
HAL Id: hal-01328189
https://inria.hal.science/hal-01328189v1

Preprint submitted on 7 Jun 2016 (v1), last revised 22 Dec 2016 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

D-SPACES: Simulating Distributed Information Using
Constraint Systems and Order Theory

Stefan Haar, Salim Perchy, Frank Valencia

To cite this version:
Stefan Haar, Salim Perchy, Frank Valencia. D-SPACES: Simulating Distributed Information Using
Constraint Systems and Order Theory. 2016. �hal-01328189v1�

https://inria.hal.science/hal-01328189v1
https://hal.archives-ouvertes.fr

D-SPACES: Simulating Distributed Information
Using Constraint Systems and Order Theory?

Stefan HAAR1, Salim PERCHY2, and Frank VALENCIA3

1 CNRS, LSV École Normale Supérieur - Cachan
stefan.haar@inria.fr

2 INRIA, LIX École Polytechnique - Saclay
yamil-salim.perchy@inria.fr

3 CNRS, LIX École Polytechnique - Saclay and Universidad Javeriana - Cali
frank.valencia@polytechnique.fr

Abstract. This paper introduces D-SPACES, a tool for simulating con-
straint systems with space and extrusion operators. These formalisms are
algebraic structures for modeling the concept of space as an operation
over elements (the information). Furthermore, it is possible to specify
movement of information from one space to another, either belonging to
a different entity (the agents) or somewhere else in the space hierarchy.
This tool is coded as a c++11 library providing implementations for; a
constraint system (cs), a cs with space functions (scs), and a scs with
extrusion functions (scs-e). The interfaces to access each implementa-
tion are minimal and thoroughly documented. They also offer property-
checking methods for verifying conditions on the cs and functions that
are cumbersome to check by hand. Finally, D-SPACES provides an im-
plementation of a specific but common type of a scs-e (a boolean algebra)
for easy of access and proof of concept regarding these cs.

1 Motivation and Introduction

Systems where data moves across a given structure of information are now com-
monplace. Applications like social networks, forums, or any other that organizes
its information in a defined hierarchy are among these systems. In practice, the
nature of this information can be reviews, opinions, news, etc., which in turn
belong to a certain entity, e.g. users, agents, applications. This relation of owner-
ship can be conceptualized as space, thus a clear understanding of information in
spaces and its movement across them is pertinent to the study of these systems.

Treating information as knowledge is one option. Here, we have agents know-
ing facts [1] and uttering opinions and lies [2]. However, to attain a sufficiently
generic concept of space we study declarative formalisms. More specifically we
use constraint systems (cs), algebraic structures that operate on elements called

? This research was partially supported by Labex DigiCosme (project ANR-11-
LABEX-0045-DIGICOSME) operated by ANR as part of the program “Investisse-
ment d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-0003-02)

constraints (its representation of information) [3]. Constraints can be view as as-
sertions representing partial information (e.g. t < 50), making cs ideal to model
and manipulate data scattered throughout a hierarchy of spaces.

The characterization of a space operation [·] in constraint systems was devel-
oped in [4]. Assertions like [c]i “information c is present inside agent i’s space”
or [[c]j]i “c holds in a space associated to agent j inside agent i’s space” are
then possible in cs. Movement of information across spaces was introduced by
means of an operation ↑ called extrusion [5]. One can now conceive statements
like [↑i[c]j]i “agent i extrudes the information c to agent j”.

The purpose of this paper is to present D-SPACES, a tool for constructing
cs with space and extrusion. It is intended for simulation/verification and future
software incorporation. D-SPACES was conceived as a c++11 library, using the
boost graph library4 (BGL). It is thoroughly documented using HeaderDoc5 and
can be directly used in the OS X (XCode) and Linux (GCC+Make) environ-
ments6. Usage on Windows depends upon compilation of BGL, nonetheless the
tool is sufficiently cross-platform.

The paper is divided in three sections. Section 1 provides motivation, back-
ground and basic details of the tool. Section 2 describes D-SPACES; it explains
the general design, the class interfaces and details the property checking meth-
ods implemented therein. Moreover, we provide some remarks on the complexity
issues of some operators and present the implementation of boolean algebras.
Finally, Section 3 offers some concluding remarks and future endeavors of this
project. Mathematical proofs and usage examples are in the Appendices.

2 Implementing Space and Extrusion in cs’s

We begin by describing the class hierarchy of the tool. There are three modules
implementing each constraint system, they are named cs, scs and scse. A fourth
module, named ba, implements powerset boolean algebras using the functionality
of all these constraint systems.

Each module parametrizes the cs elements using a template T. The type used
must be comparable in the standard way (i.e. operator<) as there is reliance on
the automatic sorting of the container std::set. Current instantiations support
elements of type int, char, std::string and containers std::vector and
std::set of these same types. We continue with the description of each module.

