
HAL Id: hal-01328189
https://inria.hal.science/hal-01328189v4

Submitted on 22 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

D-SPACES: Implementing Declarative Semantics for
Spatially Structured Information

Stefan Haar, Salim Perchy, Frank Valencia

To cite this version:
Stefan Haar, Salim Perchy, Frank Valencia. D-SPACES: Implementing Declarative Semantics for
Spatially Structured Information. 11th International Conference on Semantic Computing , IEEE, Jan
2017, San Diego, California, United States. �hal-01328189v4�

https://inria.hal.science/hal-01328189v4
https://hal.archives-ouvertes.fr

D-SPACES: Implementing Declarative Semantics for Spatially Structured
Information

Stefan Haar∗, Salim Perchy† and Frank Valencia‡
∗ INRIA, Laboratoire Spécification et Vérification (CNRS)

École Normale Supérieure de Cachan
Email: stefan.haar@inria.fr

† INRIA, Laboratoire d’Informatique de l’École Polytechnique (CNRS)
Université Paris-Saclay

Email: yamil-salim.perchy@inria.fr
‡ CNRS, Laboratoire d’Informatique de l’École Polytechnique (CNRS)

École Polytechnique de Paris & Universidad Javeriana de Cali
Email: frank.valencia@polytechnique.fr

Abstract—We introduce in this paper D-SPACES, an imple-
mentation of constraint systems with space and extrusion oper-
ators. Constraint systems are algebraic models that allow for a
semantic language-like representation of information in systems
where the concept of space is a primary structural feature. We
give this information mainly an epistemic interpretation and
consider various agents as entities acting upon it. D-SPACES
is coded as a c++11 library providing implementations for
constraint systems, space functions and extrusion functions.
The interfaces to access each implementation are minimal and
thoroughly documented. D-SPACES also provides property-
checking methods as well as an implementation of a specific
type of constraint systems (a boolean algebra). This last
implementation serves as an entry point for quick access and
proof of concept when using these models. Furthermore, we
offer an illustrative example in the form of a small social
network where users post their beliefs and utter their opinions.

Keywords-semantic interpretation; social networks; epistemic
logic; utterance;

I. INTRODUCTION

Systems where information is created and manipulated
across a spatial structure are now commonplace. Appli-
cations like social networks, forums, or any other that
organizes its information in a defined hierarchy are among
these systems. The nature of this information can be reviews,
opinions, news, etc., whereas the information belongs to a
certain entity, e.g. users, agents, applications. This relation of
ownership and its alteration can be conceptualized as space
and extrusion respectively [1], [2]. We aim to achieve a clear
understanding of the concept of space and extrusion that
will enable us to study the meaning of information in these
systems.

In this work we focus in epistemic systems where we
have agents believing information [3] and uttering opinions
and lies [4]. In order to attain a semantical meaning of these
epistemic behaviors we use declarative models, specifically

constraint systems; algebraic structures that operate on el-
ements called constraints [5] (the information). Constraints
can be viewed as assertions representing partial information
(e.g. t < 50 would stand for a certain temperature being
lower than 50 degrees), this makes constraint systems ideal
to model and operate over scattered data.

The characterization of space as the operator [·] over con-
straints was developed in [1]. This made possible assertions
like [c]i “information c belongs to agent i’s space” or [[c]j]i
“c holds in a space associated to agent j inside agent i’s
space”. Alternatively, we can epistemically interpret these
assertions as “agent i believes c” and “agent i believes agent
j believes c” respectively. Movement of information across
spaces was introduced by means of the constraint operator ↑
called extrusion [6]. One can now conceive statements like
[↑i[c]j]i “agent i extrudes the information c to agent j” or
epistemically as “agent i extrudes that agent j believes c”.

The purpose of this article is to present D-SPACES,
an implementation of constraint systems with space and
extrusion operators. Our intention is to use it to provide a
semantic language for describing systems where information
is structured in a hierarchy of spaces. D-SPACES was
conceived as a c++11 library, using the boost graph library1

(BGL). It is thoroughly documented using HeaderDoc2

and can be directly used in the OS X (XCode) and Linux
(GCC+Make) environments3. Usage on Windows depends
upon compilation of BGL, nonetheless the implementation
is sufficiently cross-platform.

