and
ListN, we exploit the subset type {l:ListN & length l = n},
which captures the meaning of the index of VecN.

3.1 Partial Equivalence Relations
The equivalence classes defined in Section 2 characterize a specific
function as witnessing an equivalence between two types, thereby
allowing different functions to be thus qualified.

Following the Coq HoTT library, we define the Equiv record
type to specify that there exists an equivalence between two types A
and B, denoted A ' B. The record thus encapsulates the equivalence
function e_fun and defines a type relation:

Record Equiv (A B : Type) := {
e_fun : A! B ;
e_isequiv : IsEquiv e_fun
}.
Notation "A ' B" := (Equiv A B).

For partial type equivalences in the Kleisli category of the Cast
monad, we similarly define the record type and notation:

Record PartialEquivK (A B : Type) := {
pek_fun : A* B;
pek_isequiv: IsPartialEquivK pek_fun
}
Notation "A '?

K B" := (PartialEquivK A B).
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For dependent interoperability, however, we want to consider
canonical dependent equivalences between index and simple types,
so as to automate the lifting between both worlds. This is particu-
larly important to perform complex, automatic lifting of functions,
as described in Section 4. For instance, lifting a function that oper-
ate on VecN to an equivalent function that operates on ListN im-
plies “looking up” the canonical equivalence between these types.

Technically, this means that canonical partial equivalences need
to be presented to Coq as a type class, in order to take advantage of
the automatic instance resolution mechanism they offer:

Class CanonicalPartialEquiv (A B : Type) := {
pe_fun : A �! B;
pe_isequiv: IsPartialEquiv pe_fun
}
Notation "A '? B" := (CanonicalPartialEquiv A B).

The strategy to establish dependent equivalences via subset
types can be depicted as follows, for a given index a:

B a {c : C & P a c}

C

'

'?
K'?

K

The following subsections describe the two (orthogonal) equiv-
alences below, before defining their (diagonal) composition.

In the diagram above, and the rest of this paper, we adopt the
following convention: the type index is A : Type, the type family is
B : A! Type, the plain type is C : Type, and the logical proposi-
tion capturing the meaning of the index is P : A! C! Type.

Remark: HProp/HSet vs. Prop/Set The reader might expect P
to end in Prop, not Type. One of the initial goal of the sort
Prop of Coq was to capture proof irrelevant properties that can be
erased during extraction. This syntactic characterization is however
not correct. On the one hand, it is too restrictive because some
properties are proof irrelevant but cannot be typed in Prop (Mishra-
Linger and Sheard 2008). On the other hand, there are elements of
Prop that cannot be proven to be proof irrelevant. The most famous
example of such an element is the equality type. Indeed, for every
type A:Type and elements a,b:A, we have a=b : Prop in Coq, but
proving that a=b is irrelevant is independent from the theory of Coq
as it corresponds to the Uniqueness of Identity Proofs (UIP) axiom.

Therefore, we face two possible design choices. We could con-
sider propositions in Prop and datatypes in Set, assuming UIP—
which could be seen as controversial. Instead of relying on an ax-
iom, we choose to require proof irrelevance semantically whenever
it is needed. This semantic characterization of types with a proof-
irrelevant equality is specified by the type class IsHProp as intro-
duced in the Coq HoTT library:

Class IsHProp (T: Type) := {is_hprop : 8 x y:T, x = y}.

In the same way, types that semantically form sets can be charac-
terized by the type class IsHSet:

Class IsHSet X := {isHSet :> 8 (a b : X), IsHProp (a = b)}.

In the rest of the code, we (abusively) write T : HProp for a
type T : Type for which there exists an instance of IsHProp T (and
similarly for HSet). Therefore, the logical proposition capturing
the meaning of the index is hereafter written P : A! C! HProp.
Similarly, since simple types represent data structures, which are
sets, we write C : HSet.

3.2 Equivalence Between Indexed and Subset Types
The first step is a total equivalence between indexed types and
subset types. In our dependent interoperability framework, this is

the only equivalence that the programmer has to manually establish
and prove. For instance, to relate lists and vectors, the programmer
must establish that, for a given n:

VecN n ' { l : ListN & length l = n }

Recall from Section 2.1 that establishing this total equivalence
requires providing two functions:

vector_to_list n: VecN n! { l : ListN & length l = n }
list_to_vector n: { l : ListN & length l = n }! VecN n

These functions capture the computational content of the conver-
sion between the two data structures.8 The programmer must also
prove that they are inverse of each other. In addition, she needs
to prove the e_adj property. This coherence property is generally
quite involved to prove. We come back to the question of proving
the coherence in Section 3.5, and we discuss some useful proof
techniques for type conversions in Section 5.6.

3.3 Equivalence Between Subset and Simple Types
The second equivalence we exploit is a partial type equivalence in
the Kleisli category of the Cast monad between subset types and
simple types such as, for a given n:

{ l : ListN & length l = n } '?
K ListN

Obviously, going from the subset type to the simple type never fails,
as it is just the first projection of the underlying dependent pair ⇡1.
However, the other direction is not always possible: it depends if
the given n is equal to the length of the considered list.

Recently, Tanter and Tabareau (2015) developed an approach in
Coq to cast a value of any simple type C to a value of a subset type
{c:C & P c} for any decidable predicate P. Using decidability, the
authors perform the type cast through a runtime check, relying on
an axiom to capture the potential for cast failure. In the monadic
setting we adopt here, there is no need for axioms anymore, and
their technique amounts to establishing a partial type equivalence
{c:C & P c} '?

K C. We capture this partial type equivalence be-
tween subset types and simple types with the following instance:

Definition Checkable_PEquivK (C : HSet) (P : C! HProp)
‘{8 c, Checkable (P c)} : {c:C & P c} '?

K C :=
{| pek_fun := (clift ⇡1 : {c:C & P c} * C);
pek_isequiv := {| pek_inv := to_subset |}|}.