Flat Constraint Systems. We first formalize the concept of constraint system.
A basic background in domain theory is presupposed [6,7].

Definition 1. A lattice is a partially ordered set (poset) (Con,v) where for
each c, d ∈ Con we define; (i) c u d (read as c meet d) as the maximal element
e s.t. e v c and e v d and, (ii) c t d (read as c join d) as the minimal element
e s.t. c v e and d v e.

4 http://www.boost.org/doc/libs/release/libs/graph/
5 http://developer.apple.com/opensource/tools/headerdoc.html
6 http://www.lix.polytechnique.fr/~perchy/d-spaces/

http://www.boost.org/doc/libs/release/libs/graph/
http://developer.apple.com/opensource/tools/headerdoc.html
http://www.lix.polytechnique.fr/~perchy/d-spaces/

The ordering relation in posets is reflexive (i.e. c v c), antisymmetric (i.e.
c v d and d v c imply c = d) and transitive (i.e. a v b and b v c imply a v c).
Its inverse is denoted as w. The meet and join operators are alternatively called
greatest lower bound (glb) or infimum and least upper bound (lub) or supremum.

Definition 2. A constraint system [3] is a complete lattice, that is, a lattice
where the meet and join are defined for every subset of Con.

Intuitively, a cs is an information structure, it has a global meet ⊥ (contex-
tually referred in cs as true) and a global join > (referred to as false). We can
also define a binary implication operator c → d =

d
{e | c t e w d}, allowing

us also to encode the negation of an element as ¬c = c→ false [8].

Interface and usage. Table 1 describes part of the interface to the cs module.
The input elements in glb and lub may be empty vectors, in this situation they
produce the global meet and global join respectively. Similarly, in the method
add_element the upper and lower bounds of c parameters may be empty, de-
noting ⊥ and > respectively. Figure 2 exemplifies the usage of the cs module.

Method Desc. Symbol

add_element(T c, vector<T> L, vector<T> U) addition of element L v c v U
bool leq(T c, T d) ordering relation c v d
T glb(vector<T> elems) meet of elements

d
(elems)

T lub(vector<T> elems) join of elements
⊔

(elems)
T imp(T c, T d) implication operator c → d

Table 1. Interface to cs

Properties of cs. It is possible to verify properties on the structure of the cs.
One important property of lattices is that of distributivity, defined as: for every
a, b, c ∈ Con a t (b u c) = (a t b) u (a t c). Distributivity is necessary for modus
ponens to hold, that is, (c→ d) t c w d must be true for every c, d ∈ Con [5].
Distributivity can be checked with the boolean method CS.is_distributive().

Spatial Constraint Systems with Extrusion. We continue by defining the
remaining two constraint systems.

Definition 3. An n-agent spatial constraint system (scs) is a cs equipped with
n self-maps (called space functions) over its set of elements. For each map [·]i :
Con→ Con: S.1 [true]i = true and S.2 [c t d]i = [c]i t [d]i for all c, d ∈ Con.

We refer to S.1 as emptiness, intuitively signifying that no local information
amounts to no information at all. S.2 is referred to as t-distribution, meaning
the structure of the information is preserved inside spaces. A derived prop-
erty of S.2 is monotonicity of spaces; for all i = 1 . . . n, S.3 if c v d then
[c]i v [d]i for all c, d ∈ Con. We now formalize extrusion in constraint systems.

Definition 4. An n-agent spatial constraint system with extrusion is a scs
equipped with n self-maps (called extrusion functions) over its set of elements.
For each map ↑i : Con→ Con: E.1 [↑ic]i = c for all c ∈ Con.

E.1 means that the i-th extrusion function is the right inverse of the i-th space
function. One might also require (for duality reasons) that the extrusion function
satisfy: E.2 ↑i(true) = true, and E.3 ↑i(c t d) = ↑ic t ↑id for all c, d ∈ Con.

Interface and usage. Table 2 exposes part of the interfaces to the scs and the
scs-e modules. The interfaces are similar in that both offer methods to retrieve
and modify the space/extrusion functions as well as calculate their inverses. In
Figure 3 we exemplify the usage of both modules.

Method Desc. Symbol

T s(int i, T c) / T e(int i, T c) space/extrusion functions [c]i, ↑ic
vector<T> s_inv(int i, T c) inverse of space function [c]−1

i

vector<T> e_inv(int i, T c) inverse of extrusion function ↑−1
i c

s_map(int i, T c, vector<T> elems) mapping of space function [elems]i = c
e_map(int i, T c, vector<T> elems) mapping of extrusion function ↑ielems = c

Table 2. Interface to scs and scs-e

Properties of scs and scs-e. Several properties of the space/extrusion functions
might be desired or needed for correct functioning (e.g. E.1 is not satisfied
for all c ∈ Con) [5]. Both modules offer property checking via the methods
s_properties(int i, S_FUNCTION_PROPERTY p) and e_properties(int

i, E_FUNCTION_PROPERTY p). One can verify standard properties like surjec-
tivity, t-distributivity (i.e. S.2, E.3) and inversion (i.e. E.1) among others.