The paper is divided in four sections. Section I provides
an introduction with basic details of the tool. Section II
defines the constraints systems and describes D-SPACES;
it explains the general design, the class interfaces, and

1http://www.boost.org/doc/libs/release/libs/graph/
2http://developer.apple.com/opensource/tools/headerdoc.html
3http://www.lix.polytechnique.fr/∼perchy/d-spaces/

http://www.boost.org/doc/libs/release/libs/graph/
http://developer.apple.com/opensource/tools/headerdoc.html
http://www.lix.polytechnique.fr/~perchy/d-spaces/

cs

T

scs

T

scs-e

T
ba

std::set<T>

Figure 1. General class diagram

details the property checking methods implemented therein.
Moreover, we provide some remarks on the complexity
issues of the implementation of some constraint system
operations. In Section III we present powerset boolean
algebras as a specific instantiation of our model and we use
it to give semantics to a belief language describing a small
social networks based on tags. Finally, Section IV offers
some concluding remarks and future endeavors regarding
D-SPACES.

II. IMPLEMENTING SPACE AND EXTRUSION IN
CONSTRAINT SYSTEMS

We begin by describing the class hierarchy of D-SPACES
(Fig. 1). There are three modules implementing each con-
straint system, they are named cs, scs and scs-e. A
fourth module, named ba, implements powerset boolean
algebras using the functionality of all the others.

Each module parametrizes the cs elements (the in-
formation) using a template T. The type used must
be comparable in the standard way (i.e. operator<)
as there is reliance on the automatic sorting of the
container std::set. Currently, there are instantiations
of types int, char, std::string and containers
std::vector and std::set of these same types. We
continue with the description of the cs module.

Flat Constraint Systems: We first formalize the con-
cept of constraint system. A basic background in domain
theory is presupposed [7], [8].

Definition II.1 (Lattice). A lattice is a partially ordered
set (poset) (Con,v) where for each c, d ∈ Con we define;
(i) c u d (read as the meet of c and d) as the maximal
element e w.r.t. v s.t. e v c and e v d and, (ii) c t d (read
as the join of c and d) as the minimal element e w.r.t. v s.t.
c v e and d v e.

The ordering relation in posets is reflexive (i.e. c v c),
antisymmetric (i.e. c v d and d v c imply c = d) and
transitive (i.e. a v b and b v c imply a v c). Its reverse is
denoted as =. The meet and join operators are alternatively

0

1 2

3 4

5

Figure 2. A Poset

called greatest lower bound (glb) or infimum and least upper
bound (lub) or supremum. We give an example lattice with
elements {0, 1, 2, 3, 4, 5} where Fig. 2 is the Hasse diagram
of its underlying poset.

Definition II.2 (cs). A constraint system [5] is a complete
lattice, that is, a lattice where the meet and join operations
are defined for every subset of Con.

Intuitively, a cs is an information structure where its
elements are the set Con (called constraints). A cs has
a bottom element true (denoted as the global meet ⊥ in
lattice literature) and a top element false (denoted as >).
Furthermore, the reverse ordering relation w is interpreted
in cs as entailment (i.e. d w c means d entails c). Notice
this interpretation suggests the greater an element is on
the ordering relation v, the more information the element
denotes. In the example of Fig. 2, true is the element 0 and
false is the element 5, needlessly to say, false entails all the
elements of the cs.

We can also define a binary implication operator c→ d =d
{e | c t e w d}. This definition is adapted from Complete

Heyting Algebras [9] and it additionally allows us to encode
the pseudo-complement of a constraint as ∼ c = c→ false.
Pseudo-complements do not necessarily comply with the law
of the excluded middle and the above definition only works
as an implication if the cs is distributed, that is if for every
a, b, c ∈ Con we have that:

a t (b u c) = (a t b) u (a t c) (1)

Interface and usage: Table I describes part of the
interface to the cs module. The input elements in glb
and lub (the respective implementations of the meet and
join operators) may be empty vectors, in this situation they
produce the bottom and top elements respectively. Similarly,

Table I
INTERFACE TO CS

Method Desc. Symbol
add_element(T c, vector<T> L, vector<T> U) addition of element L v c v U
bool leq(T c, T d) ordering relation c v d ?
T glb(vector<T> elems) meet of elements

d
(elems)

T lub(vector<T> elems) join of elements
⊔

(elems)
T imp(T c, T d) implication operator c→ d

cs<int> CS(0, 5); // true = 0, false = 5
CS.add_element(1); // 0 <= 1 <= 5
CS.add_element(2); // 0 <= 2 <= 5
CS.add_element(3, {1, 2}); // 1,2 <= 3 <= 5
CS.add_element(4, {2}); // 2 <= 4 <= 5
CS.lub({1, 2}); // lub(1,2) = 3
CS.glb({2, 3, 4}); // glb(2,3,4) = 2
CS.imp(2, 3); // 2 -> 3 = 1
CS.is_distributive(); // cs IS distributive.