Instead of imposing actual decidability, the Checkable type class
(defined in Appendix A) only asks for the predicate to be checkable,
i.e. there must exist a decidable, sound approximation. We also
demand proof irrelevance of P (via HProp).

The equivalence function pek_fun is the (lifting of the) first
projection function ⇡1 (the type ascription is necessary to help
the Coq type inference algorithm). The inverse function is the
to_subset function below, which is essentially a monadic adapta-
tion of the cast operator of Tanter and Tabareau (2015):

Definition to_subset {C : HSet} {P : C! HProp}
‘{8 c, Checkable (P c)}: C* ({c:C & P c}) :=
fun c)
match dec checkP with
| inl p) Some (c; convert p)
| inr _) None
end.

8 Note that a programmer may very well choose to define a conversion that
reverses the elements of the structure. As long as the equivalence is formally
proven, this is permitted by the framework; any lifting that requires the
equivalence uses the user-defined canonical instance.
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to_subset applies the sound approximation decision procedure
for the embedded logical proposition. If it succeeds, the proof of
success of the approximation is converted (by implication) to a
proof of the property. Otherwise an error is raised.

Note that proof irrelevance of P c is crucial, because when going
from the subset type {c:C & P c} to the simple type C and back, the
element of P c is inferred by the approximation decision, and there
is no reason for it to be the same as the initial element of P c. By
proof-irrelevance, both proofs are considered equal, and the partial
equivalence is established.

3.4 Equivalence Between Dependent and Simple Types
We now define a partial equivalence between dependent and sim-
ple types by composing the two equivalences described above. The
dependent equivalence class below captures the necessary require-
ments for two structures to interoperate. DepEquiv corresponds to
a first order dependent interoperability, in as much as it only relates
data structures. In Section 4, we shall develop higher-order depen-
dent equivalences, which enable us to operate over functions. As
explained above, we define a class so as to piggy-back on instance
resolution to find the canonical partial equivalences automatically.

Class DepEquiv (A : Type) (B: A! Type) (C : HSet) := {
P : A! C! HProp;
total_equiv :> 8 a, B a ' {c:C & P a c};
partial_equiv :> 8 a, {c:C & P a c} '?

K C;
fca : C* A;
Pfca : 8 a (b:B a), (fca �K pek_fun) (e_fun b) = Some a;
}.

Notation "B ⇡ C" := (DepEquiv _ B C).

(The index type A can always be inferred from the context so the
notation ⇡ omits it.) A key ingredient to establishing a dependent
equivalence between the type family B and the simple type C is the
property P that connects the two equivalences. Note that the partial
and total equivalences with the subset type are lifted to point-wise
equivalences, i.e. they must hold for all indices a.9

The DepEquiv class also includes an index synthesis function,
fca, which recovers a canonical index from a data of simple type. In
the case of an ListN, it is always possible to compute its length, but
as we will see in the case of stack machine instructions (Section 5),
synthesizing an index may fail. The fca function is used for defining
higher-order equivalences, i.e. for automatically lifting functions
(Section 4). The property Pfca states that if we have a value c : C
that was obtained through the equivalence from a value of type B a,
then fca is defined on c and recovers the original index a.

Finally, for all index a, B ⇡ C is a partial type equivalence in the
Kleisli category of the Cast monad:

Definition DepEquiv_PEK (A : Type) (B : A! Type)
(C : HSet) ‘{B ⇡ C} (a:A) : B a '?

K C :=
{| pek_fun := to_simpl;
pek_isequiv := {| pek_inv := to_dep a |} |}.

The functions used to establish the partial equivalence are to_simpl,
which is the standard composition of the two equivalence functions
pek_fun � e_fun, and the function to_dep, which is the Kleisli
composition of the inverse functions, (clift e_inv) �K pek_inv.

3.5 Simplifying the Definition of a Dependent Equivalence
In practice, requiring the simple type C to be an HSet allows to
alleviate the burden on the user, because some coherences become

9 To define a dependent equivalence, Coq must also be able to infer that
the type C is an HSet. In practice, it is convenient to exploit Hedberg’s
theorem (Univalent Foundations Program 2013, Section 7.2), which states
that decidable equality on T (which is easier to prove) implies isHSet T.

automatically satisfied. We define a function IsDepEquiv that
exploits this and creates a dependent equivalence without requiring
the extra coherences e_adj or pek_adj.

Additionally, note that the DepEquiv class is independent of the
particular partial equivalence between the subset type and the sim-
ple type. Therefore, we provide a smart constructor for dependent
equivalences, applicable whenever the partial equivalence with the
subset type is given by a checkable property:

Definition IsDepEquiv {A: Type} (B: A! Type) (C:HSet)
(P: A! C! HProp) ‘{8 a c, Checkable (P a c)}
(fbc : 8 a, B a! {c : C & P a c})
(fcb : 8 a, {c : C & P a c}! B a)
(fca : C A) :
(8 a, (fcb a) � (fbc a) == id)!
(8 a, (fbc a) � (fcb a) == id)!
(8 a (b:B a), fca (fbc _ b).1 = Some a)! B ⇡ C.

Using IsDepEquiv, establishing a new dependent interoper-
ability between two types such as VecN and ListN boils down to
providing a checkable predicate, two inverse conversion functions
(as in Section 3.5), and the index synthesis function (length). The
programmer must then prove three equations corresponding to the
properties of conversions and that of the index synthesis function.

Frequently, the checkable predicate merely states that the syn-
thesized index is equal to the proposed index (i.e. P := fun a c)
fca_eq c = Some a). We provide another convenient instance con-
structor DepEquiv_eq, specialized to handle this situation. Declar-
ing the canonical dependent equivalence between VecN and ListN
amounts to:

Instance DepEquiv_vector_list : VecN ⇡ ListN :=
DepEquiv_eq VecN ListN (clift length)

vector_to_list list_to_vector.

