A Cut-Invariant Law of Large Numbers for Random Heaps

Abstract : Heap monoids equipped with Bernoulli measures are a model of probabilistic asynchronous systems. We introduce in this framework the notion of asynchronous stopping time, which is analogous to the notion of stopping time for classical probabilistic processes. A Strong Bernoulli property is proved. A notion of cut-invariance is formulated for convergent ergodic means. Then a version of the Strong law of large numbers is proved for heap monoids with Bernoulli measures. Finally, we study a sub-additive version of the Law of large numbers in this framework based on Kingman sub-additive Ergodic Theorem.
Type de document :
Article dans une revue
Journal of Theoretical Probability, Springer, 2016, pp.29. 〈10.1007/s10959-016-0692-6〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01328460
Contributeur : Samy Abbes <>
Soumis le : mercredi 8 juin 2016 - 09:37:51
Dernière modification le : jeudi 11 janvier 2018 - 06:27:38

Identifiants

Collections

Citation

Samy Abbes. A Cut-Invariant Law of Large Numbers for Random Heaps. Journal of Theoretical Probability, Springer, 2016, pp.29. 〈10.1007/s10959-016-0692-6〉. 〈hal-01328460〉

Partager

Métriques

Consultations de la notice

72