Figure 3. Snippet using the cs module

in the method add_element the upper and lower bounds
of c (i.e. parameters L and U) may be empty, denoting false
and true respectively.

Properties of cs: As mentioned above, one optional
and important property of constraint systems is that of
distributivity. This property is necessary for modus ponens
to hold, that is, (c → d) t c w d must be true for every
c, d ∈ Con [10]. In D-SPACES distributivity can be checked
with the boolean method CS.is_distributive().

The D-SPACES snippet in Fig. 3 creates a constraint
system with the underlying lattice of Fig. 2. Additionally,
it calculates 1t 2, u{2, 3, 4}, 2→ 3 and checks if the cs is
distributive.

Spatial Constraint Systems with Extrusion: We
continue with the scs and scs-e modules. For this we
begin by defining the remaining two constraint systems.

Definition II.3 (scs). An n-agent spatial constraint system
(scs) is a cs equipped with n self-maps [·]1, . . . , [·]n (called
space functions) over its set of elements. Additionally, for
each map [·]i : Con→ Con we have:
S.1 [true]i = true and
S.2 [c t d]i = [c]i t [d]i for all c, d ∈ Con.

We refer to S.1 as emptiness, intuitively signifying that
empty spaces amounts to no information at all. S.2 is
referred to as t-distribution, meaning that spaces distribute
over the joining of information. A derived property of S.2
is monotonicity of spaces; for all i = 1 . . . n,
S.3 if c v d then [c]i v [d]i for all c, d ∈ Con.
The intuition behind S.3 is that the structure of the infor-
mation (w.r.t. v) is preserved inside spaces. We now define
extrusion in spatial constraint systems.

Definition II.4 (scse). An n-agent spatial constraint system
with extrusion is a scs equipped with n self-maps ↑1, . . . , ↑n

(called extrusion functions) over its set of elements. Addi-
tionally, for each map ↑i : Con→ Con:
E.1 [↑ic]i = c for all c ∈ Con.

E.1 means that the i-th extrusion function is the right
inverse of the i-th space function. One might also require
that the extrusion function satisfy duals of S.1 and S.2:
E.2 ↑i(true) = true, and
E.3 ↑i(c t d) = ↑ic t ↑id for all c, d ∈ Con.

It is not unreasonable to suppose that the extrusion func-
tion might be a semantical interpretation of an operation that
satisfies emptiness and t-distribution.

Interface and usage: Table II exposes part of the in-
terfaces to the scs and the scs-e modules. The interfaces
are similar in that both offer methods to retrieve, set and
modify the space/extrusion functions. However, with module
scs-e it is possible to evolve a scs into a scse according
to a choice function that automatically maps the extrusion
functions. There are four choice functions implemented ;
i. infima, ii. suprema, iii. manual and iv. random.

The choice function manual expects the user to set the
extrusion function using e_map after the creation of the
scse. The choice function random maps each constraint
c ∈ Con to a random element of its space function pre-image
(i.e. [c]−1i). Choice functions infima and suprema map each
constraint to the greatest lower bound and least upper bound
appropriately of its space function pre-image. Mathemati-
cally speaking, for each c ∈ Con we have ↑ic =

d
[c]
−1
i and

↑ic =
⊔
[c]
−1
i when using the infima and sumprema choice

functions respectively. Choice functions random and manual
do not necessarily satisfy E.1 while infima and sumprema
do, moreover the choice function infima satisfies E.2 and
E.3 [10].

Properties of scs and scs-e: Several properties of
the space/extrusion functions might be desired or needed
for correct functioning (e.g. E.1 as mentioned above).
Both modules offer property checking via the methods
s_properties and e_properties. One can verify
standard properties like surjectivity (this implies the exis-
tence of an inverse function), t-distributivity (i.e. S.2, E.3)
and inversion (i.e. E.1) among others.