4. Higher-Order Partial Type Equivalence
Having defined first-order dependent equivalences, which relate
indexed types (e.g. VecN) and simple types (e.g. ListN), we
now turn to higher-order dependent equivalences, which rely
on higher-order partial type equivalences. These higher-order
equivalences relate partial functions over simple types, such as
ListN * ListN, to partially-equivalent functions over indexed
types, such as 8 n. VecN (n + 1) * VecN n.

Higher-order equivalences support the application scenarios of
dependent interoperability described in Section 1. Importantly,
while programmers are expected to define their own first-order
dependent equivalences, higher-order equivalences are automati-
cally derived based on the available canonical first-order dependent
equivalences.

4.1 Defining A Higher-Order Dependent Interoperability
Consider that two first-order dependent equivalences B1 ⇡ C1 and
B2 ⇡ C2 have been previously established. We can construct a
higher-order partial type equivalence between functions of type
8 a:A, B1 a* B2 a and functions of type C1 * C2:

Instance HODepEquiv {A: Type}
{B1: A! Type} {C1: HSet} ‘{B1 ⇡ C1}
{B2: A! Type} {C2: HSet} ‘{B2 ⇡ C2} :
(8 a:A, B1 a* B2 a) '? (C1 * C2) :=

{| pe_fun := fun f) to_simpl_dom
(fun a b) x f a b;

to_simpl x)) _ ;
pe_isequiv := {| pe_inv :=
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fun f a b) x to_dep_dom f a b;
to_dep _ x) _ |}|}.

The definition of the HODepEquiv instance relies on two new
auxiliary functions, to_dep_dom and to_simpl_dom.

to_dep_dom lifts a function of type C* X for any type X to an
equivalent function of type 8 a. B a* X. It simply precomposes
the function to lift with to_simpl in the Kleisli category:

Definition to_dep_dom {A X} {B: A! Type} {C : HSet}
‘{B ⇡ C} (f: C* X) (a:A) : B a* X := f �K to_simpl.

to_simpl_dom lifts the domain of a function in the other direction.
Its definition is more subtle because it requires computing the index
a associated to c before applying to_dep. This is precisely the
raison d’être of the fca function provided by the DepEquiv type
class.

Definition to_simpl_dom {A X} {B: A! Type} {C : HSet}
‘{B ⇡ C} (f : 8 a:A, B a* X) : C* X :=

fun c) a  fca c;
b  to_dep a c ;
f a b.

Crucially, the proof that HODepEquiv is a partial equivalence is
done once and for all. This is an important asset for programmers
because the proof is quite technical. It implies proving equalities
in the Kleisli category and requires in particular the extra property
Pfca . We come back to proof techniques in Section 5.6.

As the coherence condition of HODepEquiv involves equality
between functions, the proof makes use of the functional exten-
sionality axiom, which states that f == g is equivalent to f = g for
any dependent functions f and g. This axiom is very common and
compatible with both UIP and univalence, but it can not be proven
in Coq for the moment, because equality is defined as an inductive
type, and the dependent product is of a coinductive nature.

In order to cope with pure functions of type 8 a, B a! C a,
we first embed the pure function into the monadic setting and then
apply a partial equivalence:

Definition lift {A} {B1: A! Type} {B2 : A! Type}
{C1 C2 : HSet} ‘{8 a, B1 a* B2 a '? C1 * C2} :

(8 a, B1 a! B2 a)! C1 * C2 :=
fun f) pe_fun (fun a b) creturn (f a b)).

This definition is straightforward, yet it provides a convenient
interface to the user of the dependent interoperability framework.
For instance, lifting the function:

VecN.map : 8 (f : N ! N) (n : N), VecN n! VecN n

is a mere lift away:

Definition map_simpl (f : N! N) : list N * list N
:= lift (VecN.map f).

Note that it is however not (yet) possible to lift the tail function
VecN.tl : 8 n, VecN (S n)! VecN n because there is no depen-
dent equivalence between VecN (S n) and ListN. Fortunately, the
framework is extensible and we will see in the next section how to
deal with this example, among others.

4.2 A Library of Higher-Order Dependent Equivalences
HODepEquiv is but one instance of an extensible library of higher-
order dependent equivalence classes. One of the benefits of our ap-
proach to dependent interoperability is the flexibility of the frame-
work. Automation of higher-order dependent equivalences is open-
ended and user-extensible. We now discuss some useful variants,
which provide a generic skeleton that can be tailored and extended
to suit specific needs.

Index injections. HODepEquiv only covers the pointwise appli-
cation of a type index over the domain and codomain types. This
fails to take advantage of full-spectrum dependent types: a type-
level function could perfectly be applied to the type index. For in-
stance, if we want to lift the tail function VecN.tl : 8 n, VecN (S n)
! VecN n to a function of type ListN! ListN, then the domain
index is obtained from the index n by application of the successor
function.

Of particular interest is the case where the index function is an
inductive constructor. Indeed, inductive families are commonly de-
fined by case analysis over some underlying inductive type (Brady
et al. 2004). Semantically, we characterize constructors through
their defining characteristic: they are injective. We thus define a
class of injections where the inverse function is allowed to fail:

Class IsInjective {A B : Type} (f : A! B) := {
i_inv : B* A;
i_sect : i_inv � f == creturn ;
i_retr : clift f �K i_inv � creturn

}.

We can then define a general instance of DepEquiv that captures
the use of an injection on the index. Note that for the sake of
generality, the domain of the injection can be a different index type
A’ from the one taken by B:

Instance DepEquivInj (A A’ : Type) (B : A! Type)
(C : HSet) (f : A’! A) ‘{IsInjective f} ‘{B ⇡ C} :

(fun a) B (f a)) ⇡ C

This new instance now makes it possible to lift the tail function
from vectors to lists:

Definition pop : list N * list N := lift VecN.tl.