Complexity. We now turn our attention to the details of time complexity
(see Table 3 for a complete chart). Implementation of lattices operators, and by
extension those of constraint systems, might yield considerable time complexities
if no attention is given. We discuss the most critical cases here, those of methods
leq, glb, lub and imp. Recall that posets were implemented using a BGL graph.

Method Complexity Method Complexity

add_element O(n3) s, e O(1)
leq O(1) s_inv, e_inv O(n)
glb, lub O(n2) s_map, e_map O(1)
imp O(n3) s_property O(n2)
is_distributive O(n3) e_property O(n2)

Table 3. Worst-case complexity of methods, n means # of elements in the cs

leq. The result of c v d can be given in constant time provided this is calculated
in advanced. We achieve this by performing a transitive closure on the poset re-
lation whenever an element is added (i.e. method add_element). This transitive
closure is performed using the BGL method boost::transitive_closure.

glb and lub. We take advantage of the fact that posets in cs are always in
transitive closure to lower the complexity of calculating meets and joins. The
meet and join of a set of elements S are defined as glb(S) = max(Sl) and
lub(S) = min(Su) respectively, where Sl (lower bounds of S) is defined as the

set {e | ∀s∈S e v s} and Su (upper bounds of S) as the set {e | ∀s∈S e w s}
[6]. Moreover, Sl and Su can be calculated in consant time with BGL meth-
ods boost::inv_adjacent_vertices and boost::adjacent_vertices. Calcu-
lating max(Sl) and min(Su) then boils down to finding a minimum value as the
next proposition shows. Corollary 1 is a result of Proposition 1.

Proposition 1. max(Sl) = argmin
si∈Sl

|siu|

Corollary 1. min(Su) = argmin
si∈Su

|sil|

imp. Recall that c → d =
d
S where S = {e | c t e w d}, we lower the

complexity by characterizing S. When c w d we have that S = Con, thereby
c→ d =

d
Con = ⊥. When c w d is not the case, it is easy to show that du ⊆ S,

whereby
d
du = d, therefore we can safely omit all elements of du from S, except

d (due to associativity of u).
Moreover, some elements need not be tested when calculating S. A particular

common case is the negation (i.e. d = false), the elements of the set (cu\{false})l
are never in S. The next proposition proves this.

Proposition 2. S′∩S = ∅ where S = {e | cte w false} and S′ = (cu\{false})l.

Application: Boolean Algebras. To provide a ready-to-use application, the
module ba is offered as an implementation of powerset boolean algebras (ba)
[6]. Given a set of atoms A, a powerset ba is a specific case of a scs-e where
Con = P(A), t = ∪ (or ∩ if the powerset is inverted), u = ∩ (or ∪ if inverted),
⊥ = ∅ (or A if inverted) and > = A (or ∅ if inverted). The ba module can create
the powerset boolean algebra by passing the set of atoms, number of agents and
specifying if the powerset should be inverted. The module maps the space and
extrusion functions specified through lambda functions. Because the powerset
ba is also a scs-e, the module also exposes all the functionality of the constraint
systems discussed here. Figure 4 is an example of using powerset ba.

3 Conclusions and Future Work

We presented a tool to simulate spatial constraint systems with extrusion called
D-SPACES. We described the interface to create cs, scs and scs-e and illustrated
their usage. To implement the poset of the constraint systems, we used the BGL’s
implementation of graphs. This, together with some mathematical properties,
allowed us to lower the complexity of the lattice operations, mainly when testing
for correspondence and calculating meets, joins and implication of elements.

As a quick way to construct scs-e, we offered a module to create powerset
boolean algebras with space and extrusion functions specified as lambda func-
tions. As future endeavors we plan to implement more relevant constraint sys-
tems, as well as support more data types to represent elements. We would also
like to see support for removing elements, as this, together with the add_element
method, would allow to interactively manipulate and verify a scs-e.