The snippet in Fig. 4 creates a scs out of the cs created
in Fig. 3 and maps some of its elements. Next, it creates
a scs-e with this scs. Here, the parameter EC_SUPREMA

Table II
INTERFACE TO SCS AND SCS-E

Method Desc. Symbol
T s(int i, T c) / T e(int i, T c) space/extrusion functions [c]i, ↑ic
vector<T> s_inv(int i, T c) inverse of space function [c]−1

i
vector<T> e_inv(int i, T c) inverse of extrusion function ↑−1

i c
s_map(int i, T c, vector<T> elems) mapping of space function [elems]i = c
e_map(int i, T c, vector<T> elems) mapping of extrusion function ↑ielems = c

scs<int> SCS(CS, 1); // 1-agent scs, s_1(0) = 0
mapped at creation↪→

SCS.s_map(1, 1, {1, 2, 3}); // s_1({1,2,3}) = 1
SCS.s_map(1, 4, {4}); // s(4) = 4
SCS.s_map(1, 5, {5}); // s(5) = 5
SCS.s(1, 4); // 4
SCS.s_inv(1, 1); // {1,2,3}

scse<int> SCSE(SCS, EC_SUPREMA); // e_1(c) =
lub(s_1_inv(c))↪→

SCSE.e(1, 1); // lub(s_1_inv(1)) = lub({1,2,3}) = 3
SCSE.e_inv(1, 5); // 2,3,5
SCSE.e_map(1, 2, {2}); // e(2) = 2
SCSE.e_properties(1, EP_RIGHT_INVERSE_S); // e_1 is

NOT the right inverse of s_1↪→

Figure 4. Snippet using the scs and scse modules

corresponds to the choice function suprema.

A. Complexity

We now turn our attention to the details of time com-
plexity (see Table III for a complete chart). Implementation
of lattices operators, and by extension those of constraint
systems, might yield considerable time complexities due
to the potentially large number of elements in the cs. We
discuss the most critical cases here, those of methods leq,
glb, lub and imp. Recall that posets were implemented
using a BGL graph.

leq: The result of c v d can be given in constant
time provided this is calculated in advanced. We achieve
this by performing a transitive closure on the poset relation
whenever an element is added (i.e. method add_element).
This transitive closure is performed using the BGL method
boost::transitive_closure.

glb and lub: We take advantage of the fact that
posets in cs are always in transitive closure to lower the
complexity of calculating meets and joins. The meet and join
of a set of elements S are defined as glb(S) = max(Sl) and
lub(S) = min(Su) respectively, where Sl (lower bounds
of S) is defined as the set {e | ∀s∈S e v s} and Su

(upper bounds of S) as the set {e | ∀s∈S e w s} [7].
Moreover, Sl and Su can be calculated in consant time with
BGL methods boost::inv_adjacent_vertices and
boost::adjacent_vertices. Calculating max(Sl)
and min(Su) then boils down to finding a minimum value
as the next proposition shows. Corollary II.1 follows from
Proposition II.1.

Proposition II.1. max(Sl) = argmin
si∈Sl

|siu|

Proof: Suppose not, then sk = max(Sl), sj =
argmin

si∈Sl

|siu| and sj < sk because the maximal element

is unique (v is antisymmetric by Definition II.1). Further-
more, sk

u ⊂ sj
u because v is transitive. Consequently

|sku| < |sju|, a contradiction.

Corollary II.1. min(Su) = argmin
si∈Su

|sil|

imp: Recall that c→ d =
d
S where S = {e | c t e w

d}, we lower the complexity by characterizing S. When c w
d we have that S = Con, thereby c → d =

d
Con = true.

When c w d is not the case, it is easy to show that du ⊆ S,
whereby

d
du = d, therefore we can safely omit all elements

of du from S, except d (due to associativity of u).
Moreover, some elements need not be tested when cal-

culating S. A particular common case is the negation (i.e.
d = false), the elements of the set (cu\{false})l are never
in S. The next proposition proves this.

Proposition II.2. S′∩ S = ∅ where S = {e | c t e w false}
and S′ = (cu\{false})l.