As expected, when applied to the empty list, the function pop
returns None, which corresponds to the error of the Cast monad.10

In the other direction, we can as easily lift a pop function on lists to
the dependent type 8 n, VecN (S n) * VecN n. This function can
only be applied to a non-empty vector, but if it does not return a
vector of a length reduced by one, a cast error is reported.

Composing equivalences. With curried dependently-typed func-
tions, the index of an argument can be used as an index of a subse-
quent argument (and return type), for instance:

8 a a’, B1 a! B2 a a’* B3 a a’

We can define an instance of '? to form a new partial equivalence
on 8 a a’, B1 a! B2 a a’* B3 a a’ from a partial equivalence
on 8 a’, B2 a a’* B3 a a’, for a fixed a, provided that we have
established that B1 ⇡ C1:

Instance HODepEquiv2 A A’ B1 B2 B3 C1 C2 C3
‘{8 a, ((8 a’:A’, B2 a a’ * B3 a a’) '? (C2 * C3))}
‘{B1 ⇡ C1}:

(8 a a’, B1 a! B2 a a’* B3 a a’) '? (C1! C2 * C3).

For space reasons, we do not dive into the technical details of
this instance, but it is crucial to handle the stack machine example
of Section 1: as explained in Section 5, the example involves com-
posing two dependent equivalences, one on instructions and one on
stacks.

Index dependencies. It is sometimes necessary to reorder argu-
ments in order to be able to compose equivalences, accounting for
(functional) dependencies between indices. This reordering of pa-
rameters can be automatized by defining an instance that tries to
flip arguments to find a potential partial equivalence:

10 We come back to an improvement of the error message in Section 5.5
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Instance HODepEquiv2_sym A A’ B1 B2 B3 C1 C2 C3
‘{8 a a’, B2 a a’! B1 a a’ * B3 a a’) '? (C2! C1 * C3)} :

(8 a a’, B1 a a’! B2 a a’ * B3 a a’) '? (C1! C2 * C3)

Note that this instance has to be given a very low priority (omit-
ted here) because it must be used as a last resort, or one would
introduce cycles during type class resolution. The stack machine
example in Section 5 also exploits this instance.

5. A Certified, Interoperable Stack Machine
To demonstrate our approach, we address the shortcomings of ex-
traction identified in Section 1 and present a certified yet interoper-
able interpreter for a toy stack machine. Let us recall the specifica-
tion of the interpreter:

exec: 8 n m, dinstr n m! dstack n! dstack m

This definition enforces—by construction—an invariant relating
the size of the input stack and output stack, based on which in-
struction is to be executed.

In the simply-typed setting, we would like to offer the following
interface:

safe_exec: instr! ListN! ListN

while dynamically enforcing the same invariants (and rejecting ill-
formed inputs).

This example touches upon two challenges. First, it involves two
equivalences, one dealing with instructions and the other dealing
with stacks. Once those equivalences have been defined by the
user, we shall make sure that our machinery automatically finds
them to lift the function exec. Second, and more importantly, type
indices flow in a non-trivial manner through the type signature of
exec. For instance, providing an empty stack means that we must
forbid the use of the IPlus instruction. Put otherwise, the lifting
of the dependent instruction depends on the (successful) lifting of
the dependent stack. As we shall see, the index n is (uniquely)
determined by the input list size while the index m is (uniquely)
determined by n and the instruction being executed. Thus, the
automation of higher-order lifting needs to be able to linearize such
indexing flow and turning them into sequential checks.

In this process, users are only asked to provide the two first-
order type equivalences specific to their target domain, dstack ⇡
ListN and 8 n, dinstr n ⇡ instr. Using these instances, the role
of our framework is threefold: (1) to linearize the indexing flow,
through potentially reordering function arguments; (2) to identify
the suitable first-order equivalences, through user and library pro-
vided instances; (3) to propagate the indices computed through dy-
namic checks, through the constructive reading of the higher-order
equivalences (Section 4).

5.1 From Stacks to Lists
As hinted at in Section 1, the type of dstack cannot be properly
extracted to a simply-typed system. Indeed, it is defined by large
elimination over natural numbers and there is therefore no natural,
simply-typed data structure to extract it to. As a result, extraction in
Coq resorts to unsafe type coercions (Letouzey 2004, Section 3.2).
However, using specific domain knowledge, the programmer can
craft an equivalence with a list, along the lines of the equivalence
between vectors and lists. We therefore (constructively) witness the
following subset equivalence:

dstack n ' {l : ListN & clift length l = Some n}

by which we map size-indexed tuples to lists.11 Crucially, this trans-
formation involves a change of representation: we move from tu-
ples to lists. For our framework to automatically handle this trans-
formation, we declare the suitable instance of dependent equiva-
lence:

Instance DepEquiv_dstack : dstack ⇡ ListN :=
DepEquiv_eq dstack ListN (clift length)

dstack_to_list list_to_dstack.

The definition of this dependent equivalence is very similar in
nature to the one already described between vectors and lists, so
we refer the reader to the implementation for details.

5.2 From Indexed Instructions to Simple Instructions
The interoperable version of indexed instructions is more natural
to construct: indexed instructions are a standard inductive family
whose indices play a purely logical role.

Inductive dinstr: N! N! Set :=
| IConst: 8 n, N! dinstr n (S n)
| IPlus: 8 n, dinstr (S (S n)) (S n).

Merely erasing this information gives an inductive type of (simple)
instructions:

Inductive instr : Type :=
| NConst : N! instr
| NPlus : instr.

Nonetheless, relating the indexed and simple version is conceptu-
ally more involved. Indeed, the first index cannot be guessed from
the simply-typed representation alone: the size of the input stack
must be provided by some other means. Knowing the size of the
input stack, we can determine the expected size of the output stack
for a given simple instruction:

Definition instr_index n (i:instr) : Cast N :=
match i with
| NConst _) Some (S n)
| NPlus) match n with

| S (S n)) Some (S n)
| _) None
end

end.