References

1. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about knowledge. 4th
edn. MIT press Cambridge (1995)

2. Van Ditmarsch, H., Van Eijck, J., Sietsma, F., Wang, Y.: On the logic of lying. In:
Games, actions and social software. Springer (2012) 41–72

3. Saraswat, V.A., Rinard, M., Panangaden, P.: Semantic foundations of concurrent
constraint programming. In: Conference Record of the Eighteenth Annual ACM
Symposium on Principles of Programming Languages. (1991) 333–352

4. Knight, S., Palamidessi, C., Panangaden, P., Valencia, F.D.: Spatial and epistemic
modalities in constraint-based process calculi. In: Proceedings of the 23rd Interna-
tional Conference on Concurrency Theory, CONCUR 2012, Springer (2012) 317–332

5. Haar, S., Perchy, S., Rueda, C., Valencia, F.D.: An algebraic view of space/belief
and extrusion/utterance for concurrency/epistemic logic. In: Proceedings of the 17th
International Symposium on Principles and Practice of Declarative Programming,
Siena, Italy, July 14-16, 2015. (2015) 161–172

6. Davey, B.A., Priestley, H.A.: Introduction to lattices and order. 2nd edn. Cambridge
university press (2002)

7. Abramsky, S., Jung, A.: Domain theory. Handbook of logic in computer science
(1994) 1–77

8. Vickers, S.: Topology via logic. 1st edn. Cambridge University Press (1996)

A Usage Examples

0

1 2

3 4

5

Fig. 1. A Poset

Code in Figure 2 creates a constraint system with elements {0, 1, 2, 3, 4, 5}
and the poset structure of Figure 1. Additionally, it calculates 1 t 2, u{2, 3, 4},
2→ 3 and checks if the cs is distributive.

The code of Figure 3 creates a scs out of the cs created in Figure 2 and
maps some of its elements. Next, it creates a scs-e with this scs. Here, the option
EC_SUPREMA automatically calculates the extrusion function as the join of the
space function’s inverse for each element. The reader is referred to [5] to see
other canonical ways to calculate the extrusion function.

The last example in Figure 4 creates a powerset boolean algebra and auto-
matically maps the extrusion function according to a user-given space function.

cs<int> CS(0, 5); // global meet = 0, global join = 5

CS.add_element(1); // 0 <= 1 <= 5

CS.add_element(2); // 0 <= 2 <= 5

CS.add_element(3, {1, 2}); // 1,2 <= 3 <= 5

CS.add_element(4, {2}); // 2 <= 4 <= 5

CS.lub({1, 2}); // lub(1,2) = 3

CS.glb({2, 3, 4}); // glb(2,3,4) = 2

CS.imp(2, 3); // 2 -> 3 = 1

CS.is_distributive(); // cs IS distributive.

Fig. 2. Code exemplifying the use of the cs module

scs<int> SCS(CS, 1); // 1-agent scs, s_1(0) = 0 mapped at creation

SCS.s_map(1, 1, {1, 2, 3}); // s_1({1,2,3}) = 1

SCS.s_map(1, 4, {4}); // s(4) = 4

SCS.s_map(1, 5, {5}); // s(5) = 5

SCS.s(1, 4); // 4

SCS.s_inv(1, 1); // {1,2,3}

scse<int> SCSE(SCS, EC_SUPREMA); // e_1(c) = lub(s_1_inv(c))

SCSE.e(1, 1); // lub(s_1_inv(1)) = lub({1,2,3}) = 3

SCSE.e_inv(1, 5); // 2,3,5

SCSE.e_map(1, 2, {2}); // e(2) = 2

SCSE.e_properties(1, EP_RIGHT_INVERSE_S); // e_1 is NOT the right

inverse of s_1↪→

Fig. 3. Code exemplifying the use of the scs and scse modules

ba<char> BA({’c’, ’a’, ’b’}, 2, true);

// space function

auto s = [] (int i, set<char> e, set<char> atoms) {

switch(i) {

case 1: // s_1(c) = c

return e;

case 2: // s_2(c) = A \ {c}

return set_difference(atoms.begin(), atoms.end(), e.begin(),

e.end());↪→

}

};

BA.map_s(s, EC_INFIMA); // e_n(c) = glb(s_n_inv(c))

BA.m_scse.is_distributibe(); // All powerset lattices are

distributive↪→

Fig. 4. Code exemplifying the use of the ba module

B Proofs

Proposition 1. max(Sl) = argmin
si∈Sl

|siu|

Proof. Suppose not, then sk = max(Sl), sj = argmin
si∈Sl

|siu| and sj < sk because

the maximal element is unique (v is antisymmetric by Definition 1). Further-
more, sk

u ⊂ sj
u because v is transitive. Consequently |sku| < |sju|, a contra-

diction.

Proposition 2. S′∩S = ∅ where S = {e | cte w false} and S′ = (cu\{false})l.

Proof. If c = false then S′ = ∅, thus the proposition is trivially true. If c 6= true
we prove that if a ∈ S′ then a 6∈ S. Suppose not, then a ∈ S′, meaning that
∃a′ ∈ cu\{false} and a v a′. Furthermore c v a′ < false and a v a′. We can
show that cta v a′ and by transitivity we deduce that cta < false. Furthermore
a ∈ S (by supposition), meaning that c t a w false, a contradiction.

	D-SPACES: Simulating Distributed Information Using Constraint Systems and Order Theory