Proof: If c = false then S′ = ∅, thus the proposition is
trivially true. If c 6= true we prove that if a ∈ S′ then a 6∈ S.
Suppose not, then a ∈ S′, meaning that ∃a′ ∈ cu\{false}
and a v a′. Furthermore c v a′ < false and a v a′. We
can show that ct a v a′ and by transitivity we deduce that
ct a < false. Furthermore a ∈ S (by supposition), meaning
that c t a w false, a contradiction.

III. SEMANTICAL DESCRIPTION OF SOCIAL NETWORK
BEHAVIORS

Boolean Algebras: Adopting D-SPACES for con-
structing proof of concepts using constraint systems with
extrusion is feasible. To achieve of this, the module ba is
offered as an implementation of powerset boolean algebras
(ba). In this module, a constraint system is built automat-
ically from a powerset lattice which in turn is constructed
from a set of elements called atoms. The atoms represent
the indivisible bits that make up the information in the
constraint system, moreover, a powerset lattice is complete
and distributive by construction [7].

Given a set of atoms A, a powerset ba is a specific case
of a scse where Con = P(A), t = ∪ (or ∩ if the lattice

Table III
WORST-CASE COMPLEXITY OF METHODS, n MEANS # OF ELEMENTS IN THE CS

Method Complexity Method Complexity
add_element O(n3) s, e O(1)
leq O(1) s_inv, e_inv O(n)
glb, lub O(n2) s_map, e_map O(1)
imp O(n3) s_property O(n2)
is_distributive O(n3) e_property O(n2)

ba<char> BA({’c’, ’a’, ’b’}, 2, true);
// space function
auto s = [] (int i, set<char> e, set<char> atoms) {
switch(i) {

case 1: // s_1(c) = c
return e;

case 2: // s_2(c) = A \ {c}
return set_difference(atoms.begin(),

atoms.end(), e.begin(), e.end());↪→
}

};
BA.map_s(s, EC_INFIMA); // e_n(c) = glb(s_n_inv(c))
BA.m_scse.is_distributibe(); // All powerset lattices

are distributive↪→

Figure 5. Snippet using the ba module

is inverted), u = ∩ (or ∪ if inverted), true = ∅ (or A if
inverted) and false = A (or ∅ if inverted). Additionally,
a boolean algebra is equipped with a complementation
operation (i.e. c′) that we calculate by using the pseudo-
complement4 defined in Section II.

Space and extrusion functions are defined programmat-
ically using c++11 lambda functions. Because the pow-
erset ba is also a scse, the module also exposes all the
functionality of the constraint systems discussed up until
this point. The code example in Fig. 5 creates a two-
agent powerset boolean algebra and automatically maps the
extrusion functions as the infima choice of user-given space
functions.

A. A Tagged Social Network

We proceed to illustrate an application of constraint
systems with extrusion as semantics for epistemic behaviors
in social networks. We define a social network of comments
that are tagged according to their content, the tags used are
the following:

h: Personal.
p: Political.
r: Religious.

n: News.
s: Sports.

We create a powerset boolean algebra to represent the
social network, its set of atoms being the above tags.
Additionally, there are three users in the social network
represented as the three agents of the constraint system:
ba<char> ReseauSocial({ ’h’, ’p’, ’r’, ’n’, ’s’ }, 3);

Users in this social network are allowed to have their
own set of beliefs inside their spaces (e.g. walls) and make
opinions about the existing information (e.g. posts). We
intend to use a boolean algebra to calculate the semantic
meaning of scenarios where these opinions and beliefs exist
together. For this we express the epistemic behaviors using
the logical language of belief and utterance BUn [10]:

F := t | F ∧ F ′ | ¬F | Bi(F) | Ui(F)

4In powerset lattices, the complement and the pseudo-complement are
equivalent.

where i = 1 . . . n. In BUn, a comment F can be a tag
t, a conjunction of comments, a negation of a comment, a
user belief (i.e. Bi(F) stands for “user i believes F ”) and
a user utterance (i.e. Ui(F) stands for “user i utters F ”).