The dependent equivalence is thus parameterized by the input size
n and only the output size m needs to be determined from the simple
instruction:

8 n, dinstr n m ' {i: instr & instr_index n i = Some m}.

Once again, we inform the system of this new equivalence
through a suitable instance declaration:

Instance DepEquiv_instr n : (dinstr n) ⇡ instr :=
DepEquiv_eq (dinstr n) instr (instr_index n)

(dinstr_to_instr n) (instr_to_dinstr n).

5.3 Lifting the Interpreter
Having specified our domain-specific equivalences, we are left to
initiate the instance resolution so as to automatically obtain the
desired, partially-equivalent lifting of the interpreter exec. To do
so, we simply appeal to the lift2 operator, which is similar to
lift from Section 4.1 save for the fact that it deals with two-index
types:

11 Note that the equality clift length l = Some n is equivalent to the
simpler length l = n, but the framework is tailored to encompass poten-
tial failure. This could be avoided by defining a more specific function than
DepEquiv_eq for the case where computation of the index never fails.
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lift2 A A’ B1 B2 B3 C1 C2 C3
‘{8 a a’, B1 a a’! B2 a a’ * B3 a a’ '? C1! C2 * C3} :
(8 a a’, B1 a a’! B2 a a’! B3 a a’)! C1! C2 * C3.

The definition of simple_exec is then:

Definition simple_exec : instr! ListN * ListN :=
lift2 exec.

lift2 matches upon the skeleton of our dependent function
exec, lifts it to a monadic setting and triggers the instance res-
olution mechanism of Coq. This (single) command is enough to
build the term simple_exec with the desired type, together with
the formal guarantee that it is partially-equivalent to the dependent
program we started from.

5.4 Diving into the Generated Term
Printing the generated term (by telling Coq to show partial equiva-
lence instances) is instructive:

simple_exec = lift2
(HODepEquiv2_sym

(HODepEquiv2
(fun a : N) HODepEquiv (DepEquiv_instr a)

DepEquiv_stack)
DepEquiv_stack)) exec

We witness three generic transformations of the function:
HODepEquiv2_sym, which has reordered the input arguments so
as to first determine the size of the input stack; HODepEquiv2,
which has made the size of the input list available to subsequent
transformations; and HODepEquiv, which has transferred the size
of the output list as computed from the simple instruction to the
output stack.

Now, when printing simple_exec by telling Coq to unfold
definitions, we recover the description of a function in monadic
style that actually performs the expected computation:

simple_exec = fun (i : instr) (l : ListN))
(* lift l to a dstack ds of size (length l) *)

ds (c’ to_subset l; Some (list_to_dstack c’));
(* compute the index associated to (length l) for i

this may fail depending on the instruction *)

m instr_index (length l) i;
(* lift i to a dependent instruction di *)

di (c’ to_subset i;
Some (instr_to_dinstr (length l) m c’));

(* perform exec (note the reverse order of di and ds)

and convert the result to a list *)

Some (dstack_to_list (exec (length l) m di ds)) .1

5.5 Extraction to OCaml
In Section 2.2, we introduced the Cast monad as essentially the
option monad. For practical purposes, the failure constructor of
Cast takes additional arguments for producing informative error
messages: we capture the type we are trying to cast to and a
message to help diagnose the source of the error.

More importantly, having defined a custom error monad en-
ables us to tailor program extraction when targeting an impure lan-
guage. In an impure language like OCaml, it is indeed possible—
and strongly advised—to write in direct style, using runtime ex-
ceptions to implement the Cast monad. The success constructor
of the monad is simply erased, and its failure constructor is pro-
jected to a runtime exception (e.g. failwith in OCaml). This al-
lows us to avoid affecting the consistency of the host language Coq
—conversely to Tanter and Tabareau (2015), we do not introduce

inconsistent axioms to represent cast errors—while preserving the
software engineering benefits of not imposing a monadic frame-
work on external components. The definition of the extraction of
the Cast monad is provided in Appendix B.

We can now revisit the interaction with the extracted function:

# simple_exec NPlus [1;2];;
: int list = [3]
# simple_exec NPlus [];;
Exception: (Failure "Cast failure: invalid

instruction").

and confirm that an invalid application of simple_exec does not
yield a segmentation fault, but an informative exception.

5.6 A Homotopical Detour
Before concluding, we briefly reflect on the proof techniques we
used to build the verified dependent interoperability framework and
implement the different examples.

Many of the proofs of sections and retractions, either on general
instances (Sections 3 and 4) or on domain-specific equivalences
(as we shall see below), require complex reasoning on equality.
This means that particular attention must be paid to the definition
of conversion functions. In particular, the manipulation of equality
must be done through explicit rewriting using the transport map
(which is the predicative version of ap introduced in Section 2):

Definition transport {A : Type} (P : A! Type) {x y : A}
(p : x = y) : P x! P y.
Notation "p # x" := (transport _ p x).

Transport is trivially implemented by path induction, but making
explicit use of transport is one of the most important technical in-
sights brought by the advent of HoTT. It is crucial as it enables
to encapsulate and reason abstractly on rewriting, without fighting
against dependent types.12 Indeed, although equality is presented
through an inductive type in Coq, it remains best dealt with through
abstract rewriting— a lesson that was already familiar to observa-
tional type theorists (Altenkirch et al. 2007). The reason is that it is
extremely difficult to prove equality of two pattern matching def-
initions by solely reasoning by pattern matching. Conversely, it is
perfectly manageable to prove equality of two different transporta-
tions.

For instance, the definition of instr_to_dinstr must be de-
fined by pattern matching on the instruction and transport (com-
ments express the specific type of the goal in each branch of pattern
matching):

Definition instr_to_dinstr n n’ :
{i: instr & instr_index n i = Some m}! dinstr n n’ :=

fun x)
match x with (i;v)) (match i with
(* ` Some (S n) = Some n’ ! dinstr n n’ *)

| NConst k) fun v) Some_inj v # IConst k
| NPlus ) match n with
(* ` None = Some n’ ! dinstr 0 n’ *)

0) fun v) None_is_not_Some v
(* ` None = Some n’ ! dinstr 1 n’ *)

| S 0) fun v) None_is_not_Some v
(* ` Some (S n) = Some n’ ! dinstr (S (S n)) n’ *)

| S (S n)) fun v) Some_inj v # IPlus
end end) v end.

12 A fight that Coq usually announces with “Abstracting over the
terms...” and wins by declaring “is ill-typed.”
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where None_is_not_Some is a proof that None is different from
Some a for any a (in the sense that None = Some a implies any-
thing) and Some_inj is a proof of injectivity of the constructor
Some.

The benefit of using the encapsulation of rewriting through
transport is that now, we can prove auxiliary lemmas on transport
and use them in the proof. For instance, we can state how transport
behaves on the IConst instruction by path induction:

Definition transport_instr_Const (n m k : N) (e : S n = m) :
dinstr_to_instr (e # (IConst n0)) = (NConst n0; ap Some e).

and similarly for IPlus. Armed with these properties on transport,
we can then prove the retraction of dinstr m n ' {i: instr &
instr_index n i = Some m} by pattern matching on instructions
and integers, together with some groupoid laws (@ is equality con-
catenation and path_sigma is a proof that equalities of the projec-
tions imply equality dependent pairs).

Definition DepEquiv_instr_retr n m
(x:{i:instr & instr_index n i = Some m}) :

(dinstr_to_instr n m) � (instr_to_dinstr n m) x = x :=
match x with (i;v)) (match i with

(* ` Some (S n) = Some m !
dinstr_to_instr n m (Some_inj v # IConst n0)

= (NConst n0; v) *)

NConst k) fun v)
transport_instr_Const @
path_sigma eq_refl (is_hprop _ _)

| NPlus) match n with
(* ` None = Some m !

dinstr_to_instr O m (Fail_is_not_Some v)

= (Nplus; v) *)

O) fun v) None_is_not_Some v
(* ` None = Some m !

dinstr_to_instr 1 m (Fail_is_not_Some v)

= (Nplus; v) *)

| S O) fun v) None_is_not_Some v
(* ` Some (S n) = Some m !

dinstr_to_instr (S (S n)) m (Some_inj v # IPlus)

= (NPlus; v) *)

| S (S n)) fun v)
transport_instr_Plus @
path_sigma eq_refl (is_hprop _ _)) end
end) v end end.

We believe that this new way of proving equalities—initially in-
troduced to manage higher equalities in syntactical homotopy
theory—is very promising for proving equalities on definitions
done by pattern matching and thus proving properties on depen-
dent types.

6. Related Work
As far as we know, the term dependent interoperability was orig-
inally coined by Osera et al. (2012) as a particularly challenging
case of multi-language semantics between a dependently-typed and
a simply-typed language. The concept of multi-language semantics
was initially introduced by Matthews and Findler (2007) to capture
the interactions between a simply-typed calculus and a uni-typed
calculus (where all closed terms have the same unique type).

Our approach is strictly more general in that we make no as-
sumption on the dependent types we support: as long as the user
provides partial type equivalences, our framework is able to ex-
ploit them automatically. In particular, we do not require a one-to-
one correspondence between constructors: the equivalence is es-
tablished at the type level, giving the user the freedom to imple-
ment potentially partial transformations. We also account for more

general equivalences through partial index synthesis functions; Os-
era et al. (2012) assume that these functions are total and manu-
ally introduced by users. Finally, while their work is fundamentally
grounded in a syntactic treatment of interoperability, ours takes its
roots in a semantic treatment of type equivalences internalized in
Coq. We are thus able to give a presentation from first principles
while providing an executable toolbox in the form of a Coq library
that is entirely verified.

Dynamic typing with dependent types. Dependent interoperabil-
ity can also be considered within a single language, as explored
by Ou et al. (2004). The authors developed a core language with de-
pendent function types and subset types augmented with three spe-
cial commands: simple{e}, to denote that expression e is simply
well-typed, dependent{e}, to denote that the type checker should
statically check all dependent constraints in e, and assert(e, T)
to check at runtime that e produces a value of (possibly-dependent)
type T. The semantics of the source language is given by translation
to an internal language relying, when needed, on runtime-checked
type coercions.

However, dependent types are restricted to refinement types
where the refinements are pure Boolean expressions, as in (Knowles
and Flanagan 2010)). This means that the authors do not address
the issues related to indexed types, including that of providing cor-
rect marshalling functions between representations, which is a core
challenge of dependent interoperability.

Casts for subset types. Tanter and Tabareau (2015) also explore
the interaction between simple types and refinements types in a
richer setting than Ou et al. (2004) : their approach is developed
in Coq, and thus refinements are any proposition (not just Boolean
procedures), and they accommodate explicitly proven propositions.
They support sound casts between simple types and subset types
by embedding runtime checks to ensure that the logical compo-
nent of a subset type is satisfied. Our notion of dependent equiva-
lence builds upon the idea of casting to subset types—we use sub-
set types as mediators between simple types and indexed types.
But instead of using an inconsistent axiom in the computational
fragment of the framework to represent cast errors, we operate
within a Cast monad (recall that we do use a fairly standard ax-
iom, functional extensionality, in the non-computational fragment
of the framework). Imposing a monadic style augments the cost
of using our framework within Coq, but we can recover the con-
venience of non-monadic signatures upon extraction. Finally, just
like Ou et al. (2004), the work of Tanter and Tabareau (2015) only
deals with subset types and hence does not touch upon dependent
interoperability in its generality.