We assign to each user a profile that dictates how he
believes and utters comments. User 1 is a political person
and at the same time discreet of his personal life, user 2
has a very religious character while being apolitical and
finally user 3 is an objetive individual. We emulate their
belief profiles by applying the next lambda function as the
space function of the social network:
auto belief_func = [] (int agent, std::set<char> comment,

std::set<char> tags) {↪→
std::set<char> belief;
switch(agent) {

case 1:
belief = comment;
if(belief.find(’n’) != belief.end())

belief.insert(’p’);
break;

case 2:
belief = comment;
if(belief.find(’h’) != belief.end())

belief.insert(’r’);
break;

case 3:
belief = comment;
break;

}
return belief;

};
ReseauSocial.map_s(belief_func);

Notice how user 1 inserts in every news a political aspect,
while user 2 give to his personal comments a religious
interpretation. User 3 is objective and interprets the comment
unchanged. We also create a lambda function to code the
uttering profiles:
auto utterance_func = [] (int agent, std::set<char>

comment, std::set<char> tags) {↪→
std::set<char> utterance;
switch(agent) {

case 1:
utterance = comment;
utterance.erase(’h’);
if(utterance.find(’n’) !=

utterance.end())↪→
utterance.insert(’p’);

break;
case 2:

utterance = comment;
utterance.erase(’p’);
break;

case 3:
utterance = comment;
break;

}
return utterance;

};
ReseauSocial.map_e(utterance_func);

In this case user 1 inserts a political angle in every news
but removes any personal detail from a comment. User
2 removes the political aspect in the comment and user
3 remains objective. To interpret statements of epistemic
behavior in the social network we inductively give semantics
to the language of belief and utterance using constraint
systems with extrusion. We define a function J·K : F 7→
Con that maps a statement from BUn to a constraint of

ReseauSocial.

JtK = {t}
JF ∧ F K = JF K t JF K

J¬F K = ∼ JF K
JBi(F)K = [JF K]i
JUi(F)K = ↑iJF K

A tag is semantically interpreted as a set containing the
tag, the conjunction of comments is interpreted as their join,
the negation as the pseudo-complement and the belief and
utterance actions as the space and extrusion operators re-
spectively. We now present some epistemic scenarios where
we use the boolean algebra representing the social network
to calculate their semantical meaning. As a first case, we
want to model the belief of user 2 of a news comment that
user 1 believes true and utters to him:

B2(B1(news t U1(news)))

We encode this scenario in the social network as follows:
ReseauSocial.m_scse.s(2, ReseauSocial.m_scse.s(1,

ReseauSocial.m_scse.lub({ {’n’},
ReseauSocial.m_scse.e(1, {’n’}) })));

↪→
↪→

The semantical result of the above statement is
{’n’,’p’} indicating that the subjective (possible wrong)
political interpretation of the news from user 1 was also
picked up by user 2. Next, we model an scenario where
user 1 is a friend of user 2 and he comments on their
mutual personal activities (a sport activity denoted here by
personal). For this, user 1 verifies if the activity is common
to them, and utters such activity as interpreted by user 2:

B1(personal)→ U1(B2(personal t sports))

t B1(personal)

The scenario is encoded as follows:
ReseauSocial.m_scse.lub({ ReseauSocial.m_scse.imp(

ReseauSocial.m_scse.s(1, {’h’}),
ReseauSocial.m_scse.e(1, ReseauSocial.m_scse.s(2,
ReseauSocial.m_scse.lub({ { ’h’, ’s’} })))),
ReseauSocial.m_scse.s(1, {’h’}) });

↪→
↪→
↪→
↪→

The result here, {’h’,’r’,’s’}, shows that the seman-
tical interpretation mixes religious and sport tags in the same
scenario. Such configurations could be considered poten-
tially problematic and politically incorrect for a moderator
of the social network. For the last scenario we want to
model user 3 as an active liar where he intentionally utters
to the other users news he regards as untrue. User 2 however
already believes the news to be untrue:

B3(¬news t ¬news→ U3(B1(news) t B2(news)))

tB2(¬news)

ReseauSocial.m_scse.lub({ ReseauSocial.m_scse.s(3,
ReseauSocial.m_scse.lub({ ReseauSocial.m_scse.imp(
ReseauSocial.m_scse.imp({’n’},
{ReseauSocial.m_scse.lub()}),
ReseauSocial.m_scse.e(3, ReseauSocial.m_scse.lub({
ReseauSocial.m_scse.s(1, {’n’}),
ReseauSocial.m_scse.s(2, {’n’}) }))),
ReseauSocial.m_scse.imp({’n’},
{ReseauSocial.m_scse.lub()}) })),
ReseauSocial.m_scse.s(1, ReseauSocial.m_scse.imp(
{’n’}, {ReseauSocial.m_scse.lub()})) });

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

The semantical result is {’h’,’n’,’p’,’r’,’s’}
which is the top element of the constraint system. This can
be interpreted as false due to the inconsistency generated in
the beliefs of agent 2 after the news is uttered to him by
agent 3.