The fact that dependent equivalences only abstractly rely on
casting to subset types should make it possible to derive instances
for other predicates than the Checkable ones. For instance, in the
setting of the Mathematical Components library using the SSreflect
proof language, properties are better described through Boolean
reflection (Gonthier and Mahbouhi 2010). Using Boolean functions
is very similar to using decidable/checkable properties, so that
framework should provide a lot of new interesting instances of
partial equivalences between subset and simple types in the Kleisli
category of the Cast monad.

Gradual typing. Multi-language semantics are directly related to
gradual typing (Siek and Taha 2006), generalized to denote the in-
tegration of type disciplines of different strengths within the same
language. This relativistic view of gradual typing has already been
explored in the literature for disciplines like effect typing (Bañados
et al. 2014) and security typing (Disney and Flanagan 2011; Fen-
nell and Thiemann 2013). Compared to previous work on gradual
typing, dependent interoperability is challenging because the prop-
erties captured by type indices can be semantically complex. Also,
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because indices are strongly tied to specific constructors, casting
requires marshalling (Osera et al. 2012).

In our framework, casting (which we termed “lifting”) must be
explicitly summoned. However, as already observed by Tanter and
Tabareau (2015), the implicit coercions of Coq can be used to direct
the type checker to automatically insert liftings when necessary,
thus yielding a controlled form of gradual typing.

This being said, there is still work to be done to develop a
full theory of gradual dependent types. It would be interesting
to explore how the abstract interpretation foundations of gradual
typing as a theory of dealing with type information of different
levels of precision (Garcia et al. 2016) can be connected with
our framework for dependent equivalences, which relate types of
different precision.

Ornaments. Our work is rooted in a strict separation of the com-
putational and logical content of types, which resonates with the
theory of ornaments (McBride 2010), whose motto is “datatype
= data structure + data logic”. Ornaments have been designed as
a construction kit for inductive families: while data structures—
concrete representation over which computations are performed—
are fairly generic, data-logics—which enforce program invariants—
are extremely domain-specific and ought to be obtained on-the-fly,
from an algebraic specification of the invariants.

In particular, two key ingredients of the ornamental toolbox are
algebraic ornaments (McBride 2010) and relational ornaments (Ko
and Gibbons 2013). From an inductive type and an algebra (over
an endofunctor on Set for algebraic ornaments, over an endofunc-
tor on Rel for relational ornaments), these ornaments construct an
inductive family satisfying—by construction—the desired invari-
ants. The validity of this construction is established through a type
equivalence, which asserts that the inductive family is equivalent to
the subset of the underlying type satisfying the algebraic predicate.

However, the present work differs from ornaments in several,
significant ways. First, from a methodological standpoint: orna-
ments aim at creating a combinatorial toolbox for creating depen-
dent types from simple ones. Following this design goal, ornaments
provide correct-by-construction transformation of data structures:
from a type and an algebra, one obtains a type family. In our frame-
work, both the underlying type and the indexed type must pre-exist,
we merely ask for a (constructive) proof of type equivalence. Con-
ceptually, partial type equivalences subsume ornaments in the sense
that an ornament automatically gives rise to a partial type equiva-
lence. However, ornaments are restricted to inductive types, while
partial type equivalences offer a uniform framework to characterize
the refinement of any type, including inductive families.

Functional ornaments. To remediate these limitations, the no-
tion of functional ornaments (Dagand and McBride 2012) was de-
veloped. As for ornaments, functional ornaments aim at transport-
ing functions from simple, non-indexed types to more precise, in-
dexed types. The canonical example consists in taking addition over
natural numbers to concatenation of lists: both operations are strik-
ingly similar and can indeed be described through ornamentation.
Functional ornaments can thus be seen as a generalization of orna-
ments to first-order functions over inductive types.

So far, however, such generalization of ornaments have failed
to carry over higher-order functions and genuinely support non-
inductive types. The original treatment of functional ornaments fol-
lowed a semantic approach, restricting functions to be catamor-
phisms and operating over their defining algebras. More recent
treatment (Williams et al. 2014), on the other hand, is strongly
grounded in the syntax, leading to heuristics that are difficult to
formally rationalize.

By focusing on type equivalences, our approach is conceptually
simpler: our role is to consistently preserve type information, while

functional ornaments must infer or create well-indexed types out
of thin air. By restricting ourselves to checkable properties, we
also afford the flexibility of runtime checks and, therefore, we
can simply lift values to and from dependent types by merely
converting between data representations. Finally, while the original
work on functional ornaments used a reflective universe, we use
type classes as an open-ended and extensible meta-programming
framework. In particular, users are able to extend the framework at
will, unlike the clients of a fixed reflective universe.

Refinement types. Our work shares some similarities with refine-
ment types (Rondon et al. 2008). Indeed, dependent equivalences
are established through an intermediary type equivalence with user-
provided subset types, which is but a type-theoretic incarnation of a
refinement type. From refinement types, we follow the intuition that
most program invariants can be attached to their underlying data
structures. We thus take advantage of the relationship between sim-
ple and indexed types to generate runtime checks. Unlike Sekiyama
et al. (2015), our current prototype fails to take advantage of the
algebraic nature of some predicates, thus leading to potentially in-
efficient runtime checks. In principle, this shortcoming could be
addressed by integrating algebraic ornaments in the definition of
type equivalences. Besides, instead of introducing another mani-
fest contract calculus and painstakenly developing its meta-theory,
we leverage full-spectrum dependent types to internalize the cast
machinery through partial type equivalences.

Such internalization of refinement techniques has permeated
the interactive theorem proving community at large, with applica-
tions ranging from improving the efficiency of small-scale reflec-
tion (Cohen et al. 2013), or the step-wise refinement of specifica-
tions down to correct-by-construction programs (Delaware et al.
2015; Swierstra and Alpuim 2016). Our work differs from the for-
mer application because we are interested in safe execution out-
side of Coq rather than fast execution in the Coq reduction engine.
It would nonetheless be interesting to attempt a similar paramet-
ric interpretation of our dependent equivalences. Our work also
differs from step-wise refinements in the sense that we transform
dependently-typed programs to and from simply-typed ones, while
step-wise refinements are concerned with incrementally determin-
ing a relational specification.