IV. CONCLUSIONS AND FUTURE WORK

We presented D-SPACES, an implementation of constraint
systems with space and extrusion operators for semantically
describing information structured in spaces. We covered the
different definitions of constraint systems as well as an
implication operator to increase expressivity. Additionally,
we documented the different methods in the implementation
to verify conditions in the constraint systems that might
be desired for certain properties to hold. To implement
the ordering relation of a constraint system we used the
BGL’s implementation of graphs. This, together with some
mathematical results, allowed us to work on the complexity
of the cs operators.

As a way to code proof of concepts on scse we introduced
a module to create powerset boolean algebras (a specific
case of scse) with space and extrusion functions specified as
lambda functions. Furthermore, we illustrated the use of scse
with a semantical interpretation of an epistemic language of
belief and utterance. Here, we created a small social network
as a powerset ba and discussed the resulting semantical
interpretations of different epistemic behaviors described in
the aforementioned language.

As future endeavors we plan to implement more signif-
icant cases of scse and support more data types. This will
allow for more description languages to be interpreted easier
and quicker. We would also like to see support for removing
elements, as this, together with the add_element method,
would allow to interactively manipulate a scse and give
meaning to a constantly changing structure of information.
Finally, we envisage that results from an interpretation of
a language can be coupled with other tools to perform
verification and/or detection of desired/undesired features.

ACKNOWLEDGMENT

This work has been partially supported by the Colciencias
project 125171250031 CLASSIC, and Labex DigiCosme
(project ANR-11-LABEX-0045-DIGICOSME) operated by
ANR as part of the program “Investissement d’Avenir” Idex
Paris-Saclay (ANR-11-IDEX-0003-02).

REFERENCES

[1] S. Knight, C. Palamidessi, P. Panangaden, and F. D. Valencia,
“Spatial and epistemic modalities in constraint-based process
calculi,” in Proceedings of the 23rd International Conference
on Concurrency Theory, CONCUR 2012. Springer, 2012,
pp. 317–332.

[2] S. Perchy and F. D. Valencia, “Opinions and beliefs as
constraint system operators,” in Technical Communications
of the 31st International Conference on Logic Programming,
ICLP 2015, 2015.

[3] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning
about knowledge, 4th ed. MIT press Cambridge, 1995.

[4] H. Van Ditmarsch, J. Van Eijck, F. Sietsma, and Y. Wang, “On
the logic of lying,” in Games, actions and social software.
Springer, 2012, pp. 41–72.

[5] V. A. Saraswat, M. Rinard, and P. Panangaden, “Semantic
foundations of concurrent constraint programming,” in Con-
ference Record of the Eighteenth Annual ACM Symposium on
Principles of Programming Languages, 1991, pp. 333–352.

[6] M. Guzman, S. Haar, S. Perchy, C. Rueda, and F. D. Valencia,
“Belief, knowledge, lies and other utterances in an algebra
for space and extrusion,” Journal of Logical and Algebraic
Methods in Programming, JLAMP, vol. 86, pp. 107–133,
2017.

[7] B. A. Davey and H. A. Priestley, Introduction to lattices and
order, 2nd ed. Cambridge university press, 2002.

[8] S. Abramsky and A. Jung, “Domain theory,” Handbook of
logic in computer science, pp. 1–77, 1994.

[9] S. Vickers, Topology via logic, 1st ed. Cambridge University
Press, 1996.

[10] S. Haar, S. Perchy, C. Rueda, and F. D. Valencia, “An
algebraic view of space/belief and extrusion/utterance for
concurrency/epistemic logic,” in Proceedings of the 17th
ACM SIGPLAN International Symposium on Principles and
Practice of Declarative Programming, PPDP 2015, 2015, pp.
161–172.

	Introduction
	Implementing Space and Extrusion in Constraint Systems
	Complexity

	Semantical description of Social Network Behaviors
	A Tagged Social Network

	Conclusions and Future Work
	References