7. Conclusion
In this paper, we have given a semantic account of dependent inter-
operability through the notion of partial type equivalence. Our def-
initions were set up to be directly mechanizable: this resulted in a
library of generic equivalence-preserving program transformations
and generic proofs of said equivalences. To our knowledge, this
is the first implementation of a dependent interoperability frame-
work. Our verified Coq implementation includes all the examples
presented in this article.

In the process, Coq has been a particularly relevant medium to
study and develop dependent interoperability. We were led to take
advantage of its dual nature, as a programming language and as a
theorem prover. The fundamentally mathematical notion of partial
type equivalence and its higher-order counterpart thus arose from
a development (and refactoring) process driven by programming
concerns. As a result, we were able to fully embed dependent
interoperability in Coq itself, including the statements and proofs
of correctness of the interoperability layer.

Our library rests crucially on type classes: partial type equiv-
alences are expressed as type classes, allowing users to plug and
immediately play with their domain-specific equivalences. We also
expose the cast operators through this mechanism. In effect, lifting
programs is implemented through a logic program, critically rely-
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ing on higher-order unification. Type classes were instrumental in
enabling this form of meta-programming.

Future work. As a first step, we wish to optimize the runtime
checks compiled into the interoperability wrappers. Indeed, depen-
dent types often exhibit a tightly-coupled flow of indexing infor-
mation. Case in point is the certified stack machine, whose length
of the input list gives away the first index of the typed instruc-
tion set while its second index is obtained from the raw instruc-
tion and the input length. By being systematic in our treatment of
such dataflows, we hope to identify their sequential treatments and
thus minimize the number of (re)computations from simply-typed
values.

The similarities with standard dataflow analysis techniques are
striking. Some equivalences (typically, DepEquiv_eq) are genuine
definition sites. For instance, the input list of the stack machine
defines its associated index. Other equivalences are mere use sites.
For instance, the first argument of the typed instruction cannot be
determined from a raw instruction: one must obtain it from the
input list. As hinted at earlier, the second argument of the typed
instruction can be computed from the first one, thus witnessing
a use-definition chain. Conceptually, lifting a dependently-typed
program consists in performing a topological sort on this dataflow
graph.

Taking full advantage of this representation opens many av-
enues for generalizations. For instance, our current definition of de-
pendent equivalences insists on being able to recover an index from
a raw value through the mandatory fca : C* A. As such, this pre-
cludes the definition of many equivalences, such as the equivalence
between natural numbers and finite sets (i.e. bounded natural num-
bers, the bound being unknown), or between raw lambda terms and
intrinsic dependently-typed terms (the types being unknown and, a
priori, not inferable).

Finally, perhaps inspired by the theory of ornaments, we would
like to avoid marshalling values across inductive types and their
algebraically ornamented families. Indeed, when converting from,
say, lists to vectors, we perform a full traversal of the list to convert
it to a vector that is, essentially, the same datatype. Most of our
conversion functions are nothing but elaborate identity functions.
By taking advantage of this structural information and, perhaps,
some knowledge of the extraction mechanism, we would like to
remove this useless and inefficient indirection.

Coq Formalization. The full Coq formalization, with documenta-
tion, is available at http://coqhott.github.io/DICoq/. It has
been developed using the 8.5 release of Coq (The Coq Develop-
ment Team 2015).

Acknowledgments. We thank the anonymous reviewers for their
constructive feedback.
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A. Decidable and Checkable
A proposition A is an instance of the Decidable type class when
there exists a function that return either a proof of A or a proof of
not A. We restrict the use of the Decidable type class to HProp
to force the element computed by the decidability function to be
irrelevant.

Class Decidable (A : HProp) := dec : A + (not A).

A proposition is Checkable when there exists a decidable
proposition checkP that implies it.

Class Checkable (A : HProp) := {
checkP : HProp;
checkP_dec : Decidable checkP ;
convert : checkP! A;
is_hPc :> IsHProp A }.

B. Cast Monad
The Cast Monad is a refinement of the Maybe monad, that allows
to collect information on the error.

Inductive _Cast A info :=
| Some : A! _Cast A info
| Fail : info! _Cast A info.

Here, we want to collect an error message in the form of a
string. However, we need this extra piece of information to be
irrelevant. For that, we use the propositional truncation Trunc, as
introduced by Awodey and Bauer (Awodey and Bauer 2004)—but
in the form defined in the HoTT book (Univalent Foundations Pro-
gram 2013). This allows us to state formally that the error message
is irrelevant while preserving consistency and compatibility with
univalence.

Definition Cast A := _Cast A (Trunc string).

We have standard monadic functions and notations:

Definition clift A B : (A! B)! A! Cast B :=
fun f a) Some (f a).

Definition cbind A B : (A! Cast B)! Cast A! Cast B :=
fun f a)
match a with
Some a) f a
| Fail _ s t) Fail _ s t
end.

Notation "x  e1; e2" := cbind (fun x) e2) e1.

We use extraction to provide a direct style extraction of the Cast
monad in OCaml, using runtime exceptions. The success construc-
tor of the monad is simply erased, and its failure constructor is pro-
jected to a runtime exception where argument of the failure con-
structor are used as the error message.

(* Transparent extraction of Cast:

- if Some t, then extract plain t

- if Fail, then fail with a runtime cast exception *)

Extract Inductive Cast)
"" [ "" "(let f s = failwith

(String.concat """" ([""Cast failure: ""]@
(List.map (String.make 1) s))) in f)"]

"(let new_pattern some none = some in
new_pattern)".
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